

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: VII Month of publication: July 2017

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 5 Issue VII, July 2017- Available at www.ijraset.com

On Reducibility of Certain q-Double Hypergeometric Series and Clausen Type Identities

Rajesh Pandey

Department of Applied Science, Institute of Engineering & Technology, Sitapur Road, Lucknow 226021 India.

Abstract: In this paper, we have made use of certain known summations to establish transformations of q-double series in terms of single series. We have deduced Clausen type identities from these results.

Keywords: Hypergeometric functions, Summations, Transformation, Identities and Convergence.

I. INTRODUCTION

For α , real or complex and |q| < 1, we define the q-shifted factorials by

$$[\alpha;q]_n = \begin{cases} 1 & \text{if } n=0\\ (1-\alpha)(1-\alpha q)\dots(1-\alpha q^{n-1}), & \text{if } n=1,2,3,\dots \end{cases}$$
 (1.1)

A basic hypergeometric function is defined as

$$r \Phi_{s} \begin{bmatrix} a_{1}, a_{2}, \dots, a_{r}; q; z \\ b_{1}, b_{2}, \dots, b_{s}; q^{\lambda} \end{bmatrix}$$

$$= \sum_{n=0}^{\infty} \frac{[a_{1}, a_{2}, \dots, a_{r}; q]_{n} z^{n} q^{\lambda n(n-1)/2}}{[[q, b_{1}, b_{2}, \dots, b_{s}; q]]_{n}},$$
(1.2)

Where $[a_1, a_2, ..., a_r; q]_n = [a_1; q]_n [a_2; q]_n ... [a_r; q]_n$

The series $_r\Phi_s$ converges absolutely for all z if $\lambda > 0$ and for |z| < 1 if $\lambda = 0$. we shall use the following series identity to establish our results.

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} B(n,k) = \sum_{n,k=0}^{\infty} B(n+k,k), \tag{1.3}$$

Provided the series on both sides of (1.3) exist.

II. NOTATIONS AND DEFINITIONS

Notations and definitions appearing in this paper have their usual meaning. We shall use the following known summations of q-series in our analysis:

$${}_{2}\Phi_{1} \left[\begin{matrix} q^{-n}, a; q; zq^{n}/a \end{matrix} \right] = \frac{\left[c/a; q \right]_{n}}{\left[c; q \right]_{n}}. \tag{2.1}$$

$${}_{3}\Phi_{2}\begin{bmatrix} a,b,q^{-n} & ;q;q \\ c,abq^{1-n}/c \end{bmatrix} = \frac{[c/a,c/b;q]_{n}}{[c,c/ab;q]_{n}}$$
(2.2)

$${}_{2}\Phi_{1}\begin{bmatrix}x,q^{-n};q;-q/x\\q^{-n}/x\end{bmatrix} = \frac{[q;q]_{n}[x^{2}q^{2};q^{2}]_{m}}{[xq;q]_{n}[q^{2};q^{2}]_{m}},$$
(2.3)

Where m is the greatest integer $\leq n/2$.

$${}_{4}\Phi_{3}\begin{bmatrix}q^{-n}, -q^{-n}/xy, x, y; q; q\\ -xyq, q^{-n}/x, q^{-n}/y\end{bmatrix}$$

$$= \frac{[q, xyq; q]_{n}[x^{2}q^{2}, y^{2}q^{2}; q^{2}]_{m}}{[xq, yq; q]_{n}[q^{2}, x^{2}y^{2}q^{2}; q^{2}]_{m}},$$
(2.4)

Where m is the greatest integer $\leq n/2$

$${}_{2}\Phi_{1}\begin{bmatrix}x,q^{-n};q;-1/x\\q^{-n}/x\end{bmatrix} = \frac{[q;q]_{n}[x^{2}q^{2};q^{2}]_{m}x^{n-2m}}{[xq;q]_{n}[q^{2};q^{2}]_{m}},$$
(2.5)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VII, July 2017- Available at www.ijraset.com

Where m is the greatest integer $\leq n/2$.

$$\Phi_{3} \begin{bmatrix} q^{-n}, -q^{-n}/xy, xq, yq; q; q; q \\ -xyq, q^{1-n}/x, q^{1-n}/y \end{bmatrix} = \frac{(-)^{n} [q; q]_{n} [xyq; q]_{n} [x^{2}q^{2}, y^{2}q^{2}; q^{2}]_{m}}{q^{n} [x, y; q]_{n} [q^{2}, x^{2}y^{2}q^{2}; q^{2}]_{m}}, \qquad (2.6)$$

