

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 2 Issue: IX Month of publication: September 2014
DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

Design of Multiplier and Divider Using Reversible Logic Gates with Vedic Mathematical Approach

G.Radhika¹, D.R.V.A.Sharath Kumar²

¹Department of VLSI and Embedded System, JNTU University Hyderabad, India ²Department of Electronics and communication Engineering JNTU Hyderabad, India

Abstract---Arithmetic operations are the main components in any design of Digital signal processing or microcontrollers. Multipliers and Divider circuits includes the adders and substations. The main requirements of Digital Signal Processing are High Speed, Low Power and Small Area. To approach these considerations in the designing of Multiplier and Divider Reversibility and Vedic Mathematics approaches are used. The Reversible Logic Gates reduces the Power Dissipation in the Circuit. The Multiplier and Divider are designed by using Reversible logic gates in order to minimize the Power Dissipation of Processors. The Reversible Logic Gates are helps in Quantum Cost Approach. The Speed of the Processor can be improved by reducing the number of multiplications performed per unit time. Hence the system Performance and Efficiency increases. To achieve the requirement the "Urdhva Triyambhayam" concept is introduced. The Urdhva Triyambhayam is taken from the Vedic Mathematics. The proposed Design consists of Multiplier and Divider circuits of Low Power dissipation using Reversible logic gates and High Speed Using Vedic Mathematics. This Design can be applicable in Low Power VLSI and DSP applications, Nano-Technology, Software Defined radios, Cryptography and Wireless Communications. The Design is simulated by using Xilinx 13.2 simulation tool in Verilog Language. Key Words: Reversible Logic Gates, Quantum Cost, Urdhva Triyambhayam, Vedic Mathematics, Verilog code.

NOMENCLATURE:

- DSP- Digital Signal Processing
- VLSI- Very large scale Integrated Circuit
- UT- Urdhva Triyambhayam
- QC- Quantum Cost
- G- Garbage Output
- FG- Feynman / CNOT Gate
- FRG- Fredkin gate
- PG- Peres Gate
- HNG- Haghparast and Navi Gate RCA- Ripple Carry Adder
- KCA- Kipple Carly Add
- Mux- Multiplexer

I. INTRODUCTION

1. Digital Signal Processing:

A digital signal processor (DSP) is an integrated circuit designed for high-speed data manipulations, and is

used in audio, communications, image manipulation, and other data-acquisition and data-control applications. The arithmetic operations performed by most of the DSPs are addition, subtraction which are simple and multiplication, division are complex. The simple multiplication operation

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

may consume many cycles to complete the operation. This causes the processor to become quite slow. To overcome this problem UT multiplier is used. The main constraints of any embedded system are low Power dissipation, high Speed, less Area [6]. The speed of the processor can be reduced by using the Vedic Mathematics [7]. The minimum power dissipation is one of the main requirements of the system. The power dissipated in the system can be reduced by introducing Reversible logic. The power dissipation of the reversible logic under idle conditions is Zero [1].

2. Urdhva Triyambhayam Multiplier [7] [10]:

To reduce the number of multiplications per unit time in order to increase the speed/Performance of the system the UT (Urdhva Triyambhayam) multiplier is used. UT Multiplier [10] is an ancient methodology of Indian mathematics as it contains 16 SUTRAS (formulae). A high speed multiplier design by using Urdhva Triyambhayam sutra is proposed. By using this sutra the partial products and sums are generated in one step which reduces the design of architecture in processors. By using this sutra we can reduce the time with high extent when compare to array and booth multiplier. It can be implemented in many (DSP) applications [6] such as convolution, Fast Fourier Transform (FFT) filtering and in microprocessors. By using this method we reduce the propagation delay in comparison with other multipliers.

3. Multiplier and Divider:

For division, we use shift/subtract division algorithm. In this algorithm, like multiplication that can be done by repeated additions, the division is done by repeated subtractions [5]. The circuits are designed by using reversible logic gates which is having less heat loss. The multiplier is of high speed with the use of Vedic mathematics. The internal blocks of the multiplier are UT multiplier and Ripple Carry adder implemented by reversible logic gates. The Divider is having less power dissipation with the use of Reversible logic gates. The divider has Multiplexer of 2-bit, shift register of Nbit and Ripple carry adders as the internal blocks. The proposed design is multiplier of 32-bit and divider of N-bit.

