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I.  INTRODUCTION AND PRELIMINARIES 
Fixed  point theory  plays  one  of the  important roles  in  Mathematical  Analysis. Many  authors [1-6]presented  
fixed point theorem  in different ways. In  Banach contraction principle  was introduced in 1922 by Banach  [7] as 
follows: 
Let  (X, d)  be a metric  space  and  T  : X  →  X .Then  T  is called  a banach 
contraction mapping  if there  exists k ∈ [0, 1) such that d(T x, T y) ≤ kd(x, y) for all 
x, y ∈ X . 
The concept  of kannan  mapping  was introduced in 1969 by kannan[8]  as follows: (ii) T is called a kannan  

mapping  if there  exists r ∈ [0, 1 ) such that 
d(T x, T y) ≤ rd(x, T x) + rd(y, T y) for all x, y ∈ X 
Now,we recall the definition  of cyclic map.Let  A and B be non-empty subsets  of a metric  space (X, d) and T : A ∪ 
B → A ∪ B.  T is called a cyclic map iff T (A) ⊆ B and T (B) ⊆ A. 
In 2003, kirk etal.[9] introduced cyclic contraction as follows: 
(iii) A cyclic map T : A ∪ B → A ∪ B is said to be cyclic contraction if there  exists 
α ∈ [0, 1) such that 
d(T x, T y) ≤ αd(x, y) for all x ∈ A and y ∈ B. 
In  2010, Karapinar and  Erhan[10]  introduced kannan  type  cyclic contraction as follows: 

(iv) A cyclic map T : A ∪ B →  A ∪ B is called a kannan  type cyclic contraction if there  exists b ∈ [0, 1 ) such 
that 
d(T x, T y) ≤ bd(x, T x) + bd(y, T y) for all x ∈ A and y ∈ B. 
If (X, d) is a complete  metric  space, at least one of (i),(ii),(iii) and (iv) holds, then it has a unique fixed point[7-
10].Next,  we discuss the development of space. 
Definition 1.1.   [7] Let X  be a nonempty  set.  Suppose that  the mapping 
d : X × X → [0, ∞)  satisfies  the following conditions: 
(d1 ) d(x, x) = 0 for all x ∈ X 
(d2 ) d(x, y) = d(y, x) = 0 implies x = y for all x, y ∈ X 
(d3 ) d(x, y) = d(y, x)implies for all x, y ∈ X 
(d4 ) d(x, y) ≤ [d(x, z) + d(z, y)] for all x, y, z ∈ X 
If d satisfies  conditions  (d1 ),(d2 ) and (d4 ),then  d is a called quasi-metric on X .  If 
d satisfies conditions  (d2 ),(d3 ) and (d4 ),then  d is a called dislocated  metric  on X .If 
d satisfies  conditions  (d1 ),(d3 ) and (d4 ),then  d is a called a metric  on X . 
In  2005 the concept  of dislocated  quasi-metric,which is a new generalization of quasi-b-metric   spaces  and  
dislocated  b-metric  space,was  introduced.By  Definition 
1.1,if setting conditions  (d2 ), and (d4 ) holds true,then d is called a dislocated  quasi- metric  on X . 
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A. Remark 
It is obvious that metric spaces are quasi-metric spaces and dislocated metric  spaces,but the converse is not 
true. Definition 1.2.   [11] Let X  be a non-empty  set.  Suppose that  the mapping 
b : X × X → [0, ∞)  such that  the constant s ≥ 1 satisfies  the following conditions: 
(b1 ) b(x, y) = b(y, x) = 0 ⇔ x = y for all x, y ∈ X 
(b2 ) b(x, y) = b(y, x) = 0 for all x, y ∈ X 
(b3 ) b(x, y) ≤ s[b(x, z) + b(z, y)] for all x, y, z ∈ X 
The pair  (X, d) is then called a b-metric  space. 

II.  MAIN RESULTS 
A. The Following Theorem  Generalizes Theorem 
Theorem 2.1.   Let (X, d) be a complete dislocated  b-metric  with s ≥ 1.Let  A and B be a non-empty  
closed subset of X .  Let T : A ∪ B →  A ∪ B  be a self map such that  d(T x, T y) ≤ a1 d(x, y) + a2 d(T x, x) 
+ a3 d(T y, y) + a4 d(T y, x) + a5 d(y, T x) where ai ≥ 0, i = 1, 2, 3, 4, 5 and a1  + a2  + a3  + 2sa4  + 2sa5  < 
Then  T has a unique fixed point  in A ∩ B. 

Proof. Let T n ⊆ X ,{T 2n } ⊆ A and {T 2n+1 } ⊆ B. Fix x ∈ A. 

d(T 2 x, T x) = 
≤ 

d(T (T x), T x) 

a1 d(T x, x) + a2 d(T 2 x, T x) + a3 d(T x, x) + a4 d(T x, T x) + a5 d(x, T 2 x)

≤ 
+ 

a1 d(T x, x) + a2 d(T 2 x, T x) + a3 d(T x, x) + sa4 [d(T x, x) + d(x, T x)] 

sa5 [d(x, T x) + d(T x, T 2 x)] 
d(T 2 x, T x) ≤ 

+ 
a1 d(T x, x) + a2 d(T 2 x, T x) + a3 d(T x, x) + 2sa4 d(T x, x) 

sa5 d(x, T x) + sa5 d(T x, T 2 x) 
 = (a1  + a3  + 2sa4  + sa5 )d(T x, x) + (a2  + sa5 )d(T 2 x, T x) 

