
 

5 VI June 2017



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1886 

Static Load Balancing Using ASA Max-Min 
Algorithm 

Shubham Mathur1, Ali Abbas Larji2, Anubhav Goyal3 
1,2,3 School of Information Technology, Vellore Institute of Technology Vellore, India 

Abstract:  In recent times, a huge demand for computational resources has led to the development of large network known as a 
Grid [1]. A grid allows resources to be acquired in real time on an on-demand basis making sophisticated technology available at 
extremely low prices. However, the availability of such resources to a huge audience also invites a huge number of concurrent 
requests for same resources. Thus, it is required that such load of requests is efficiently distributed across all the resources with 
heterogeneous capabilities to keep the network function adequately. A lot of research has been conducted on Load Balancing of 
distributed systems and several algorithms have been devised. Load Balancing is generally categorized in two ways: a). Static 
load Balancing – Where all information pertaining to the resources like their number, processing power and amount of memory 
etc. is known in advance, b). Dynamic load Balancing – Here the network of resources is dynamic in nature i.e. the number as 
well as capabilities may change over the course of time. In this paper, our focus is on Static load balancing using Max-Min 
algorithm which performs most efficiently among all the available static algorithms. Max-Min however works only when the 
tasks to be assigned are clearly heterogeneous in terms of their execution time. In this paper, we propose ASA Max-Min 
Algorithm that overcomes the above-mentioned problem.  
Keywords—Max-min; makespan; completion time; execution time; task scheduling; 

I.  INTRODUCTION  
Economics and time are important factors when there is a requirement of different distributed services spread across different 
networks or over grid of resources i.e. the amount of time one uses a service determines the cost that needs to be paid for it and hence, 
it is very much required that the execution of our tasks on the resources we acquire is fast so that it incurs as low cost as possible on 
us. For this reason, the study of how to select the best possible resource for a particular task such that it takes the least possible time 
for executing that task has become a major part of research in distributed systems today. Scheduling is the term used to define the way 
in which we schedule several tasks on the available pool of resources [2]. A scheduler is a component in a distributed environment 
that runs a particular algorithm to decide which task to schedule and how to schedule it. Several algorithms [3,4] have been proposed 
in order to schedule tasks in distributed environment. 
The main aim of scheduling process is to achieve the maximum utilization of the available resources and at the very same time 
provide a fast and cost-effective service to its users. It is important to note that one service cannot come at the expense of other and 
we must ensure high speed of execution to ensure low expenditure. Scheduling algorithms are broadly categorized into two types. 
Static Scheduling and Dynamic Scheduling [5]. Static Scheduling is used in system environments wherein we have profound know 
how of the resource parameters like the number of resources available, their processing power, memory size etc. This prior 
knowledge of resource nodes makes the scheduling process easier for us. On the other hand, Dynamic Scheduling [6] by its name 
implies that the distributed environment remains dynamic at all times i.e. the no. of resource nodes, there processing power, memory 
capacity and other performance parameters may change over the course of time. Dynamicity obviously makes the situation very 
unpredictable and requires different approaches to be devised for the sake of effective scheduling. 
Further classification of scheduling algorithms is done on the basis of how the tasks are assigned to the scheduler. This mainly 
includes two categories online mode heuristic scheduling and Batch mode heuristic scheduling [7]. In online mode scheduling the 
tasks are sent to the scheduler immediately as they arrive, however in batch mode scheduling tasks are collected in groups or chunks 
or batches and then assigned to the scheduler. In our discussions, we stick to the batch mode scheduling method. 
The Ali Shubham Anubhav (ASA) Max-min algorithm that we proposed, is based on batch mode scheduling method. It uses 
traditional max-min method in first phase and in second phase it optimizes its result. Thus, directly overcoming some of the 
shortcomings of traditional Max-min algorithm with very less overhead involved.  



