

2 IX September 2014

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 66

Java Applet Security
Chirag Gulati1, Ayushi Mishra2, Chetna Mahajan3

Dronacharya College Of Engineering,
Gurgaon,HR

Abstract: Java's early growth was spurred by code downloadable over a network, better known as APPLETS. Applet security has
evolved with the growth of Java, and today is a source of frequent confusion due to the variety of Java versions, commercially
available browsers, and plug-ins. Applets are automatically (an applet may not give any visual signal of its existence or
execution) downloaded across the network and run on the host machine when a user accesses in a browser a web page
containing applet. A user coming across malicious applets is within the realms of possibility.

The Java Sandbox model provides you an environment, where you could welcome any code from any source. But when the code
from an untrusted source runs Sandbox restricts the code from taking any actions that could possibly harm your system. It terms
of applets the restrictions means that applets will be unable to determine information about each other; each applet is given its
own memory space to run. Java byte code modification technique is used to insert extra run-time test into java applets. This
technique is used to restrict applet behavior or, potentially, insert code appropriate to profiling and other monitoring efforts.

Keywords: Java applet security, browse-dependent, access control, security manager, digital signature, byte-code modification.

I. INTRODUCTION

1.) JAVA APPLETS

Java applets are applications written using the Java
programming language that are embedded in web pages.
Applets typically provide dynamic functionality that is not
supported by plain HTML or a combination of HTML
and JavaScript.
Perhaps ironically, the functionality of JavaScript is sometimes
invoked from Java applets to achieve things that applets cannot
do on their own. Further, the deployJava.js JavaScript provided
by Oracle is designed to launch applets after checking a suitable
minimum Java version is installed. While Java can do things
that JavaScript cannot - most modern applets would not get very
far if JavaScript was disabled in the user's browser!
While applets might seem easy to develop, they are actually
quite tricky. To deploy an applet reliably to 'all comers' (or at
least the vast majority) on the WWW is an order of magnitude
more difficult again.

The Java applet API provides methods considered handy to web
based applications. These include methods to gain images and
audio clips, discover and communicate with other applets,
ascertain the code base and document base to allow relative
references to resources (images, clips, text files, etc.) that the
applet might use.Applets could be embedded in web pages since
Java 1.1.

Applet 'Hello World' Example

/* <!-- Defines the applet element used by the appletviewer. -->
<applet code='HelloWorld' width='200' height='100'></applet>
*/
import javax.swing.*;

/** An 'Hello World' Swing based applet.

To compile and launch:
prompt> javac HelloWorld.java
prompt> appletviewer HelloWorld.java */

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 67

publicclassHelloWorldextendsJApplet {

publicvoidinit() {
// Swing operations need to be performed on the EDT.
// The Runnable/invokeAndWait(..) ensures that happens.
Runnable r = newRunnable() {
publicvoid run() {
// the crux of this simple applet
getContentPane().add(newJLabel("Hello World!"));

}
};

SwingUtilities.invokeAndWait(r);
}

}

\

2.)Javaapplet security with the help of bytecode modification

JVM include byte code verifier that check the bytecode program
before program execution,and a byte code interepter that
perform run time task such as array bounds and null-pointers
check,java applets may still behave in different way that may be
annoying and potentially harmful for user.JVM verifies code
property and perform additional operation at run-time. Java byte
code modification is a technique by which we can put some
restriction on the applet by inserting extra bytecode operation
that may work at the run time. These additional bytecode
instruction may monitor and control resource usage,limit applet
functionality and provide control over inaccessible object.

Java applets downloaded from the Internet or from any remote

sources are restricted from reading and writing files and making

network connections on client host systems. They are also

restricted from starting other programs, loading libraries, or

making native calls on the client host system. In general, applets

downloaded from a network or remote sources are considered

untrusted. An applet can be considered trusted, based on the

following factors:

 Applets installed on a local file system or executed on a

localhost.

 Signed applets provide a way to verify that the applet is

downloaded from a reliable source and can be trusted to

run with the permissions granted in the policy file.

Applets implement additional security restrictions that protect
users from malicious code too. This is accomplished through
the java.lang.SecurityManager class. This class is subclassed to
provide different security environments in different virtual
machines.

To test the applet using an APPLETVIEWER, you may choose
to use the

-J-
DJAVA.SECURITY.POLICY=WRITEAPPLETPOLICY.PO
LICY option on the JVM command line, or you can explicitly
specify your policy file in the JVM security properties file in the
<JAVA_HOME>/jre/lib/security directory

policy.url.3=file:/export/xyz/WriteAppletpolicy.policy

Java byte modification can be done by two general forms class
level and method level modification.

