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Abstract:  In this paper we study Legendre conformable fractional differential equation. It turns out that in certain cases, similar 
to the classical case, certain solutions are fractional polynomials. Further, we study basic properties of such fractional 
polynomials. 
Keywords:  Legendre Fractional Equation, Legendre Fractional Polynomials, Fractional Derivative, Conformable and Feasible 

I. INTRODUCTION 

The subject of fractional derivative is as old as calculus. In 1695, L, Hospital asked if the expression 
.

.  푓 has any meaning. Since 
then, many researchers have been trying to generalize the concept of the usual derivative to fractional derivatives. These days, many 
definitions for the fractional derivative are available. Most of these definitions use an integral form.  

 

II. NOTATIONS AND DEFINITIONS  
A. The Most Popular Definitions are 
1) Riemann- Liouville Definition: If n is a positive integer and 훼 ∈ [푛 − 1, 푛),  the 훼   derivative of is given by 

퐷 (푓)(푡) =
1

Γ (푛 − 훼)
푑
푑푡  

푓(푥)
(푡 − 푥)  푑푥. 

2) Caputo Definitions. For 훼 ∈  [푛 − 1,푛), 푡ℎ푒 푎 푑푒푟푖푣푎푡푖푣푒 표푓 푓 푖푠  

퐷 (푓)(푡) =
1

Γ (푛 − 훼) 
푓 (푥)

(푡 − 푥)  푑푥. 

Now, all the definitions are attempted to satisfy the usual properties of the standard derivative. The only property inherited by all the 
definitions of fractional derivative is the linearity property. However the followings are setbacks of one definition or another: 
a) The Riemann-Liouville derivative does not satisfy 퐷 (1) = 0(퐷 (1) = 0  for the Caputo derivative), if 훼 is not a natural 

number. 
b) All fractional Derivatives do not satisfy the known product rule: 

퐷 (푓푔) = 푓퐷  (푔) + 푔퐷 (푓). 
c) All fractional derivatives do not satisfy the known quotient : 

퐷 (푓/푔) =
 푔퐷 (푓) − 푓퐷 (푔)

푔 . 

d) All fractional derivatives do not satisfy the chain rule : 
퐷 (푓 표 푔)(푡) = 푓( )푔(푡)푔( )(푡). 

e) All fractional derivatives do not satisfy: 퐷 퐷  푓 = 퐷  푓 in general. 
f) Cauto definition assumes that the function 푓 is differentiable. 
g) 푇 (휆) = 0, for all constant functions 푓(푡) = 휆 
In a new definition called conformable fractional derivative was introduced. The new definition satisfies: 

i) 푇  (푎푓 + 푏푔) = 푎푇 (푓) + 푏푇 (푔) for all 푎, 푏 휖 푅. 
ii) 푇 (휆) = 0, For all constant functions 푓(푡) = 휆. 

Further for 훼 휖 (0,1] and 푓,푔 be 훼 − differentiable at a point t, with 푔(푡) ≠ 0. then  
iii) 푇 (푓푔) = 푓푇 (푔) + 푔푇 (푓). 
iv) 푇 = ( ) ( ).  

We list here the fractional derivatives of certain functions, for the purpose of comparing the result of new definition with the usual 
definition of the derivative. 

푇 (푡 ) = 푝 푡  
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푇 sin
1
훼 푡 = cos

1
훼 푡 . 

 

푇  cos
1
훼 푡 = − sin

1
훼 푡  

푇 푒 = 푒  

On letting 훼 = 1 in these derivatives, we get the corresponding ordinary derivatives. The conformable definition of fractional 
derivatives to introduce fractional Laplace transform, and factorial Taylor expansion.  
The classical Legendre differential equation  

(1− 푥 )푦 − −2푥푦 + 푘(푘 + 1)푦 = 0 
The point 푥 = 0 is an ordinary point for the equations. Solving the equation around 푥 = 0, using series solution, and assuming that 
푘 is a natural number, gives polynomial solution, called Legendre polynomials, given by the Rodrigues formula: 

푃 (푥) =
1

2 푛! 
푑
푑푥  (푥 − 1)  

these sets of polynomials turned to be orthogonal polynomial in the sense 0)()(
1

1




dxxPxP mn 푛 ≠ 푚. such polynomial turned 

out to be particular interest in many problems in mathematical physics like heat distribution is spherical regions and in the 
structure of atoms. 
Throughout this paper, we let 퐷 푦 denote the conformable fractional derivative of 푦, where 훼 휖 (0, 1]. The second 훼 − derivative 

of  푦 will be demoted by 퐷 퐷 푦. A series is called a fractional power series if it can be written in the form n

n
n xa



0
, for 훼 휖 (0, 

1]. Further, we let 퐼  (푓)푥 = ,.)(

0
1 dt

t
tfx

   for the basic structure of conformable fractional derivatives, integrals and fractional 

power series. 