4. Reversibility:

Reversible logic has shown potential to have extensive applications in future emerging technologies such as

quantum computing [2][12], optical computing, quantum dot cellular automata as well as ultra low power VLSI circuits, DNA computing to produce zero power dissipation under ideal conditions. Reversible logic is very essential for the construction of low power, low loss computational structures which are very essential for the construction of arithmetic circuits used in quantum computation [17], nanotechnology [18] and other low power digital circuits.

Design that does not result in information loss is called reversible. It naturally takes care of heat generated due to information loss. Bennett showed that zero energy dissipation would be possible only if the network consists of reversible logic gates. Thus reversibility will become an essential property in future circuit design technologies. The outputs can be obtained from the inputs as well as the inputs can be reconstructed by the outputs. This is one of the differences of reversible logic gates compared to normal logic gates [22]. So that there will be less energy loss presents in the circuit.

The paper is partitioned into nine sections. Section II having block diagrams of the proposed design, Section III explains about the Reversibility concept, Section IV is notes on Vedic Mathematics, Section V explains about ripple carry adder . Section VI introduces the shift Register, Section VII gives the operation of blocks in the design, Section VIII shows the output wave forms and Section IX concludes the proposed design and References follows.

II.BLOCK DIAGRAMS

Fig.1. Block Diagram of 32-Bit Multiplier

ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

i. Block Diagram of Divider:

Fig.2. Block Diagram of Divider circuit

III. REVERSIBILITY CONCEPT

Reversible logic has shown potential to have extensive applications in future emerging technologies such as quantum computing [3], optical computing, quantum dot cellular automata as well as ultra low power VLSI circuits, DNA computing to produce zero power dissipation under ideal conditions. Reversible logic is very essential for the construction of low power, low loss computational structures which are very essential for the construction of arithmetic circuits used in quantum computation, nanotechnology and other low power digital circuits. Recently, several researchers have focused their efforts on the design and synthesis of efficient reversible logic circuits. The important reversible gates used for reversible logic synthesis are Feynman Gate, New Gate and Fredkin gate [21].

Reversible implementations are also found in thermodynamics and adiabatic CMOS [8]. Power dissipation in modern technologies is an important issue, and overheating is a serious concern for both manufacturer (impossibility of introducing new, smaller scale technologies, limited temperature range for operating the product) and customer (power supply, which is especially important for mobile systems). In digital design energy loss is considered as an important performance parameter. Higher levels of integration and new fabrication processes have dramatically reduced the heat loss over the last decades. The power dissipation in a circuit can be reduced by the use of Reversible logic.

As per Landauer, for irreversible logic, each bit of information lost generates kTln2 Joules of heat energy, where k is Boltzmann's constant and T is absolute temperature at which the computation is performed. For room temperature T, the amount of heat dissipated for one bit is small i.e. 2.9×10-21 J. The current processors, first of all dissipate 500 times this amount of heat every time a bit is lost. Secondly, assuming every transistor out of more than 4×107 dissipates heat at the processor frequency of 2GHz, the figure becomes 4×1019*kTln2 J/sec. Bennett [9] showed that if a computation is carried out in Reversible logic zero energy dissipation is possible, as the amount of energy dissipated in a system is directly related to the number of bits erased during computation. The design that does not result in information loss is irreversible. The number of outputs in a reversible gate or circuit has the same as the number of inputs. While constructing reversible circuits with the help of reversible gates, some restrictions should be strictly maintained:

- Fan-out is not permitted.
- Loops are not permitted.

In reversible logic we have one more factor, which is more important than the number of gates used, namely the number of garbage outputs. The unutilized outputs from a reversible gate/circuit are called "garbage" [15].

It has been proved (by Bennett and Landauer) that , "Losing information in a circuit causes losing power. Information lost when the input vector cannot be uniquely recovered from the output vector of a combinational circuit".

The gate/circuit that does not loose information is called *reversible*. A reversible logic gate is an N-input Noutput logic device that provides one to one mapping between the input and the output. It not only helps us to determine the outputs from the inputs but also helps us to uniquely recover the inputs from the outputs. Quantum cast [2] refers to the cost of the circuit in terms of the

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

cost of a primitive gate. Gate count [10] is the number of reversible gates used to realize the function. Gate level refers to the number of levels which are required to realize the given logic functions.

The following are the important design constraints for reversible logic circuits [10].