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1887 

II. RELATED WORK 
Conceptually scheduling and Load Balancing are interrelated areas. Scheduling is a process that is aimed at assignment of incoming 
tasks into a distributed environment to resources in an efficient way, where by efficiency we broadly imply that the computational 
load introduced to the system is distributed within the system such that no particular resource is overloaded and we achieve the 
optimum makespan. Several algorithms [6,7] have been developed for scheduling tasks but long research has proved that finding an 
optimal scheduling algorithm is a NP problem. Hence, heuristic based improvements have been devised in order to achieve a sub-
optimal solution. 

A. The following are the foundational terms that are related to the most fundamental approach of task scheduling: 
1) Execution time: The exact amount of time it takes for a task to be executed on a particular resource is called Execution time. The 

lower the execution time the better that resource is for that task. Scheduling tasks based on minimum execution time may assign 
the task irrespective of whether the resource is available or not. This can lead to severe overloading of the resources [8]. 

2) Completion time: It is the time taken by a resource to complete the task i.e. it involves the time elapsed while executing other tasks 
in addition to the execution time of the task in consideration. If scheduling is based on minimum completion time, then tasks may 
be assigned to resources that do not give minimum execution time for that task [8]. 

Since, our area of study is batch mode heuristic scheduling, we define the set of tasks to be scheduled as meta-tasks. The 
following are the basic batch mode scheduling algorithms. 

Fig. 1. Min-Min Algorithm   

3) Min-Min Scheduling [9]: It involves scheduling resources with minimum execution time (ET) within the meta-task to the 
corresponding resource. First minimum execution time for each task is computed on each resource (r) (1) (2) (3).  Thereafter, the 
task with least completion time is selected (5) and assigned to that resource which have minimum execution time (7). Then 
remove that task from the meta-task (8) and update completion time of all remaining tasks on that resource (9). This process is 
repeated until all tasks are executed. Fig. 1 shows the steps followed in the algorithm. 

4) Max-Min Scheduling [9]: The Max-Min algorithm is quite similar to the Min-Min algorithm since it also initially computes the 
minimum execution time of each task on every resource (1) (2) (3), then identifies the resource with the maximum completion 
time and assigns it to the corresponding resource which have minimum execution time (4) (5) (6) (7). The task is then removed 
from the meta-task set and completion time is updated (8) (9). This process is looped until all the tasks are assigned to the 
resources for execution. Fig. 2 shows the steps followed in the algorithm. 

5) Min-Min and Max-Min comparison: Both the algorithms have shown their supremacy with respect to another in different 
situations. Detailed analysis has shown that while min-min is efficient when all the resources require less execution time, on the 

1. For all tasks t in meta-task set 
2.          For all resources m available in grid 
3.                Calculate execution time ET. 
4. Until all tasks are assigned to resources 
5.       Find the task t with minimum CT. 
6.         Find the resource with minimum ET 
7.          Assign t to this resource. 
8.        Delete t from meta-task set. 
9.        Update CT of all tasks for that resource. 

10. End 



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1888 

other hand, max-min is better when some tasks have higher time requirements than others because it allows shorter tasks to be 
executed concurrently when the bigger tasks has occupied the other resource. This gives better makespan than what min-min 
would have given [10].  

Some of the other notable works done are:  QoS directed Min-Min [12, 13] has been proposed that considers the QoS 
requirements while scheduling tasks using min-min algorithm. The principle behind this heuristic is that some tasks may have greater 
bandwidth requirements in the network grid while some may have lower requirements. Thus, QoS guided min-min assigns tasks with 
greater bandwidth requirements first via Min-Min heuristic. An improved QoS guided algorithm named QoS-Suffrage [11, 13] has 
been proposed by O. M. Elzeki. It also considers a task’s bandwidth requirement and then schedules it with the min-min heuristic. 
However, it gives a better makespan in comparison to the Min-Min, Max-Min and QoS directed Min-Min algorithms. 
A Selective Min-Min algorithm is proposed by [14]. According to this heuristic, tasks are scheduled based upon the decision that 
which algorithm out of Min-Min or Max-Min is best suitable for that set of meta-task. It has shown some improvements in some 
situations.  
Several other heuristic based algorithms have been proposed by researchers in order to achieve some improvement upon the already 
devised methods; however it must be observed that since only a sub-optimal solution is possible hence every new heuristic that can be 
proposed will be show improvements only in certain conditions. 