Where m is the greatest integer $\leq n/2$.

$$\Phi_{3} \begin{bmatrix} q^{-n}, -q^{-n}/x^{2}, y, -y ; q; q \\ q^{-n}/x, -q^{-n}/x, y^{2} q \end{bmatrix} \\
= \frac{[q; q]_{n} [x^{2}y^{2}q^{2}; q^{2}]_{n} [x^{2}q^{2}, y^{2}q^{2}; q^{2}]_{m}}{[x^{2}q^{2}; q^{2}]_{n} [q^{2}, x^{2}y^{2}q^{2}; q^{2}]_{m}} (2.7)$$

Where m is the greatest integer $\leq n/2$

$${}_{3}\Phi_{2}\begin{bmatrix}q^{-n},q^{-n}/x^{2},0;q;q\\q^{-n}/x,-q^{-n}/x\end{bmatrix} = \frac{[q;q]_{n}[x^{2}q^{2};q^{2}]_{m}}{[x^{2}y^{2};q^{2}]_{n}[q^{2};q^{2}]_{m}},$$
(2.8)

Where m is the greatest integer $\leq n/2$

$${}_{3}\Phi_{2}\begin{bmatrix}q^{-n},q^{-n}/x^{2},0;q;1\\q^{-n}/x,-q^{-n}/x;q\end{bmatrix}$$

$$=\frac{[q;q]_{n}[x^{2}q^{2};q^{2}]_{m}q^{n(n+1)/2}x^{2n-2m}}{[x^{2}y^{2};q^{2}]_{n}[q^{2};q^{2}]_{m}},$$

$$\text{sinteger} \leq n/2.$$
(2.9)

Where m is the greatest integer $\leq n/2$

where m is the greatest integer $\leq n/2$

$${}_{3}\Phi_{2}\begin{bmatrix}q^{-n},q^{-n}/x^{2},0;q;q\\q^{1-n}/x,q^{1-n}/x,\end{bmatrix} = \frac{(-)^{n}[q;q]_{n}[x^{2}q^{2};q^{2}]_{m}}{q^{n}[x^{2};q^{2}]_{n}[q^{2};q^{2}]_{m}},$$
(2.11)

Where m is the greatest integer $\leq n/2$.

$$\Phi_{2} \left[q^{-n}, q^{-n}/x^{2}, 0; q; q^{2} \right]
= \frac{(-)^{n} [q; q]_{n} [x^{2}q^{2}; q^{2}]_{m} q^{n(n-1)/2} x^{2n-2m}}{[x^{2}; q^{2}]_{n} [q^{2}; q^{2}]_{m}},$$
(2.12)

Where m is the greatest integer $\leq n/2$.

Putting yq^{-n} for y in [Verma and Jain 1; (2.20) P.1027] we get the following summation formula:

$$= \frac{(-)^{n}(xq)^{-n}[q;q]_{n}[1/y^{2};q^{2}]_{m}[q^{2}]_{m}^{-n}/x, 1/xy, -1/xy;q;q]}{[x,xq;q]_{n}[1/x^{2}y^{2};q^{2}]_{m}[x^{2}q^{2};q^{2}]_{m-n}}$$

$$= \frac{(-)^{n}(xq)^{-n}[q;q]_{n}[1/y^{2};q^{2}]_{n}[x^{2}q^{2};q^{2}]_{m}[y^{2}q^{2};q^{2}]_{m-n}}{[x,xq;q]_{n}[1/x^{2}y^{2};q^{2}]_{m}[x^{2}y^{2}q^{2};q^{2}]_{m-n}}$$
(2.13)

Where m is the greatest integer $\leq n/2$.

$$\frac{3\Phi_{2}}{[q^{-n},q^{-n}/x^{2},0;q;q]} = \frac{(-)^{n}[q;q]_{n}[x^{2}q^{2};q^{2}]_{m}x^{n-2m}}{[x,-xq;q]_{n}[q^{2};q^{2}]_{m}},$$
(2.14)

Where m is the greatest integer $\leq n/2$.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VII, July 2017- Available at www.ijraset.com

$$\Phi_{2} \left[q^{-n}, q^{-n}/x^{2}, 0; q; q \right] = \frac{(-)^{n} x^{n} q^{n(n-1)/2} [q; q]_{n} [x^{2} q^{2}; q^{2}]_{m}}{[x, -xq; q]_{n} [q^{2}; q^{2}]_{m}},$$
(2.15)

Where m is the greatest integer $\leq n/2$.