I. Reversible logic gates do not allow fan-outs.

2. Reversible logic circuits should have minimum QC.

3. The design can be optimized so as to produce minimum number of garbage outputs.

4. The reversible logic circuits must use minimum number of constant inputs.

5. The reversible logic circuits must use a minimum logic depth or gate levels.

The basic reversible logic gates encountered during the design are listed below:

1. Feynman Gate [21]:

It is a 2x2 gate and its logic circuit is as shown in the figure. It is also known as Controlled Not (CNOT) Gate. It has quantum cost one and is generally used for Fan Out purposes.

2. Peres Gate [11]:

It is a 3x3 gate and its logic circuit is as shown in the figure. It has quantum cost four. It is used to realize various Boolean functions such as AND, XOR.

3. Fredkin Gate [21]:

It is a 3x3 gate and its logic circuit is as shown in the figure. It has quantum cost five. It can be used to implement a Multiplexer.

4. HNG Gate [14][16]:

It is a 4x4 gate and its logic circuit is as shown in the figure. It has quantum cost six. It is used for designing ripple carry adders. It can produce both sum and carry in a single gate thus minimizing the garbage and gate counts.

Fig.6. HNG gate

IV.VEDIC MULTIPLICATION

The use of Vedic mathematics [7] is to reduce the typical calculations in conventional mathematics to very simple one. Because the Vedic formulae are claimed to be based on the natural principles on which the human mind works. Vedic Mathematics is a methodology of arithmetic rules that allow more efficient speed implementation. It also provides some effective algorithms which can be applied to various branches of engineering such as computing. 1. Urdhva Triyambhayam Sutra:

Higher throughput arithmetic

operations are important to achieve the desired performance in many realtime signal and image processing applications. One of the key

ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

arithmetic operations in such applications [6] is multiplication and the development of fast multiplier circuit has been a subject of interest over decades. Reducing the time delay and power consumption are very essential requirements for many applications.

Multiplication is an fundamental function in arithmetic operations based on this operations such as Multiply and Accumulate(MAC) in many Digital Signal Processing(DSP) applications such as convolution, Fast Fourier Transform(FFT), filtering and in microprocessors in its arithmetic and logic unit. Since multiplication dominates the execution time of most DSP algorithms, so there is a need of high speed multiplier. Currently, multiplication time is still the dominant factor in determining the instruction cycle time of a DSP chip. The demand for high speed processing has been increasing as a result of expanding computer and signal processing applications.

The proposed Vedic multiplier is based on the "Urdhva Triyambhayam" sutra (algorithm) [7]. These Sutras have been traditionally used for the multiplication of two numbers in the decimal number system. In this work, we apply the same ideas to the binary number system to make the proposed algorithm compatible with the digital hardware. It is a general multiplication formula applicable to all cases of multiplication. It literally means "Vertically and Cross wise" [10]. The basic UT multiplier is of 2-bit. The proposed system is having 32-bit UT multipliers which are obtained from the basic UT Multiplier of 2*2. The multiplier consists of UT multipliers and adders. The adders that are used are Ripple Carry Adders (RCA) [13]. The RCA are the adders which takes the input carry of present adder from the output carry of the previous adder. The UT multiplier can be designed for large number of bits also which may be decimal or binary numbers. The example for two bit using binary multiplication is shown in Fig.7. The process is done in 3 steps.

First step: The last significant bits (LSB) vertical multiplication and adding with previous carry (initially 0),

Second step: The cross wise multiplication of the LSB (last significant bit) and MSB (most significant bit) and adding with the previous carry and

Third step: The vertical multiplication of MSB (most significant bit) and adding with the previous carry.

The resultant vector consists of LSB bits of individual results

and MSB bits are stored in the carry.

The normal UT multiplier consists of logic gates XOR, AND gates for which the fan out is more. The block diagram of the UT multiplier of 2-bit is shown in the fig.8. By using the reversible logic gates the block diagram of UT Multiplier is shown in fig.9. The circuit consists of Peres gates and Feynman gate which requires quantum cost of 21, less than the design with normal gates.

Fig.8. UT multiplier block diagram using normal logic gates

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

The design of 32- bit multiplier requires 16- bit multiplier where as 16-bit multiplier requires 8-bit multiplier, 8-bit requires 4-bit and the 4-bit multiplier requires 2- bit UT multiplier. The 4*4 multiplier is the existing system of multiplier design using reversible logic concept. The block diagram of the 4*4 multiplier is shown in the figure.10. It consists of four 2X2 multipliers each of which produces four bits as inputs; two bits from the multiplicand and two bits from the multiplier. The lower two bits of the output of the first 2X2 multiplier are entrapped as the lowest two bits of the final result of multiplication. The addition is done by a five bit ripple carry adder which generates a six bit output. The ripple carry adder is consummated (realized) using the HNG Gate. A 4 bit ripple carry adder needs 4 HNG gates and the 5 bit adder requires 5 HNG gates. This design also does not take out . into consideration the fan out gates.