III.  SOLUTION OF FRACTIONAL LEGENDRE EQUATIONS  
Consider the equation  

(1-푥 )퐷 퐷 푦 − 2훼푥 퐷 푦 + 훼 푘(푘 + 1)푦 = 0                                                                                                      (1) 
Where 훼 휖 (0, 1], and 푘 is any real number. Clearly, if 훼 = 1, then equation (1) is just the classical Legendre equation. We will use 
series solution around 푥 = 0 to get polynomial solutions for equation (1), when 푘 is assumed to be a natural number. 
Now 푥 = 0 is an ordinary point for the equation. Using the fractional power expansion and for 푥 > 0, we let 

푦 = 푎 푥  

So 

퐷 푦 = 훼푛푎 푥  

퐷 퐷 푦 = 훼 푛 (푛 − 1)푎 푥  

Substitute these in equations (1) we get: 

훼 푛 (푛 − 1)푎 푥 − 푥 훼 푛 (푛 − 1)푎 푥 − 2푎푥  훼푛푎 푥 + 푎 푘(푘 + 1) 푎 푥 = 0  
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Substitute these in equation (2), replacing 푛 by 푛 + 2 we get: 

푎 훼 (푛 + 2)(푛 + 1)푥                                                                                                                                                          (3) 

The second term sum needs no change of variables and it is equal to: 
 

− 훼 푛(푛 − 1)푎 푥                                                                                                                                                                      (4) 

The third term sum needs no change of variables and it is equal to: 

− 2훼 푛푎 푥                                                                                                                                                                                  (5) 

The fourth term sum needs no change of variables and it is equal to: 

훼 푘(푘 + 1)푎 푥                                                                                                                                                                          (6) 

Now, unifying all summations to start from 푛 = 2 and put them in one summation we get:   
(2훼 푎 + 훼 푘(푘 + 1)푎 ) + (6훼 푎 − 2훼 푎 + 훼 푘(푘 + 1)푎 )푥 

+ [푎 훼 (푛 + 2)(푛 + 1) − 훼 푛 (푛 − 1)푎 − 2훼 푛푎 +푎 푘(푘 + 1)푎 ]푥 = 0 

From which we get 

푎 = −
푘(푘 + 1)

2 푎                                                                                                                                                                               (7) 

 

푎 =
2 − 푘(푘 + 1)

6  푎                                                                                                                                                                          (8) 

 
And 

푎 =
푛(푛 + 1) − 푘(푘 + 1)

(푛 + 1)(푛 + 2) 푎                                                                                                                                                        (9) 

Hence there are two independent solutions 푦  which is the sum over the odd terms and 푦  which is the sum over the ever terms. 
However, such solutions do not have finite value at 1 and at -1, which means that such solutions are not physically feasible. Thus 
the only series solutions of interest are those that terminate after finitely many steps. That means polynomial solutions. Thus in 
equation (9) if 푘  is a natural number, then 푎 = 0 and so 푎 = 0. However one may still have  푎 ( ) ≠ 0  for all 푛. Hence 
by choosing one of 푎  (or 푎  ) equal to zero, we can make all even-numbered coefficients (or all odd- numbered coefficients) equal 
to zero. 
Simplifying the recurrence formula in (9), to get  

푎 =  −
(푘 − 푛)(푛 + 푘 + 1)

(푛 + 1)(푛 + 2)  푎                                                                                                                                                 (10) 

Notice, if one substitute in the recurrence formula (10), 푛 = 0, we get 푎 = − ( )푎 , which in equation (7). If 푛 = 2 we get 

푎 = ( )( )( )
!

푎 . And so on to get  
 

푎 = (−1)
푘(푘 − 2) … 푘 − 2(푛 − 1) . (푘 + 2푛 − 1)(푘 + 2푛 − 3) … (푘 + 1)

(2푛)! 푎                                                         (11) 

 
So if 푘 is even natural number, one can simplify (11) to get  
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푎 = (−1)
(푘 + 2푛)! 푘2 !

(2푛)! 푘! 푘
2 + 푛 ! 푘

2 − 푛 !
푎                                                                                                                                (12) 

The constant 푎  is usually chosen so that the polynomial solution at 푥 = 1 equals 1. So the value to be given to 푎  is 푎 =

(−1)  ! . So  

 
For 푘 = 0, we get the polynomial 푃 (푥) = 1. for 푘 = 2, we get the polynomial 푃  (푥) = (3푥 − 1). similarly, for 푛 = 4,6,8, … 

There are similar formulas and structure if 푘 is an odd natural number: 푃 (푥) = 푥 ,푃 (푥) =  (5푥 − 3푥 ) … 
 Let 퐷 = 퐷 퐷 …퐷 , 푛 −times. With such notations and using the known formula, 퐷 푥 = 푝푥 ,  we can have a nice closed 
formula for all such polynomials, as follows: 

푃 (푥) =
1

훼 2 푛! 퐷 (푥 − 1)                                                                                                                                                     (13) 

IV. CONCLUSIONS 
Thus we can conclude that n order to study the orthogonality of fractional Legendre polynomials on an interval [-1, 1] the definition 
of  퐷 푓(푥) must be extended such that it includes the negative values of 푥.These polynomials are very useful in solving problems 
involving heat distribution in spherical region and in the structure of atoms. 
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