Putting wq^m for w in [Alsalam and Verma 1; (4.3) P.420] we get the summation formula:

[Alsalam and Verma 1; (4.3) P.420] we get the summation formula:
$$\frac{4\Phi_{3}}{a^{2}q^{2}} \begin{bmatrix} a_{1}aq_{1}a^{2}q^{2-2m}/w^{2}, q^{-2m}; q^{2}, q^{2} \\ a^{2}q^{2}, aq^{1-2m}/w, aq^{2-2m}/w \end{bmatrix}$$

$$= \frac{[w; q]_{2m}[w/a, -q; q]_{m}}{[w/a; q]_{2m}[w, -aq; q]_{m}}, \qquad (2.16)$$

$$\left[q^{-n}, c, d, \frac{1}{ad}q^{\frac{1}{2}-n}; q; q^{2}\right]$$

$$\Phi_{3} \begin{bmatrix} q^{-n}, c, d, \frac{1}{cd} q^{\frac{1}{2} - n}; q; q^{2} \\ \frac{1}{c} q^{1 - n}, \frac{1}{d} q^{1 - n}, cdq^{1/2} \end{bmatrix}$$

$$= \frac{[cd;q]_n [c,d,-q^{1/2};q^{1/2}]_n}{[c,d;q]_n [cd;q^{1/2}]_n},$$
(2.17)

$${}_{4}\Phi_{3}\begin{bmatrix}q^{-n},c,d,\frac{1}{cd}q^{\frac{3}{2}-n};q;q\\\frac{1}{c}q^{1-n},\frac{1}{d}q^{1-n},cdq^{1/2}\end{bmatrix}$$

$$=\frac{\left[cdq^{-1/2};q^{1/2}\right]_{2n}\left[c,d;q^{1/2}\right]_{n}\left[q;q\right]_{n}}{\left[cdq^{-1/2};q^{1/2}\right]_{n}\left[cdq^{1/2};q\right]_{n}\left[c,d;q\right]_{n}\left[q^{1/2};q^{1/2}\right]_{n}}.$$
(2.18)

$${}_{4}\Phi_{3}\begin{bmatrix}q^{-n},c,d,\frac{1}{cd}q^{\frac{1}{2}-n};q;q\\\frac{1}{c}q^{1-n},\frac{1}{d}q^{1-n},cdq^{-1/2}\end{bmatrix}$$

$$=\frac{[q,cd;q]_n[c,d;q^{1/2}]_nq^{-n/2}}{[c,d;q]_n[cdq^{-1/2};q^{1/2}]_n[q^{1/2};q^{1/2}]_n},$$
(2.19)

MAIN RESULTS

In this section we shall establish certain transformations of double series in the term of single series.

(i) Multiplying both sides of (2.1) by an arbitrary sequence B_n , summing over n from 0 to ∞ , applying the identity (1.3) and then replacing B_n by $\frac{z^n}{[a;a]_n}A_{n_i}$ where A_n is another arbitrary sequence, we get:

$$\sum_{n,k=0}^{\infty} A_{n+k} \frac{[a;q]_k (-cz/a)^k z^n q^{k(k-1)/2}}{[c;q]_k [q;q]_k [q;q]_n} = \sum_{n=0}^{\infty} A_n \frac{[c/a;q]_n z^n}{[q,c;q]_n}.$$
(3.1)

This is a transformation which reduces a double series in terms of a single series.