V.RIPPLE CARRY ADDER

A ripple carry adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be constructed with full adders connected in cascaded with the carry output from each full adder connected to the carry input of the next full adder in the chain. The ripple carry adder is designed by using the reversible logic gates. The full adder circuit is replaced by the HNG gate for which the multiplier and multiplicand carry and zero bits are the inputs to produce the outputs as Sum and Carry. For this design the quantum cost is computed to be 162, the total number of gates used will be 37, the number of garbage outputs will be 62 and the number of constant inputs will be 29.

Fig.11. Ripple Carry Adder using HNG gates

ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

VI.SHIFT REGISTERS

Registers are special state machines that store multiple bits of data. Register is an extension of a flip flop that can store multiple data bits. Registers are commonly used as a temporary storage in a processor. They are faster and more convenient. More registers can help to speed up the complex computations.

A Shift Register shifts the output once for every clock cycle. There are different types of shift registers: Arithmetic (left and right), Logical, circular and switch tail ring counter. Among these Left Arithmetic Shift Register is used. The shift register is implemented for N-Bit data operations. The shift register is normally implemented by using D-Latch with clock and data as Inputs to get the same output. In the proposed system the shift register is designed by using reversible logic gates which is obtained by replacing the d-Latch gates with FRG and FG gates. The execution cycles of shift registers are less than normal circuit of multiplier and Divider. By the use of Reversible logic the power dissipation in the circuit reduces. One of the applications of shift register is data transmission between serial to parallel and vice versa.

Fig.13. Block diagram of shift register with reversible D-latch

ck Reversible D-Latch D-Latch D-Latch D-Latch D-Latch Out0 Out1 Outn-1 Fig. 14. N-bit reversible shift register

VII.OPERATION OF DESIGN

1. Multiplier operation:

Consider two 32-bit numbers named as multiplier and multiplicand. For implementation of 32- bit multiplier requires the basic 2- bit UT multiplier. The implementation block diagram of the 2-bit UT multiplier is shown in the fig.9. By using this UT multiplier 4*4 Multiplier is designed and block diagram is shown in the fig.10. It requires 4-bit and 5bit ripple carry adders. The 8-bit data is multiplied using the 4 bit multiplier and similarly for 16-bit multiplier. By using this 16*16 multiplier which takes the 32-bit data as input and requires 32 bit and 33-bit Ripple Carry Adders, the 32*32 UT multiplier is designed. The resultant of the multiplier is Sum and Carry. An Array multiplier is designed using reversible logic gates. The UT multiplier is compared with the array multiplier using reversible logic gates. As the use of Vedic Algorithm the Computational time delay and Power consumption of the UT multiplier is less than the Array Multiplier. The comparison table for the above parameters is shown in the table.1.

Divider Operation:

2.

The Divider circuit [5] is designed for n-bit data. The inputs are Dividend and divisor and require 4 cycles to complete and the output quotient of 5-bit and reminder of 4bit. The circuit requires 2-bit multiplexer with inputs: divisor and 2's complement of divisor (results negative divisor which is used for subtraction), selection line k. the outputs of multiplexer are:

If k=0 ==>subtract divisor from current dividend MSB bits.
 If k=1 ==>add divisor to the current dividend MSB bits.

Example: Dividend=10110101 -- 8 bit---AB Divisor =1110 -- 4 bit---D

Let

A=1011 \rightarrow append 0 at MSB \rightarrow A=01011 B=0101 \rightarrow B=0101(4-bit) D=1110 \rightarrow append 0 at MSB \rightarrow D=01110

 \rightarrow 2's complement of D=10010

Initially K=0;

The division process of the divisor is shown fig.15. The final Quotient is A--01101 and