III. ALGORITHM 

Fig. 2. Max-Min Algorithm 

 
 The proposed static load balancing algorithm is an improvement in the existing max-min load balancing algorithm. As mentioned 
earlier, max-min is a NP- hard problem, so there is not a single solution which could give best results in all situations. As discussed 
in previous section about the various algorithms proposed by other authors, each and every one was trying to handle certain 
scenarios in which max-min fails miserably. In max- min algorithm higher priority is given to bigger task, while smaller ones have 
lower priority [15]. In each iteration, largest available task is selected, and a resource or machine was allocated to that task. The 
machine was chosen on the basis of minimum execution time. Usually in max min few long tasks run on few machines while other 
machines handle large number of small tasks, so that overall makespan was as optimized as possible. Thus, in max-min execution of 
large tasks dominates the total makespan, but makespan cannot be determined if there is a difference in completion and execution 
times. Max-min fails to balance load properly among all the available resources, usually it just overloads certain machines while 
others remain idle [16].  
Thus, to overcome this scenario we proposed ASA max-min algorithm. This algorithm is divided into two phases. In first phase, it 
will allocate resources to tasks according to traditional max-min algorithm. In second phase, i.e. optimization phase, we search for 
that machine which has largest makespan. Then that task is selected which was scheduled at last, then we try to calculate its 
completion time if it was executed by any other available machines, if that time is less than current makespan, then we de allocate  

1. For all tasks t in meta-task set 
2.          For all resources m available in grid 
3.                Calculate execution time ET 
4. Until all tasks are assigned to resources 
5.         Find the task t with maximum CT. 
6.         Find the resource with minimum ET 
7.          Assign t to this resource. 
8.          Delete t from meta-task set. 
9.          Update CT of all tasks for that resource. 
10.    End  



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1889 

Fig. 3. ASA Max-Min Algorithm Phase 2 
 

Fig. 4. ASA Max-Min Algorithm Phase 2 
current machine to that task, and re allocate to newer machine we found. Same process is repeated for all the tasks for that machine 
and then for other machines. Fig. 3 shows overall flow chart of the basic max-min algorithm, i.e. first phase. While Fig. 4 shows 
optimization phase flow chart. 

 



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1890 

Our algorithm is based on Max-min so its time complexity for phase one is O (mn2) [17], where m is the number of resources and n 
is the number of tasks. Phase two, time complexity in worst case is O (mn) when for each resource it is re allocating resources for n-
1 tasks. While in average cases its O (n). So, overall time complexity will be max (O (mn2), O (mn)), i.e. O (mn2). It may seem that 
in terms of time complexity it is not an improvement but in terms of resultant makespan, ASA Max-min outperforms traditional 
Max-min. The following section describe about such scenarios and compare results of both algorithms. 

IV. EXPERIMENT AND RESULTS 
We have taken two test cases and implemented them in C++ and generated Gantt chart for each case. First test case with 4 tasks and 
2 machines. Table I shows estimated execution time that each machine is going to take for each task. At time t=0 their completion 
time is equal to their execution time. Periodically as each task is scheduled, completion time of each remaining task of that machine 
is updated. Fig. 5 shows Gantt chart of max-min algorithm. While Fig. 6 shows Gantt chart of ASA Max-min algorithm. These two 
figures are developed to show the makespan of both methods.   