2.1)Class level modification

In this method class such as Window can be replaced
by subclasses window (which will called
Safe$window) that restrict resource usage and
functionality. Safe$window constructor method can put
a limit on how many window’s are open at a time. The

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 68

method allows the window to be created until a number
of windows exceed the limit. Since Safe$window is the
sub-type of window, and can appear where ever the
window is expected. Hence, the applet should not
notice the change, unless it attempts to create window

exceeding limit.

Class-level substitution requires a simple modification of
constant pool entity,since it takes advantage of the property of
class inheritance

2.2) Method level Modification

Method level modification provides more flexibility it can be
used even when the method is final or is accessed through an
interface,but requires more complicated modifications of
method reference and invoking instructions.

II. HOW SANDBOX MODEL PROVIDE SECURITY IN
JAVA APPLETS

In computer security, a sandbox is a security mechanism for
separating running programs. It is often used to execute untested
code, or untrusted programs from unverified third parties,
suppliers, untrusted users and untrusted websites. Sandbox
model is a directed avalanche system that exhibits self-
organized criticality.The Java sandbox is responsible for
protecting a number of resources, and it does so at a number of
levels. Consider the resources of a typical machine as shown
in Figure 1. The user's machine
has access to many things:

 Internally, it has access to its local memory (the
computer's RAM).

 Externally, it has access to its filesystem and to other
machines on the local network.

 For running applets, it also has access to a web server,
which may be on its local (private) net or may be on
the Internet.

 Data flows through this entire model, from the user's
machine through the network and (possibly) to disk.

Figure 1 (A machine has access to many resources)

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 69

Each of these resources needs to be protected, and those
protections form the basis of Java's security model. We can
imagine a number of different-sized sandboxes in which a Java
program might run:

 A sandbox in which the program has access to the
CPU, the screen, keyboard, and mouse, and to its own
memory. This is the minimal sandbox -- it contains just
enough resources for a program to run.

 A sandbox in which the program has access to the CPU
and its own memory as well as access to the web server
from which it was loaded. This is often thought of as
the default state for the sandbox.

 A sandbox in which the program has access to the
CPU, its memory, its web server, and to a set of
program-specific resources (local files, local machines,
etc.). A word-processing program, for example, might
have access to the docs directory on the local
filesystem, but not to any other files.

 An open sandbox, in which the program has access to
whatever resources the host machine normally has
access to.

The sandbox, then, is not a one-size-fits-all model. Expanding
the boundaries of the sandbox is always based on the notion of
trust. And so it is with Java programs: in some cases, I might
trust them to access my filesystem; in other cases, I might trust
them to access only part of my filesystem; and in still other
cases, I might not trust them to access my filesystem at all.A
security measure in the Java development environment. The
sandbox is a set of rules that are used when creating
an applet that prevents certain functions when the applet is sent
as part of a Web page. When a browser requests a Web page
with applets, the applets are sent automatically and can be
executed as soon as the page arrives in the browser. If the applet
is allowed unlimited access to memory and operating
system resources, it can do harm in the hands of someone with
malicious intent. The sandbox creates an environment in which
there are strict limitations on what system resources the applet
can request or access. Sandboxes are used when executable code
comes from unknown or untrusted sources and allow the user to
run untrusted code safely.

The anatomy of a typical Java program is shown in Figure 2.
Each of the features of the Java platform that appears in a

rectangle plays a role in the development of the Java security
model.The Java sandbox relies on a three-tiered defense. If any
one of these three elements fails, the security model is
completely compromised and vulnerable to attack:

 byte code verifier -- This is one way that Java automatically
checks untrusted outside code before it is allowed to run. When
a Java source program is compiled, it compiles down
to platform-independent Java byte code, which is verified before
it can run. This helps to establish a base set of security
guarantees.

 applet class loader -- All Java objects belong to classes, and the
applet class loader determines when and how an applet can add
classes to a running Java environment. The applet class loader
ensures that important elements of the Java run-
time environment are not replaced by code that an applet tries to
install.
security manager -- The security manager is consulted by code
in the Java library whenever a dangerous operation is about to
be carried out. The security manager has the option to veto the
operation by generating a security eThe security package

The security package (that is, classes in
the java.security package as well as those in the
security extensions) allows you to add security features
to your own application as well as providing the basis
by which Java classes may be signed. Although it is
only a small box in this diagram, the security package
is a complex API and discussion of it is broken into
several chapters of this book. This includes discussions
of:

 The security provider interface -- the means by which
different security implementations may be plugged into
the security package

 Message digests
 Keys and certificates
 Digital signatures
 Encryption (through JCE and JSSE)
 Authentication (through JAAS)

The key database
The key database is a set of keys used by the security
infrastructure to create or verify digital signatures. In

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 70

the Java architecture, it is part of the security package,
though it may be manifested as an external file or
database.