Page 184

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

The final reminder is B—1100

X 01011 0101 Left Shift 0 10110 101- subtract 10010 CYCLE-1 Insert invert of MSB 1(discard) 01000 1011 Left shift 0 10000 1011 Left shift 0 10000 011- Subtract 0 10000 01- Insert invert of MSB 1(discard) 00011 0111 Left shift 0 10000 0111 Left Shift 0 00011 0111 Left Shift 0 00011 0111 Left Shift 0 00110 111- Subtract 10000 1110 CYCLE-3 Insert invert of MSB 0(discard) 11000 1110 Left Shift 1 100001 110- Left Shift 1 100001 110- add 0 11111 1100 Restoration of final reminder and quotient add 1 01101 1100 </th <th>Z</th> <th>K</th> <th>A(5-bit)</th> <th>B(4-bit)</th> <th></th>	Z	K	A(5-bit)	B(4-bit)	
X 01011 0101 Left Shift 0 10110 101- subtract 1(discard) 01000 1011 Insert invert of MSB 1(discard) 01000 1011 Left shift 0 10010 CYCLE-1 Insert invert of MSB 1(discard) 0000 1011 Left shift 0 1000 01- CYCLE-2 Insert invert of MSB 1(discard) 00011 0111 CYCLE-2 Insert invert of MSB 1(discard) 00011 0111 CYCLE-3 Insert invert of MSB 0(discard) 11000 1110 CYCLE-3 Insert invert of MSB 0(discard) 11000 1110 CYCLE-3 Insert invert of MSB 0(discard) 11000 1110 CYCLE-4 Insert invert of MSB 0(ciscard) 11000 1110 CYCLE-4 Insert invert of MSB 1 10001 1100 CYCLE-4 Insert invert of MSB 1 11000 1100 Restoration of final remi					
Left Shift 0 10110 101- CYCLE-1 Insert invert of MSB to LSB 1(discard) 01000 1011 CYCLE-1 Left shift 0 1000 1011 CYCLE-1 Subtract 01000 1011 CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 Left Shift 0 00011 0111 Subtract 10010 0111 CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 Subtract 00011 0111 0111 Left Shift 0 00110 111- Subtract 10010 1110 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 Left Shift 1 10001 1100 Ad 01110 1100		X	01011	0101	
subtract 10010 CYCLE1 Insert invert of MSB to LSB 1(discard) 01000 1011 Left shift 0 1000 011- subtract 10010 011- CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 Left Shift 0 00011 0111 Subtract 10010 0111 CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 0111 Subtract 000017 0111 0111 0111 Left Shift 0 00010 1110 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-4 Insert invert of MSB to LSB 11111 1100 Restoration of final reminder and quotient add 1(discard) 0110 1100 Restoration of final reminder and quotient	Left Shift	0	10110	101-	
Insert invert of MSB to LSB 1(discard) 01000 1011 4 01000 01000 1011 4 4 4 Left shift 0 1000 011 ⁻ CYCLE-2 Insert invert of MSB to LSB 1(discard) 000011 0111 CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 0111 Left Shift 0 00011 0111 0111 Subtract 0 00011 0111 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-4 Insert invert of MSB to LSB 1 10001 1100 CYCLE-4 Insert invert of MSB to LSB 1 11000 1110 CYCLE-4 Insert invert of MSB to LSB 1 11111 1100 CYCLE-4 Insert invert of MSB to LSB 1 11111 1100 CYCLE-4 Insert invert of MSB to LSB 1	subtract		10010		CYCLE-1
to LSB I </th <th>Insert invert of MSB</th> <th>1(discard)</th> <th><u>0</u>1000</th> <th>101<u>1</u></th> <th></th>	Insert invert of MSB	1(discard)	<u>0</u> 1000	101 <u>1</u>	
Left shift 0 01000 1011 subtract 10010 011- CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 CYCLE-2 Insert invert of MSB to LSB 1(discard) 00017 0111 CYCLE-2 Insert invert of MSB to LSB 0(discard) 00017 0111 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-4 Insert invert of MSB to LSB 1 10001 1100 CYCLE-4 Insert invert of MSB to LSB 1 10001 1100 CYCLE-4 Insert invert of MSB to LSB 1 1111 1100 CYCLE-4 Insert invert of MSB to LSB 1 11111 1100 Restoration of final reminder and quotient add 1(discard) 01101 1100 Restoration of final reminder and quotient	to LSB			1	
Left shift01000011subtract10010011CYCLE-2Insert invert of MSB to LSB1(discard)0001101110111Left Shift000010111-CYCLE-3Insert invert of MSB to LSB0(discard)110001110CYCLE-3Insert invert of MSB to LSB0(discard)110001110CYCLE-3Insert invert of MSB to LSB0(discard)110001110CYCLE-3Insert invert of MSB to LSB0(discard)110001110CYCLE-4Insert invert of MSB to LSB0110001110CYCLE-4Insert invert of MSB to LSB0110001110CYCLE-4Insert invert of MSB to LSB0111111100Restoration of final reminder and quotientInsert invert of MSB to LSB00111111100Restoration of final reminder and quotient			01000	1011	
Left Sint 0 1000 011 subtract 10010 CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 Left Shift 0 00010 111- Subtract 00011 0111 0111 Subtract 0 0010 111- Subtract 0 0010 111- Subtract 0 0010 111- Subtract 0 10000 1110 Insert invert of MSB 0(discard) 11000 1110 Insert invert of MSB 0(discard) 11000 1110 Insert invert of MSB 1 10001 1100 Insert invert of MSB 1 10001 1100 add 1 11000 1100 add 1 1100 Restoration of final reminder and quotient add 1(discard) 01101 1100	L oft shift	0	1000	011	