TABLE I. Test Case 1 

Tasks Machine 1 (m0) Machine 2 (m1) 
T0 2 3 
T1 3 5 
T2 4 7 
T3 10 17 

 

 

Fig. 5. Gantt Chart of Max-Min Algorithm for Test Case 1 
 

 

Fig. 6. Gantt Chart of ASA Max-Min Algorithm for Test Case 1 
 

10

4
3
2

0

5

10

15

20

M0 M1

Ti
m

e

Max-Min Algorithm

T3 T2 T1 T0

10

4

5

3

0

5

10

15

M0 M1

Ti
m

e

ASA Max-Min Algorithm

T3 T2 T1 T0



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1891 

Second test case contains 8 tasks and 3 machines. Table II shows estimated execution time that each machine is going to take for 
each task. At time t=0 their completion time is equal to their execution time. Periodically as each task is scheduled, completion time 
of each remaining task of that machine is updated. Fig. 7 shows Gantt chart of max-min algorithm. While Fig. 8 shows Gantt chart 
of ASA Max-min algorithm. These two figures are developed to show the makespan of both methods.  

TABLE II. Test Case 2 

Tasks Machine 1 
(m0) 

Machine 2 
(m1) 

Machine 3 
(m2) 

T0 2 1 7 
T1 11 3 5 
T2 18 9 11 
T3 5 8 10 
T4 10 12 15 
T5 7 8 11 
T6 3 5 6 
T7 20 30 31 

 

 

Fig. 7. Gantt Chart of Max-Min Algorithm for Test Case 2 
 
In first test case, due to shorter execution time of tasks by machine m0 relatively to m1, all the load gets transferred to m0 by Max-
min algorithm. While on the other hand m1 remains idle. This causes unbalanced load distribution with high makespan of 19 units. 
While in ASA Max-min, it optimizes the result by comparing the resultant makespan after reallocation of resources for 

20

10

7

5

3

9

3
1

0

5

10

15

20

25

30

35

40

45

50

M0 M1 M2

Ti
m

e

Max-Min Algorithm

T7 T4 T5 T3 T6 T2 T1 T0



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1892 

T0, T1. As its resultant makespan comes low, it finally does the reallocation. As more reallocation of resources in that order doesn’t 
going to give any better makespan, further reallocation was stopped. 

Fig. 8. Gantt Chart of ASA Max-Min Algorithm for Test Case 2 
 

In second test case, there are three machines, and more tasks, but for all those tasks third machine have high execution time, thus 
Max-min doesn’t allocate any task to that machine and it becomes idle while other two machines are overloaded. Among two 
machines m0 have lower execution time for most tasks than m1 thus among them also m0 is loaded more. Thus, resultant makespan 
reaches 45 units. While in ASA Max-min, in optimization phase T6 is selected first and checked for lower makespan on re 
allocation, as m2 was idle it is now allocated to T6. Then T3 is chosen and same procedure is repeated, consequently T5 is chosen, 
checked and re allocated. After that as no re allocation is possible optimization ends. After optimization, we got more evenly 
distributed load among machines. The makespan also got reduced from 45 to 30 units. 

V. CONCLUSION 
To overcome the situation specific optimality of the Max-Min scheduling algorithm the ASA Max-Min algorithm was proposed. The 
proposed algorithm has been able to demonstrate considerable improvement upon the original Max-Min algorithm due to the fact that 
it decides the allocation of tasks to machines in a way that the best possible makespan can be achieve. This overcomes the problem of 
the algorithms optimality only in only specific meta-task set. The test cases taken in the above section shows how the proposed 
ASA Max-Min algorithm outperforms the Basic Max-Min algorithm in our results. However, many issues regarding other system 
parameters still persists. Future research can be focused upon taking these constraints into account as well.  

REFERENCES 
[1] M. Baker, R. Buyya, D. Laforenza, “Grids and Grid Technologies for Wide-area Distributed Computing”, Journal of Software-Practice & Experience. 
[2] Nayandeep Sran, Navdeep Kaur, “Comparative Analysis of Existing Load Balancing Techniques in Cloud Computing ”, vol 2, jan 2013. 