Similarly, one can easily establish the following results:

(ii)
$$\sum_{n,k=0}^{\infty} A_{n+k} \frac{[a,b;q]_k [c/ab;q]_n (cz/ab)^k z^n}{[q,c;q]_k [q;q]_n} = \sum_{n=0}^{\infty} A_n \frac{[c/a,c/b;q]_n z^n}{[q,c;q]_n}.$$
 (3.2)

(Using (2.2) with $B_n = \frac{[c/ab;q]_n z^n}{[q;q]_n} A_n$)

(iii)
$$\sum_{n,k=0}^{\infty} A_{n+k} \frac{[x;q]_k [xq;q]_n (-zq)^k z^n}{[q;q]_k [q;q]_n} = \sum_{n=0}^{\infty} A_n \frac{[x^2q^2;q^2]_m z^n}{[q^2;q^2]_m}.$$
 (3.3)

Where m is the greatest integer $\leq n/2$.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VII, July 2017- Available at www.ijraset.com

(Using (2.3) with
$$B_n = \frac{[xq:q]_n z^n}{[q:q]_n} A_n$$
)

(iv)
$$\sum_{n,k=0}^{\infty} A_{n+k} \frac{[x,y;q]_{k} [xq,yq;q]_{n} (-zq)^{k} z^{n}}{[q,-xyq;q]_{k} [q,-xyq;q]_{n}}$$

$$= \sum_{n=0}^{\infty} A_{n} \frac{[xyq;q]_{n} [x^{2}q^{2},y^{2}q^{2};q^{2}]_{m} z^{n}}{[-xyq;q]_{n} [q^{2},x^{2}y^{2}q^{2};q^{2}]_{m}}$$
(3.4)

Where m is the greatest integer $\leq n/2$.

(Using (2.4) with
$$B_n = \frac{[xq,yq;q]_n z^n}{[q,-xyq;q]_n} A_n$$
)

$$(v) \qquad \sum_{n,k=0}^{\infty} A_{n+k} \frac{[x;q]_k [xq;q]_n (-z)^k z^n}{[q;q]_k [q;q]_n}$$

$$= \sum_{n=0}^{\infty} A_n z^n \frac{[x^2 q^2; q^2]_m x^{n-2m}}{[q^2; q^2]_m}$$
(3.5)

Where m is the greatest integer $\leq n/2$

(Using (2.5) with
$$B_n = \frac{[xq;q]_n z^n}{[q;q]_n} A_n$$
)

$$(vi) \qquad \sum_{n,k=0}^{\infty} A_{n+k} \frac{[x_{i} - xq; q]_{n} (-z)^{k} z^{n}}{[q_{i} x^{2} q; q]_{n} [q; q]_{k}}$$

$$= \sum_{n=0}^{\infty} A_{n} (-z)^{n} \frac{[x^{2} q^{2}; q^{2}]_{m} x^{n-2m}}{[x^{2} q; q]_{n} [q^{2}; q^{2}]_{m}}$$
(3.6)

Where m is the greatest integer $\leq n/2$.

(Using (2.6) with
$$B_n = \frac{[x - xq;q]_n z^n}{[q,x^2q;q]_n} A_n$$

(vii)
$$\sum_{n,k=0}^{\infty} A_{n+k} \frac{[x, -xq; q]_n (-z)^k z^n q^{k(k-1)/2}}{[q, x^2 q; q]_n [q; q]_k}$$

$$= \sum_{n=0}^{\infty} A_n \frac{(-zx)^n q^{n(n-1)/2} [x^2 q^2; q^2]_m}{[x^2 q; q]_n [q^2; q^2]_m}$$
(3.7)

Where m is the greatest integer $\leq n/2$

(Using (2.7) with
$$B_n = \frac{[x_n - xq_1q]_n z^n}{[q_n x^2 q_1q]_n} A_n$$
)

(viii)
$$\sum_{n,k=0}^{\infty} A_{n+k} \frac{[a,aq;q^{2}]_{k}[wq/a,w/a;q^{2}]_{n}(zq)^{k}z^{n}}{[q^{2},a^{2}q^{2};q^{2}]_{k}[q^{2},w^{2}/a^{2};q^{2}]_{n}}$$

$$= \sum_{n=0}^{\infty} A_{n} \frac{[w;q]_{2n}z^{n}}{[w;q]_{n}[q;q]_{n}[-aq,-w/a;q]_{n}}$$
(Using (2.8) with $B_{n} = \frac{[w/a,wq/a;q^{2}]_{n}z^{n}}{[q^{2},w^{2}/a^{2};q^{2}]_{n}} A_{n}$)

IV. CLAUSEN TYPE IDENTITIES

In this section, we deduce the Clausen type identities from the result established in section (3) (i) Taking $A_n = 1$ in (3.2) we get

$${}_{2}\Phi_{1} \left[\begin{matrix} a,b;qcz/ab \\ c \end{matrix} \right] {}_{1}\Phi_{0} \left[\begin{matrix} c/ab;q;z \\ - \end{matrix} \right]$$

$$= {}_{2}\Phi_{1} \left[\begin{matrix} c/a,c/b;q;z \\ c \end{matrix} \right], \tag{4.1}$$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VII, July 2017- Available at www.ijraset.com

Which is the basic analogue of Euler's transformation.