subtract 10010 CYCLE-2 Insert invert of MSB to LSB 1(discard) 00011 0111 Left Shift 0 00010 111- Subtract 00010 111- CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 Left Shift 0 00110 1110 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-4 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-4 Insert invert of MSB to LSB 1 10001 1100 CYCLE-4 Insert invert of MSB to LSB 1 10001 1100 CYCLE-4 Insert invert of MSB to LSB 1 10110 Restoration of final reminder and quotient add 01110 1100 Restoration of final reminder and quotient		0	1000	UII-	
Insert invert of MSB to LSB 1(discard) 00011 0111 to LSB 1(discard) 00011 0111 Left Shift 0 00011 0111 Subtract 0 00110 111- Subtract 10010 111- CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 Left Shift 1 10000 1110 Left Shift 1 10001 1100 Left Shift 1 10001 1100 Left Shift 1 10001 1100 Add 01110 1100 CYCLE-4 Insert invert of MSB to LSB 11111 1100 Restoration of final reminder and quotient reminder and q	subtract		10010		CYCLE-2
to LSB Image: second seco	Insert invert of MSB	1(discard)	<u>0</u> 0011	011 <u>1</u>	
Left Shift 0 00011 0111 Subtract 0 0010 111- Subtract 10010 111- CYCLE-3 Insert invert of MSB 0(discard) 11000 1110 to LSB 0(discard) 11000 1110 Left Shift 1 10001 1110 Left Shift 1 10001 1110 Left Shift 1 10001 1100 Left Shift 1 10001 1100 add 01110 1000 CYCLE-4 Insert invert of MSB 11111 1100 CYCLE-4 Insert invert of MSB 11111 1100 Restoration of final reminder and quotient reminder and quotient reminder and quotient add 01101 1100 1100	to LSB			•	
Left Shift 0 00011 0111 Subtract 0 00110 111- CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-3 Insert invert of MSB to LSB 0(discard) 11000 1110 CYCLE-4 Insert invert of MSB to LSB 1 10001 1110 CYCLE-4 Insert invert of MSB to LSB 1 10001 1100 CYCLE-4 Insert invert of MSB to LSB - 11111 1100 CYCLE-4 Insert invert of MSB to LSB - 11111 1100 Restoration of final reminder and quotient add 01110 1100 1100 Restoration of final					
Left Shift 0 00110 111- Subtract 10010 111- CYCLE-3 Insert invert of MSB 0(discard) 11000 1110 to LSB 0(discard) 11000 1110 Left Shift 1 10001 1110 Left Shift 1 10001 1110 Left Shift 1 10001 1100 add 01110 1100 CYCLE-4 Insert invert of MSB			00011	0111	
Left Shift 0 00110 111- Subtract 10010 1110 CYCLE-3 Insert invert of MSB 0(discard) 11000 1110 to LSB 0(discard) 11000 1110 Left Shift 1 10001 1100 add 0 1110 CYCLE-4 Insert invert of MSB - 11111 1100 add - 11111 1100 CYCLE-4 Insert invert of MSB - 11111 1100 Restoration of final reminder and quotient add 01101 01101 1100 Restoration of final reminder and quotient	T	0	00110	111	
Shortact Insert invert of MSB 0(discard) 11000 1110 Insert invert of MSB 0(discard) 11000 1110 1100 Left Shift 1 10001 1110 CYCLE-4 Insert invert of MSB 1 10001 1100 CYCLE-4 Insert invert of MSB 1 11111 1100 CYCLE-4 Insert invert of MSB 1 11111 1100 Restoration of final reminder and quotient add 01110 1100 1100 Restoration of final reminder and quotient	Lett Shift	0	10010	111-	CVCLE 2
Insert invert of MSB to LSB 0(discard) 11000 1110 Image: Left Shift Imad	Subtract		10010		CICLE-5
to LSB ↑ Left Shift 1 add 1 nsert invert of MSB 1 to LSB 11100 11000 1110 add 01110 10001 1100 CYCLE-4 Insert invert of MSB 1 11111 1100 11111 1100 11111 1100 Restoration of final reminder and quotient 1(discard) 01101	Insert invert of MSB	0(discard)	<u>1</u> 1000	111 <u>0</u>	
Left Shift 1 11000 1110 Left Shift 1 10001 110- add 01110 CYCLE-4 Insert invert of MSB	to LSB			≜	
Left Shift 1 11000 1110 add 1 10001 110- add 01110 CYCLE-4 Insert invert of MSB to LSB - 11111 1100 intert invert of MSB - 01110 1100 intert invert of MSB - 01110 1100					
Left Shift110001110-add001110CYCLE-4Insert invert of MSB11100CYCLE-4to LSB111111100Restoration of final reminder and quotientadd011101100Restoration of final reminder and quotient			11000	1110	
add 01110 CYCLE-4 Insert invert of MSB to LSB 11111 1100 add 11111 1100 interference 11111 1100 add 01110 Restoration of final reminder and quotient interference 01101 1100	Left Shift	1 Y	10001	110-	
Insert invert of MSB to LSB	add		01110		CYCLE-4
to LSB add 1(discard) 01101 1100 Restoration of final reminder and quotient	Insert invert of MSB	- / /	<u>1</u> 1111	110 <u>0</u>	
add 11111 1100 Restoration of final reminder and quotient 1(discard) 01101 1100 Restoration of final reminder and quotient	to LSB			†	
add01110Restoration of final reminder and quotient1(discard)011011100			-11111	1100	Restoration of final
1(discard) 01101 1100	add		01110		reminder and quotient
		1(discard)	01101	1100	

