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Abstract: The continued fraction of a real number ࢞ is very efficient process for finding the best rational approximation of  ࢞. 
Moreover, continued fractions are very versatile tool for solving problems with movements involving two different periods. In 
this paper we establish the basic bilateral analogue Norlund’s continued fraction.  
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I. INTRODUCTION 
The expression of the form   

= ܽ଴ +
1

ܽଵ + 1
 ܽଶ + 1

ܽଷ + ⋯

 

Where the ܽ௜
,  .are integers, is called the continued expression of a real number ݏ

The third part of Entry 21 of Ramanujan’s [4] second notebook, generalized the Norlunds’ continued fraction by establishing   q-
analogue. 

II. NOTATIONS AND DEFINITIONS 
A basic bilateral hypergeometric series is defined as. 

  22  ൤ܽ,ܾ; ݔ
ܿ,݀ ൨ = ෍

[ܽ]௡[ܾ]௡
[ܿ]௡[݀]௡

ஶ

௡ୀିஶ

௡ݔ  

for ቚ௖ௗ
௔௕
ቚ < |ݔ| < 1 

It is oblivious that  22  reduces to  12
 if any of the denominator parameters reduces to ݍ. 

Also, for |ݍ| < 1 and arbitrary a  

[ܽ]௡ = (1− ܽ)(1 − 1)(ݍܽ − (ଶݍܽ … (1− ,(௡ିଵݍܽ      [ܽ]଴ = 1 

                                                            Where ݊ > 0 

III. MAIN RESULT 
In this paper, we shall establish the following result,  

22 ൤ܽݍ, ;ݍܾ ݔ
,ݍܿ ݀ ൨

(1 − ܿ) 22 ൤ܽ,ܾ;ݔ
ܿ, ݀ ൨

=
1

଴ߙ  + 
଴ߛ଴ߚ
ଵߙ

 
ଵߛଵߚ
ଶߙ  + …                                                                                (3.1)   

    Where, for  ݅ = 0, 1, 2. .. 

௜ߙ = (1− (௜ݍܿ + {(1 + ଶ௜ݍܾܽ(ݍ − ௜ݍܽ −  ݔ{௜ݍܾ

௜ߚ =
௜ݍܿ) − −1)(ݔଶ௜ାଵݍܾܽ ܾܽ௜ାଵ)(1 − ܾܽ௜ାଵ)(݀ − (ݔ௜ାଵݍܾ

݀)௜ݍܽ − −௜ାଶ)(1ݍܾ (ݔ௜ାଵݍܾ  
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௜ߛ =
(1 − ௜)(1ݍܽ − ݀)(௜ݍܾ − (ݔ௜ାଵݍܾ

݀ − ௜ାଵݍܾ − (1− −(௜ݍܽ {(1 + ଶ௜ݍܾܽ(ݍ − ௜ݍܽ −  ݔ {௜ݍܾ

PROOF: It is easily verified that  

(1− (௜ݍܿ 22 ቈܽݍ
௜ ݔ;௜ݍܾ,

௜ݍܿ ,݀
቉ = ௜ߙ  22 ቈܽݍ

௜ାଵ,ܾݍ௜ାଵ;ݔ
݀,௜ାଵݍܿ

቉ +
௜ߛ௜ߚ

1 − ௜ାଵݍܿ  22 ቈܽݍ
௜ାଶ,ܾݍ௜ାଶ;ݔ

݀,௜ାଶݍܿ
቉          (3.2) 

  Where  ߙ௜  ௜ are given in (3.1). From (3.2) we haveߛ  ௜ andߚ,

(1− ௜) 22ݍܿ ቈܽݍ
௜ ݔ;௜ݍܾ,

௜ݍܿ ,݀
቉

22 ൤ܽݍ
௜ାଵ,ܾݍ௜ାଵ;ݔ

݀,௜ାଵݍܿ
൨

  

= ௜ߙ   + 
௜ߛ௜ߚ          

(1 − (௜ାଵݍܿ
    22  ൤ܽݍ

௜ାଵ,ܾݍ௜ାଵ;ݔ
݀,௜ାଵݍܿ

൨

     
22 ൤ܽݍ

௜ାଶ,ܾݍ௜ାଶ;ݔ
݀,௜ାଶݍܿ

൨

    

                                                                                                                                                                                              (3.3) 

Repeated application of (3.3) yields. 

(1− ܿ) 22 ൤ܽ, ܾ; ݔ
ܿ, ݀ ൨

     22  ൤ܽݍ, ;ݍܾ ݔ
,ݍܿ ݀ ൨

= ௜ߙ +
଴ߛ଴ߚ

(1 − (ݍܿ
22  ൤ܽݍ, ;ݍܾ ݔ

݀,ݍܿ ൨

22  ൤ܽݍ
ଶ,ܾݍଶ;ݔ

݀,ଶݍܿ ൨

 

= ଴ߙ +
              ଴ߛ଴ߚ                   

ଵߙ +        ଵߛଵߚ        

ଶߙ  +          ଶߛଶߚ                 
⋰+ଷߙ

 

     ݎ݋
 22  ൤ܽݍ, ;ݍܾ ݔ

,ݍܿ ݀ ൨

(1 − ܿ) 22 ൤ܽ,ܾ; ݔ
ܿ݀, ݍ ൨

=
1

଴ߙ +
଴ߛ଴ߚ
ଵߙ +

ଵߛଵߚ
ଶߙ +⋯ 

This Proves (3.1). 
The Convergence condition of the continued fraction appearing in (3.1) though complicated, can be worked out with the help of 
Worpitzky’s theorem the left side of (3.1) is valid for ݀ = |ݔ| ௠(݉ ߳ ܰ) andݍ < 1. 
We shall discuss some very interesting special cases of our result. 
If we replace d by q in (3.1) we obtain the following result 

 12  ൤ܽݍ, ;ݍܾ ݔ
ݍܿ ൨

(1− ܿ) 12 ቂܽ, ܾ; ݔ
ܿ

ቃ
=

1
ܽ଴ +

ܾଵ
ܽଵ +

ܾଶ
ܽଶ +⋯                                                                                                           (3.4) 

Where for ݅ = 1,2,3. .. 

ܽ௜ିଵ = 1 − ௜ିଵݍܿ + {(1 + ଶ௜ିଶݍܾܽ(ݍ − ௜ିଵݍܽ −  ݔ {௜ିଵݍܾ

ܾ௜ = ௜ିଵݍܿ)ݔ − ଶ௜ିଵ)(1ݍݔܾܽ − ௜)(1ݍܽ −  (௜ݍܾ
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If ݍ → 1− 0 in (3.4) we get the following result due to Norlund  

12 F ൤1 + ܽ, 1 + ܾ; ݔ
1 + ܿ,݀ ൨

ܿ 12 F ൤ܽ, ܾ; ݔ
ܿ, ݀ ൨

 

=
1

ܿ − (1 + ܽ + ݔ(ܾ +  
(ܽ + 1)(ܾ + ݔ)(1 − (ଶݔ

(ܿ + 1)− (3 + ܽ + ݔ(ܾ +  
(ܽ + 2)(ܾ + ݔ)(2 − (ଶݔ

(ܿ + 2) − (5 + ܽ + ݔ(ܾ + ⋯ 

 

IV. CONCLUSION  
Basic Bilateral Analogue of Norlund’s continued fraction can be used to evaluate two centre problems in wave mechanics. The 
systematic use of N & C- terminal deletions can promote production and structural studies of recombination system. It can be used 
to study the nature of high energy radiation damage in iron and finds a wide range of application in electrical network, musical notes 
and in designing a planetarium etc.   
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