≤   
 (a1  + a3  + 2sa4  + sa5     ) d(T x, x) 

1 − (a2  + sa5 ) 

d(T 2 x, T x)    ≤   kd(T x, x), where    k = (a1  + a3  + 2sa4  + sa5     ) 
1 − (a2  + sa5 ) 

Now, 

d(T 3 x, T 2 x)    =  d(T (T 2 x), T (T x)) 

≤   a1 d(T 2 x, T x) + a2 d(T 3 x, T 2 x) + a3 d(T 2 x, T x) + a4 d(T 2 x, T 2 x) 

+  a5 d(T x, T 3 x) 

≤   a1 d(T 2 x, T x) + a2 d(T 3 x, T 2 x) + a3 d(T 2 x, T x) + sa4 [d(T 2 x, T x) + d(T x, T 2 x)] 

+  sa5 [d(T x, T 2 x) + d(T 2 x, T 3 x)] 

≤   a1 d(T 2 x, T x) + a2 d(T 3 x, T 2 x) + a3 d(T 2 x, T x) 

+  2sa4 d(T 2 x, T x) + sa5 d(T x, T 2 x) + a5 d(T 2 x, T 3 x) 

d(T 3 x, T 2 x)    ≤   (a1  + a3  + 2sa4  + sa5 )d(T 2 x, T x) + (a2  + sa5 )d(T 2 x, T 3 x) 
(a1  + a3  + 2sa4  + sa5     ) d(T 2 x, T x)

 

≤         
1 − (a2  + sa5 ) 
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d(T 3 x, T 2 x)    ≤   kd(T 2 x, T x), where    k = (a1  + a3  + 2sa4  + sa5     ) 
1 − (a2  + sa5 ) 
 

B. Fixed Point Theorem on  Dislocated b-Metric Spaces                                         

d(T 3 x, T 2 x)    ≤   k[kd(T x, x)] 

d(T 3 x, T 2 x)    ≤   k2 d(T x, x)] induction, 

d(T n+1 x, T n x)    ≤   kn d(T x, x) 
In general n, m ∈ N where m > n 

d(T n x, T n+m ≤ sd(T n x, T n+1 x) + s2 d(T n+1 x, T n+2 x) + ... + sm d(T n+m−1 
 ≤ skn d(x, T x) + s2 kn+1 d(x, T x) + ... + sm kn+m−1 d(x, T x) 
 ≤ skn [1 + sk + ... + (sk)m−1 ]d(x, T x) 

d(T n x, T n+m 

x) 
≤ skn     1     d(x, T x) 

1 − sk 
d(T n x, T n+m x) → 0 as n → ∞ 
Hence {T n } is a Cauchy  sequence. 

Since (X, d) is complete,  Then  {T n } coverages to some point x ∈ X . Since {T 2n } ⊆ A 

and {T 2n+1 } ⊆ B. 
Thus  x ∈ A ∩ B 
We show that T x = x. Now, 

d(T x, x)    =  d(T x, T 2n x) 

≤   a1 d(x, x) + a2 d(T x, x) + a3 d(T 2n x, x) + a4 d(T 2n x, x) + a5 d(x, T x) Letting  n → ∞ 
d(T x, x)    ≤   a1 d(x, x) + a2 d(T x, x) + a3 d(x, x) + a4 d(x, x) + a5 d(x, T x) 

≤   sa1 [d(x, T x) + d(T x, x)] + a2 d(T x, x) + sa3 [d(x, T x) + d(T x, x)] 

+  a4 [d(x, T x) + d(T x, x)] + a5 d(x, T x) 

≤   2sa1 d(x, T x) + a2 d(T x, x) + 2sa3 d(x, T x) + 2sa4 d(x, T x) + a5 d(x, T x) 

≤    (2sa1 + a2  + 2sa3  + 2sa4  + a5 )d(x, T x) 
[1 − (2sa1 + a2  + 2sa3  + 2sa4  + a5 )]d(x, T x) ≤ 0 
Hence d(T x, x) = 0. 
This implies T x = x. Therefore,T  has a fixed point. 
Uniqueness: Let x and y be two fixed points  of T , that is T x = x and T y = y 
(x, y)    =  d(T x, T y) 

≤   a1 d(x, y) + a2 d(T x, x) + a3 d(T y, y) + a4 d(T y, x) + a5 d(y, T x) 

≤   a1 d(x, y) + a2 d(x, x) + a3 d(y, y) + a4 d(y, x) + a5 d(y, x) 

≤   a1 d(x, y) + a2 s[d(x, y) + d(y, x)] + sa3 [d(y, x) + d(x, y)] + a4 d(y, x) + a5 d(y, x) 

d(x, y)    ≤   (a1  + 2sa2  + 2sa3  + a4  + a5 )d(y, x) 

 
C. Thanga pandi and J.Maria Joseph 
[1 − (a1  + 2sa2  + 2sa3  + a4  + a5 )]d(x, y) ≤ 0 
Hence d(x, y) = 0. 
Therefore,x = y. 
Hence,T  has a unique  fixed point. 

Example 2.2.   Let X = R,A = [−2, 0];B = [0, 2]. Define d(a, b) = 1 [|a − b| + |a| 
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+ |b|] 
Then  d is the dislocated  metric  us define T : A ∪ B → A ∪ B by T a = −a 
Then  T is a cyclic mapping.Here 0 00  is the unique fixed point. 
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