

2 IX September 2014

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 219

Threads in Operating System

Kirti Sharma1, Himanshu Saini2, Girish Mehta3

1,2,3 Student (B.tech Vth sem) Department of Computer science

Dronacharya College Of Engineering,Gurgaon-123506

Abstract-This paper basically deals with threads used in an operating system. We have focused on the working and the ways of
multithreaded system, how they are used to write a program in an efficient and effective way. The first part of the paper explains you
what is an operating system and its history. And the second part emphasizes the concepts of Threads in an operating system(OS).

Keywords: Threads, multithread, effective, efficient, OS.

I. INTRODUCTION

An operating system (OS) is software that controls computer
hardware and software resources and provides common
services for computer program.. The operating system is an
essential component of the software program in a computer
system. Application programs usually require an operating
system to function. For hardware functions such as input and
output and memory allocation the operating system acts as an
intermediary between programs and the computer hardware,
although the application code is usually executed directly by
the hardware and will frequently make a system call to an OS
function or be interrupted by it.

Examples of popular modern operating systems
include Android, ios, Linux, Microsoft windows and many
more.

II. HISTORY

Operating systems have evolved through a number of distinct
phases or generations which corresponds roughly to the
decades.

A. The 1940's - First Generations

The earliest electronic digital computers had no operating
systems. Machines of the time were so primitive that
programs were often entered one bit at time on rows of
mechanical switches (plug boards). Programming languages

were unknown (not even assembly languages). Operating
systems were unheard of .

B. The 1950's - Second Generation

By the early 1950's, the routine had improved somewhat with
the introduction of punch cards. The General Motors Research
Laboratories implemented the first operating systems in early
1950's for their IBM 701. The system of the 50's generally ran
one job at a time. These were called single-stream batch
processing systems because programs and data were
submitted in groups or batches.

C. The 1960's - Third Generation

The systems of the 1960's were also batch processing systems,
but they were able to take better advantage of the computer's
resources by running several jobs at once. So operating
systems designers developed the concept of
multiprogramming in which several jobs are in main memory
at once; a processor is switched from job to job as needed to
keep several jobs advancing while keeping the peripheral
devices in use.

D. Fourth Generation

With the development of LSI (Large Scale Integration)
circuits, chips, operating system entered in the system entered

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 220

in the personal computer and the workstation age.
Microprocessor technology evolved to the point that it become
possible to build desktop computers as powerful as the
mainframes of the 1970s.

III. THREADS

A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes,
they are sometimes called lightweight processes.

In many respect, threads are popular way to improve
application through parallelism. The CPU switches rapidly
back and forth among the threads giving illusion that the
threads are running in parallel. Like a traditional process i.e.,
process with one thread, a thread can be in any of several
states . Each thread has its own stack. Since thread will
generally call different procedures and thus a different
execution history. This is why thread needs its own stack. An
operating system that has thread facility, the basic unit of CPU
utilization is a thread.

A thread is a basic unit of CPU utilization, consisting of a
program counter, a stack, and a set of registers.

 Traditional processes have a single thread of control
- There is one program counter, and one sequence of
instructions that can be carried out at any given time.

 As shown in Figure 4.1, multi-threaded applications
have multiple threads within a single process, each
having their own program counter, stack and set of
registers, but sharing common code, data, and certain
structures such as open files.

We use threads due to many reasons. Threads plays a key role
in the designing of an operating system. A process with
multiple threads make a great server for example printer
server. Because threads can share common data, they do not
need to use inter process communication .Because of the very
nature, threads can take advantage of multiprocessors.

Threads are cheap as They only need a stack and storage for
registers therefore, threads are cheap to create. Threads use
very little resources of an operating system in which they are

working. That is, threads do not need new address space,
global data, program code or operating system resources.
Context switching are fast when working with threads. The
reason is that we only have to save and/or restore PC, SP and
registers.

Fig. 1 Single-threaded processes and Multithread processes

1V. MULTI THREAD PROCESS

Multithreading is mainly found in multitasking operating
systems. Multithreading is a widespread programming and
execution model that allows multiple threads to exist within
the context of a single process. These threads share the
process's resources, but are able to execute independently. The
threaded programming model provides developers with a
useful abstraction of concurrent execution. Multithreading can
also be applied to a single process to enable parallel
execution on a multiprocessing system.