Figure 2. Anatomy of a Java application

With respect to the sandbox, digital signatures play an
important role because they provide authentication of who
actually provided the Java class.
Inside and Outside Sandbox---Stack Based Access Control

In general, the applet should not damage hardware, software,
or information on the host machine, should not pass
unauthorized information to anyone, shouldn’t cause the host
machine to become unusable through resource depletion.

The simplest way to do this is, applets loaded over the net are
prevented from reading and writing files on the client file
system, and from making network connections except the
originating host.

In addition, applets loaded over the net are prevented from
starting other programs on the client. Applets load over the net
are also not allowed to load libraries, or to define native method

calls. If an applet could define native methods calls, that would
give the applet direct access to the underlying computer.

There are other specific capabilities denied to applets loaded
over the net, but most of the applet security policy called
sandbox is described by those two paragraphs above.

The sandbox model is easy to understand and to be
implemented, but it prevents many kinds of useful programs
from being written. The problem here is that this policy don’t
address any difference of which applet come from. Some applets
may come from that you trust, others may come from that you
didn’t know. To tell the difference of applet does make sense to
security concerns. Now suppose that the browser know exactly
where the applet come from, and know that the applet isn’t
affected in transmission, should it allow the applet to go beyond
the sandbox? Definitely. The stack based access-control
decisions boil down to who is allowed to do what in where.
In this kinds of model, a principal represents the “who”,
sometime it is grouped several zones; such as Local Machine,
Intranet, Trusted Web sites, the Internet and Untrusted sites(
Microsoft Explorer 4).
The target represents the “where”, such as a local file or
directory.
The privilege is the “what”, such as User Directed File I/O,
Network Connection, Executing other application on the clients,
Exit VM, Read system properties.
The stack based Access Control works like this. Four
fundamental primitives are necessary to use stack inspection:
enablePrivilege(), disablePrivilege(), checkPrivilege(),
revertPrivilege(). When a target T (such as the file system)
needs to be protected, the system must be sure to call
checkPrivilege(T) before accessing T. The algorithm searches
the frames on the caller’s stack in sequence, from newest to
oldest. The search terminates, allowing access, upon finding a
stack frame that has an enabled-Privilege(T) annotation. The
search also terminates, forbidding access, upon finding a stack
frame that is either forbidden by the local policy from accessing
the target or that has explicitly disabled its privileges.
When an applet wishes to use T, it must first call
enablePrivilege(T). This consults the local policy to see whether
the principal of the caller is permitted to use T. Sometimes, the
decision is based on the setup, sometimes, it will need human-
machine interactive procedure. If it is permitted, an enabled-
Privilege(T) annotation is made on the current stack frame. The
applet may then use T normally. Afterward, the code may call

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 71

revertPrivilege(T) or disablePrivilege(T) to discard the
annotation.
This stack based access control has been proved to be a useful
tool to expressing and managing complex trust relationships.
The stack inspection is formalized using a logic developed by
Abadi, Burrows, Lampson, and Plotkin. Java’s access control
decisions correspond to proving statements in ABLP logic.
secure system could require a digitally signed request before it
sent out the payroll information.

Two forms of Java Applets

 Abstract Window Toolkit (AWT): AWT classes and
components are contained in the java.awt package
hierarchy. It is a set of APIs that provides GUI for java
program like buttons, checkbox etc. AWTs are considered
obsolete. Swings are preferred over AWT components.

 Swings: The Swing classes and components are contained
in the javax.swing package hierarchy. Swing components
are known as lightweight because they do not require
allocation of native resources in the operating system’s
windowing toolkit, whereas AWT components are referred
to as heavyweight components.

Swings are considered better than AWT:

1. Swing components are not implemented by platform-
specific code, they are written entirely in

2. Java and therefore are platform-independent unlike
AWT components,

3. It has more flexible components than AWT.
4. In J2SE 1.2, Swings superseded AWT’s widgets as it

provides a richer set of UI widgets.
5. Swing draws its own widgets
6. Not yet obsolete, the same used by me in previous

article.