(ii) For $A_n = 1$, (3.4) yields the product formula:

$${}_{2}\Phi_{1}\begin{bmatrix} x,y;q;-zq\\-xyq\end{bmatrix} {}_{2}\Phi_{1}\begin{bmatrix} xq,yq;q;z\\-xyq\end{bmatrix}$$

$$= {}_{4}\Phi_{3}\begin{bmatrix} xyq,xyq^{2},x^{2}q^{2},y^{2}q^{2};q^{2};z^{2}\\-xyq,-xyq^{2},x^{2}y^{2}q^{2}\end{bmatrix}$$

$$+\frac{z(1-xyq)}{(1+xyq)} {}_{4}\Phi_{3}\begin{bmatrix} xyq^{2}, xyq^{3}, x^{2}q^{2}, y^{2}q^{2}; q^{2}; z^{2} \\ -xyq^{2}, -xyq^{3}, x^{2}y^{2}q^{2} \end{bmatrix}$$
(4.2)

Which is known result [Verma and Jain 1; (2.37)P.10

Similarly, taking $A_n = 1$ in (3.3) - (3.8) we have the following results respectively.

(iii)
$${}_{2}\Phi_{1}\begin{bmatrix}xq,yq;q;-z/q\\-xyq\end{bmatrix}{}_{2}\Phi_{1}\begin{bmatrix}x,y;q;z\\-xyq\end{bmatrix}$$

$$={}_{4}\Phi_{3}\begin{bmatrix}xyq,xyq^{2},x^{2}q^{2},y^{2}q^{2};z^{2}/q^{2}\\-xyq,-xyq^{2},x^{2}v^{2}q^{2}\end{bmatrix}$$

$$-\frac{z(1-xyq)}{q(1+xyq)} {}_{4}\Phi_{3} \begin{bmatrix} xyq^{2}xyq^{3}, x^{2}q^{2}, y^{2}q^{2}; z^{2}/q^{2} \\ -xyq^{2}, -xyq^{3}, x^{2}y^{2}q^{2} \end{bmatrix}$$

$$(iv) \qquad {}_{2}\Phi_{1} \begin{bmatrix} y, -y; q; -zq \\ y^{2}q \end{bmatrix} {}_{2}\Phi_{1} \begin{bmatrix} xq, -xq; q; z \\ x^{2}q \end{bmatrix}$$

$$(4.3)$$

$${}_{4}\Phi_{3}\begin{bmatrix} xyq_{1}-xyq_{1}xyq^{2},-xyq^{2};q^{2};z^{2}\\ x^{2}q_{1}y^{2}q_{1}x^{2}y^{2}q^{2} \end{bmatrix}$$

$$\Phi_{3} \begin{bmatrix} xyq_{1} - xyq_{1}xyq_{2} - xyq_{2}; q^{2}; z^{2} \\ x^{2}q_{1}y^{2}q_{1}x^{2}y^{2}q^{2} \end{bmatrix} + \frac{z(1 - x^{2}y^{2}q^{2})}{(1 - x^{2}q)(1 - y^{2}q)} {}_{4}\Phi_{3} \begin{bmatrix} xyq_{1}^{2} - xyq_{1}^{2}xyq_{1}^{3} - xyq_{1}^{3}; q^{2}; z^{2} \\ x^{2}q_{1}^{3}y_{2}^{2}q_{1}^{3}x^{2}y_{2}^{2}q^{2} \end{bmatrix}$$

$$2\Phi_{1} \begin{bmatrix} xq_{1} - yq_{1}q_{1}; z \\ x^{2}q \end{bmatrix}$$

$$(4.4)$$

$$(v) \qquad {}_{2}\Phi_{1}\begin{bmatrix} xq, -yq; q; z \\ x^{2}q \end{bmatrix}$$