 There are two types of threads to be managed in a
modern system: User threads and kernel threads.

 User threads are supported above the kernel, without
kernel support. These are the threads that application
programmers would put into their programs.

 Kernel threads are supported within the kernel of the
OS itself. All modern OSes support kernel level
threads, allowing the kernel to perform multiple
simultaneous tasks and/or to service multiple kernel
system calls simultaneously.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 221

 In a specific implementation, the user threads must
be mapped to kernel threads, using one of the
following strategies.

A. Many to one

Where many user level threads are mapped to as single
kernel thread. In such model the thread is managed by
thread library in the user space which makes such model
efficient. However the entire threads can be blocked if a
thread makes a blocking system call. Also; with
multiprocessors system; threads can access the kernel
with only a single thread at a time and as such; multiple
threads are unable to take advantage on multiprocessor
and run in parallel on multiprocessors. With such model,
developer will be able to create as many threads as
required; however the true concurrency is not
implemented since the kernel can schedule only one
thread at a time.

Fig. 2 Many to One thread

B. One to one

Where each user thread is mapped to the kernel thread.
Such mechanism provides concurrency operation than the

many-to –many model where other threads are allowed to
even when one of these threads makes a blocking system
call. Also such system allows multiple threads to run in
parallel on multiprocessors. Since such model creates a
corresponding kernel thread with every creating of user
thread, on overhead of creating kernel threads can affect
the performance of an application and as such this
implementation can be restricted with the number of
threads that can be supported be the system.

Fig. 3 One to One Thread

C. Many to many

The many to many model multiplexes any number of user
threads onto an equal or smaller , number of kernel
threads , combining the best of the one-to –one and many
to one models.

Users have no restrictions on the number of threads
created .Blocking kernel system calls do not block the
entire process.

Processed can be split across multiple process. Individual
processes may be allocated variable number of kernel
threads.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 222

Fig. 4 Many to many Thread

V. ADVANTAGES

Threads are very useful in modern programming
whenever a process has multiple tasks to perform
independently of the others This is particularly true when
one of its task may block, and it is desired to allow the
other tasks to proceed without blocking.

For example in award processor, background thread may
check spelling and grammar while a foreground thread
processes a user input , while yet a third thread loads
images from the hard drive , and the fourth does periodic
automatic backups of the file being edited.

Another example is a web server-

Multiple threads allow multiple requests to be satisfied
simultaneously, without having to service requests
sequentially or to fork off separate processes for every
incoming request.

Fig. 5 Resume listening for additional client requests

VI. CONCLUSION

A thread is a flow of control with a process and it is more
efficient and more productive for a process to have
multiple threads to achieve the maximum efficiency of
any computing system (Titus, 2004). For example, with a
server that can support multithreaded processes, such
server can create several threads based on the client’s
requests. Multithreading allows application to be more
interactive since the program can continue running even
when part of such program’s thread is blocked or is
involved in a lengthy operation. Also, with
multiprocessor architecture that is exist in modern
computing system, different threads can run in parallel on
different processors .

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 223

REFERENCES

[1] F.J. Cazorla, P.M.W. Knijnenburg, R. Sakellariou,E.
Fernandez, A. Ramirez, and M. Valero,
“Predictableperformance in SMT processors: synergy
between theOS and SMTs,” Computers, IEEE
Transactions on, vol 55, no. 7, pp. 785 – 799, july 2006.

[2] F.N. Sibai, “Performance effect of localized thread
schedules in heterogeneous multi-core processors,” in
Innovations in Information Technology, 2007. IIT ’07.4th
International Conference on, nov. 2007, pp. 292 –296.

[3] O. Mutlu and T. Moscibroda, “Parallelism-aware
batch scheduling: Enabling high-performance and fair
shared memory controllers,” Micro, IEEE, vol. 29, no. 1,
pp.22 –32, jan.-feb. 2009.