The advent of executable contents such as Java applets exposes

World Wide Web (WWW) users to a new class of attacks that

were not possible before. Despite an array of security checking,

detection, and enforcement mechanisms built into the language

model, the compiler, and the run-time system of Java,

serious security breach incidents due to implementation bugs

still arose repeatedly in the past several years. Without a

provably correct implementation of Java's securityarchitecture

specification, it is difficult to make any conclusive statements

about the security characteristic of current Java virtual

machines. The Spout project takes an alternative approach to

address Java's security problems. Rather than attempt a provable

secure implementation, we aim to confine the damages of

malicious Java applets to selective machines, thus, preventing

the machines behind an organization's firewall from being

attacked by malicious or buggy applets. More concretely, Spout

is a distributed Java execution engine that transparently

decouples the processing of an incoming applet's application

logic from that of graphical user interface (GUI), such that the

only part of an applet that is actually running on the requesting

user's host is the harmless GUI code. A unique feature of the

Spout architecture that does not exist in other similar systems, is

that it is completely transparent to and does not require any

modifications to WWW browsers or class libraries on the end

hosts.

III. JAVA APPLET SECURITY STANDARD---ACCESS
CONTROL AND SOFTWARE PUBLISH LEVEL

Several concerns in constructing this kind of standard.

The principal hierarchy standard: How many kinds of place Java
applet may come from? The Microsoft Explorer groups the Java
applet sources as local machine, intranet, trusted sites, internet,
untrusted site. Every group has been assigned some privileges
to some targets. So if an appletes originated from a grouped

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E AN D
E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 72

site, it won’t ask the user in runtime to grant the privilege. It’s
better in performance and the ergonomics than those ask user
frequently.

The privilege hierarchy standard: How many kinds of operation
a principal may apply to the target? To a file system, the basic
operation may be read, write. How many operation could be
applied to the thread? Network connection?

The target classification: How many kind of resource and
information can be classified in user local machine? Is the
classification like CPU computation capability, hard disk space,
file system, display system? How to handle the granulation?

The human-machine interactive interface standard: What kinds
of information that an applet must get in runtime? What content
and frequency should be prompted to user when the local
resource be accessed?

The standard software publish file format standard: Which
compressed standard should be used, what content should be put
in the file?

After the above standard works, the Java applet should be
browser-independent. However, it won’t be easy not only for
pure technique reason but also for commercial benefit diversity.

REFERENCES

1. Laura lemay, Charles L. Perkins, and Michael Marrison,
Teach yourself JAVA in 21 days, Sams.net publishing,
1996.

2. Frank Yellin, Low Level Security in Java,
http://java.sun.com:80/sfaq/verifier.html.

3. Dan S. Wallach and Edward W. Felten, Understanding Java
Stack Inspection, 1998 IEEE Symposium on Security and
Privacy.

4. Dan S. Wallach, Dirk Balfanz, Drew Dean and Edward W.
Felten, Extensible Security Architectures for Java, the 16th

Symposium on Operating Systems Principles.
5. Drew Dean, Edward W. Felten and Dan S. Wallach, Java

Security: From HotJava to Netscape and Beyond, 1996
IEEE Symposium on Security and Privacy.

6. Netscape, Netscape object signing—Establishing trust for
downloadedsoftware,http://developer.netscape.com/library/
documentation/signedobj/trust/owp.html.

7. Microsoft, Trust-based Security for Java, http://
www.microsoft.com/java/ security/ jsecwp.html.

8. VeriSign, Inc. VeriSign Digital ID for Netscape Object
Signing, http://digitalid.verisign.com/nosintro.html.

9. http://en.wikipedia.org/wiki/Java_applet
10. http://docs.oracle.com/javase/tutorial/deployment/applet/sec

urity.html
11. http://www.securingjava.com/chapter-two/
12. http://www.javaworld.com/article/2076262/core-javaava-

security-evolution-and-concepts--part/core-java/java-
security-evolution-and-concepts--part-3--applet-
security.html

13. http://books.google.co.in/books/about/Java_security.html?i
d=EhX9BjHj9M4C

14. http://www.oracle.com/technetwork/java/index.html
15. http://www.eclipse.org/
16. http://books.google.co.in/
17. W.R. Cheswick and S.M. Bellovin, Firewalls and Internet

Security,Repelling the Wily Hacker. Addison-Wesley, 1994
18. Securing Java: Getting Down to Business with Mobile

Code(Gary McGraw and Ed Felten John Wiley and Sons
19. Java Security: Hostile Applets, Holes, and Antidotes(Gary

McGraw ,Ed Felten and John Wiley and Sons.
20. Web Security sourcebook: A Complete Guide to Web

Security (Avirubin, Daniel Geer and marcusranum sons