$$= \left[-zq; q \right]_{\infty} {}_{0} \Phi_{1} \left[-; q^{2}; z^{2} \right] + \frac{z[-zq; q]_{\infty}}{(1 - x^{2}q)} {}_{0} \Phi_{1} \left[-; q^{2}; z^{2} \right]$$

$$(4.5)$$

$$(vi) \qquad {}_{2}\Phi_{1}\begin{bmatrix}c,d;q;zq^{1/2}\\cdq^{1/2}\end{bmatrix}_{2}\Phi_{1}\begin{bmatrix}c,d;q;z\\cdq^{1/2}\end{bmatrix}$$

$$= {}_{4}\Phi_{3} \begin{bmatrix} c, d, \sqrt{cd}, -\sqrt{cd} & ; q^{1/2}; z \\ cd, q^{1/4}\sqrt{cd}, -q^{1/4}\sqrt{cd} & ; q; z \end{bmatrix}$$

$${}_{2}\Phi_{1} \begin{bmatrix} c, d, q; q; zq^{1/2} \\ cdq^{1/2} \end{bmatrix} {}_{2}\Phi_{1} \begin{bmatrix} c, d, q; q; z \\ cdq^{-1/2} \end{bmatrix}$$

$$(4.6)$$

$$(vii) \qquad {}_{2}\Phi_{1}\begin{bmatrix} c,d&;q;zq^{1/2}\\cdq^{1/2}\end{bmatrix}{}_{2}\Phi_{1}\begin{bmatrix} c,d&;q;z\\cdq^{-1/2}\end{bmatrix}$$

$$= {}_{4}\Phi_{3} \begin{bmatrix} c_{i}d_{i}\sqrt{cd_{i}} - \sqrt{cd} & ; q^{1/2}; z \\ cdq^{-1/2}, q^{1/4}\sqrt{cd_{i}} - q^{1/4}\sqrt{cd} \end{bmatrix}$$
(4.7)

(viii)
$${}_{2}\Phi_{1}\begin{bmatrix} c, d & ; q; zq^{-1/2} \\ cdq^{-1/2} \end{bmatrix} {}_{2}\Phi_{1}\begin{bmatrix} c, d & ; q; z \\ cdq^{1/2} \end{bmatrix}$$

$$= {}_{4}\Phi_{3}\begin{bmatrix} c, d, \sqrt{cd}, -\sqrt{cd} & ; q^{1/2}; zq^{-1/2} \\ cdq^{-1/2}, q^{1/4}\sqrt{cd}, -q^{1/4}\sqrt{cd} \end{bmatrix}$$

$$(4.8)$$

CONCLUSION V.

In this paper a new method has been developed to establish certain transformation of double q-series in terms of a single series. These results lead to certain Clausen type identities. With the help of these results it is also possible to establish certain continued fraction representation involving q- series.

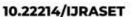
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 5 Issue VII, July 2017- Available at www.ijraset.com

VI. ACKNOWLEDGEMENT

My thanks are due to Dr. G.C Chaubey Ex Associate Professor & Head department of Mathematics TDPG College Jaunpur, Professor B. Kunwar Department of Mathematics IET, Lucknow and Dr. S.K Mishra Assistant Professor department of Physics IET, Lucknow for their encouragement and for providing necessary support. I am extremely grateful for their constructive support.

REFERENCES

- [1] Gasper, G. and Rahman, M. (1991): Basic hypergeometric series, Cambridge University Press
- [2] Agarwal, R.P., Manocha, H.L. and Rao, K.Srinivas (2001); Selected Topics in special functions, Allied Publisher Limited, New Delhi
- [3] Agarwal, R.P.: Generalized hypergeometric series and it's application to the theory of combinatorial analysis and partition theory (Unpublished monograph)
- [4] L.J. Slater: Generalized Hypergeometric Functions, Cambridge University Press,(1966).
- [5] S. Ramanujan: Notebook, Vol. II, Tata Institute of Fundamental Research, Bombay, (1957).
- [6] Verma and Jain "Some summation formulae of basic hypergeometric series", Indian J. of Pure and Applied Math. 11 (8),1021-1038
- [7] Verma and Jain "Some summation formulae for non terminating basic hypergeometric series" Siam.J. Math. Anal. Vol 16 No.3 1985.



45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)