[3] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. Freund, “Dynamic mapping of a class of independent tasks onto heterogeneous computing systems”, 8th 
IEEE Heterogeneous Computing Workshop (HCW '99), San Juan, Puerto Rico. 

[4] F. Dong, S. G. Akl, “Scheduling Algorithms for Grid Computing: State of the Art and Open Problems”, Technical Report of the Open Issues in Grid 
Scheduling Workshop, School of Computing, University Kingston, Ontario. 

[5] Karanpreet Kaur, Ashima Narang, Kuldeep Kaur, "Load Balancing Techniques of Cloud Computing", International Journal of Mathematics and Computer 
Research, April 2013. 

[6] Rahmeh OA, Johnson P, Taleb-Bendiab A.,‖A Dynamic Biased Random Sampling Scheme for scalable and reliable Grid Networks‖, The INFOCOMP Journal 
of Computer Science, vol. 7, 1-10. 

[7] Etminani .K, and Naghibzadeh. M, "A Min-min Max-min Selective Algorithm for Grid Task Scheduling," The Third IEEE/IFIP International Conference on 
Internet, Uzbekistan, 2007.  

[8] R. F. Freund, M. Gherrity, S. Ambrosius, M. Camp-bell, M. Halderman, D. Hensgen, E. Keith,T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L.Moore, B. Rust, 
H. J. Siegel, “Scheduling resources in multi-user, heterogeneous, computing environments with SmartNet”, 7th IEEE Heterogeneous Computing Workshop 

20

10

9

3
1
8

6

10

0

5

10

15

20

25

30

35

M0 M1 M3

Ti
m

e

ASA Max-Min Algorithm

T7 T4 T2 T1 T0 T5 T6 T3



www.ijraset.com                                                                                                                      Volume 5 Issue VI, June 2017 
IC Value: 45.98                                                                                                                       ISSN: 2321-9653 

International Journal for Research in Applied Science & Engineering 
Technology (IJRASET) 

©IJRASET: All Rights are Reserved  
1893 

(HCW’98), pp. 184–199 (1998). 
[9] T. Kokilavani, Dr. D.I. George Amalarethinam, “Load Balanced Min-Min Algorithm for Static Meta-Task Scheduling in Grid Computing” . 

[10] Z. Zhang and Xu. Zhang “A Load balancing mechanism based on ant colony and complex network theory in open cloud computing federation”, 2nd 
International Conference on Industrial Mechatronics and Automation (ICIMA), Wuhan, China, vol. 2, pp.240-243, May 2010.  

[11] E. Ullah Munir, J. Li, and Sh. Shi, 2007. “QoS Sufferage Heuristic for Independent Task Scheduling in Grid”. Information Technology Journal. 

[12] X. He, X-He Sun, and G. V. Laszewski, "QoS Guided Min-min Heuristic for Grid Task Scheduling," Journal of Computer Science and Technology. 
[13] O. M. Elzeki, M. Z. Reshad, M. A. Elsoud, “Improved Max-Min Algorithm in Cloud Computing”, International Journal of Computer Applications. 

[14] Kobra Etminani, Mahmoud Naghibzadeh, Noorali Raeeji Yanehsari, “A Hybrid Min-Min Max-Min Algorithm  With Improved Performance”. 
[15] Martin Randles, David Lamb, A. Taleb-Bendiab, “A Comparative Study into Distributed Load Balancing Algorithms for Cloud Computing” in 2010 IEEE 24th 

International Conference on Advanced Information Networking and Applications Workshops. 

[16] George Amalarethinam. D.I, VaaheedhaKfatheen .S, “Max-min Average Algorithm for Scheduling Tasks in Grid Computing Systems”, International Journal of 
Computer Science and Information Technologies, Vol. 3 (2) , 2012 ,3659-3663 

[17] D.I. George Amalarethinam and P. Muthulakshmi, "An Overview of the scheduling policies and algorithms in Grid Computing ", International Journal of 
Research and Reviews in Computer Science, Vol. 2, No. 2, pp. 280294, 2011. 



 