Fig.15. Example of Division Operation

ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

VIII.SIMULATION

The design is coded in Verilog language. The simulation tool used is Xilinx ISE 13.2 version. For synthesize or execution FPGA – Spartan 3E family is used. The multiplier is compared with the array multiplier [15] for which the power consumption and speed are more the UT multiplier. The comparison table for UT multiplier, Array Multiplier and Divider circuit are shown below table.

Table.1. Comparison table of array multiplier and proposed system

Paramet	Array	UT	Divider
er	Multiplier	Multiplie	
		r	
Operatio	Less	More	More
n Speed			
Maximu	126.335ns	87.587ns	37.130ns
m Path			
Delay			
Dynamic	3.42 mW	0.03mW	0.81mW
Power			
FPGA	Less	More	More
Impleme	efficient	efficient	efficient
ntation			

THE OUTPUT WAVE FORMS:

The output wave form of multiplier for the example of 32-bit input and the output is of 64-bit.

Fig.16. Multiplier output wave form

The output wave form of Divider for the example of 8-bit dividend and 4- bit divisor and the outputs are 5-bit Quotient and 4-bit Reminder.

Fig.17. Divider circuit output waveforms

IX.CONCLUSION

In this paper the multiplier and divider circuits are designed. To satisfy some of the Digital signal processing considerations Low Power like dissipation, High Speed/Performance we have implemented these arithmetic blocks. This proposed paper implemented for Reversible Vedic Multiplier [16] using Urdhva Triyambhayam sutra [7][10] and Reversible Divider circuit [5]. The UT multiplier derived from Vedic Mathematics results to the fast multiplication which improves the speed of the processor. Hence the efficiency of the system also increases. To reduce the power dissipation of the design the reversible logic gates are used for implantation of the circuit. The reversible logic gate dissipates zero power ideally.

The existing system is of 4- bit multiplier design and Divider circuit of Irreversible logic gates [20]. The proposed system is of 32- bit multiplier design and Divider circuit of Reversible logic gates. The proposed design is having better quantum cost compared to existing designs. Trough the design is having more garbage outputs they can be used as fan outs for other gates. The Dynamic power and the speed delay of the UT multiplier and Divider are compared with the array multiplier design. The Vedic mathematics is used for large number of bit Multiplications as well as Division Process. The

ISSN: 2321-9653

INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE AND ENGINEERING TECHNOLOGY (IJRASET)

proposed design can be used for the applications like Low power DSP applications, High Speed operations for Filters, Transformations, wireless and radio communications Nano technology, Cryptography [6][18][4].

REFERENCES

- Perkowski, M., A. Al-Rabadi, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, M.A. Khan, A. Coppola, S. Yanushkevich, V. Shmerko and L. Jozwiak, 2001. A general decomposition for reversible logic. Proc. RM, Starkville, pp: 119-138.
- [2]. Peres, A., 1985. Reversible logic and quantum computers. Phy. Rev., 32: 3266-3276.
- [3]. Toffoli, T., 1980. Reversible computing. Tech Memo MIT/LCS/TM-151. MIT Lab for Computer Science
- [4]. Thapliyal, H. and M. Zwolinski, 2006. Reversible Logic to Cryptographic Hardware: A New Paradigm., 49th IEEE International Midwest Symposium on Circuits and Systems.
- [5]. Nayeem, N.M., A. Md. H. Md, M. Haque, L. Jamal and H.M.H. Babu, 2009., Novel Reversible Division Hardware. IEEE International Midwest Symposium on Circuits and Systems, pp: 1134-1138.
- [6]. Parhami B., 2000. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, New York.
- [7]. Swami Bharati Krsna Tirtha, Vedic Mathematics. Delhi: Motilal Banarsidass publishers 1965.
- [8]. Rakshith Saligram and Rakshith T.R. "Design of Reversible Multipliers for linear filtering Applications in DSP" International Journal of VLSI Design and Communication systems, Dec-12.
- [9]. C.H. Bennett, "Logical reversibility of Computation", IBM J. Research and Development, pp.525-532, November 1973.
- [10]. G Ganesh Kumarand V Charishma, Design of high speed vedic multiplier using vedic mathematics techniques, Itn'l J. of Scientific and Research Publications, Vol. 2 Issue 3 March 2012
- [11]. A. Peres, Reversible logic and quantum computers, Phys. Rev. A32 (1985) 3266-3276.
- [12]. M S Islam, M M Rahman, Z Begum and M Z

Hafiz, 2009. Low Cost Quantum Realization of Reversible Multiplier Circuit. Information Technology Journal, vol. 8(2), pp. 208-213.

- [13]. M. S. Islam et al., "Realization of Reversible Multiplier Circuit," in Information Tech. 1, Vol. 8, No. 2, pp. 117-121, 2005.
- [14]. K.Navi.M.Haghparast, S.JafaraliJassbi, Hashemi Pour, design of Novel Reversible Multiplier using HNG gate, World Sci,13(6).
- [15]. Thapliyal, H., M.B. Srinivas and H.R. Arabnia, 2005, A Reversible Version of 4x4 Bit Array Multiplier with Minimum Gates and Garbage Outputs, Int. Conf. Embedded System, Applications (ESA'05), Las Vegas, USA, pp: 106 114.
- [16]. H. Thapliyal and M.B. Srinivas, "Reversible Multiplier Architecture Using TSG Gate", Proc.
 IEEE International Conference on Computer Systems and Applications, pp. 241-244, March-07.
- [17]. R. Feynman, "Quantum Mechanical Computers," Optics News, Vol.11, pp. 11-20, 1985.
- [18]. Shams, M., M. Haghparast and K. Navi, Novel reversible multiplier circuit in nanotechnology.World Appl. Sci. J., 3(5): 806-810
- [19]. Somayeh Babazadeh and Majid Haghparast, "Design of a Nanometric Fault Tolerant Reversible Multiplier Circuit" Journal of Basic and Applied Scientific Research, 2012.
- [20]. R.landauer,"Irreversibility and heat generation in the computational Process", *IBM Research and* Development, pp. 183-191, 1961.
- [21]. Pallav Gupta, Abhinav Agarwal, and Niraj K.Jha "An Algorithm for Synthesis of Reversible Logic Circuits", IEEE transactions on computer Aided Design of Integrated circuits and Systems, vol.25, 2006
- [22]. B.Raghukanth, Muralikrishna, "A Distinguish Between Reversible and Conventinal Logic Gates", international Journal of Engineering Reserch and Applications, vol.2,pp 198-151, March-2012.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)