
\qquad
INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
\qquad

Certain Transformation Formulae for Basic Hypergeometric Series

Rajesh Pandey ${ }^{1}$, Pravesh Chandra Srivastava ${ }^{2}$
${ }^{1}$ Department of Applied Science, Institute of Engineering \& Technology, Sitapur Road, Lucknow 226021 India.
${ }^{2}$ Department of Applied Science, IMS Engineering College, Ghaziabad 201013, India.

Abstract: In this paper, general transformation formulae for basic hypergeometric series of two variables have been established. Special cases have also been studied.
Keywords: Basic hypergeometric series, Transformation formulae, Summation, Basic Analogue, Parameters

I. INTRODUCTION

Jeugt, Pitre and Srinivasa Rao [1] obtain certain summation theorems for double and triple hypergeometric functions. The following interesting summation formula for double hypergeometric function has been established $\mathrm{F}_{1 ; 1}^{0 ; 3}\left[\begin{array}{cc}: \delta-\alpha \beta+\gamma,-\mathrm{p} ; \alpha-\delta, \beta+\mathrm{p},-\gamma ; 1,1 \\ \beta: & \beta+\gamma\end{array}\right]=$

$$
\begin{equation*}
\frac{(\alpha) p^{(\delta)} \mathrm{r}}{(\partial)_{\mathrm{p}}(\alpha)_{\mathrm{r}}} \tag{1.1}
\end{equation*}
$$

The basic analogue of (1.1) has been mentioned as

$$
\mathrm{F}_{1 ; 1}^{0 ; 3}\left[\begin{array}{cccc}
: \delta / \alpha, \beta \mathrm{q}^{\mathrm{r}}, \mathrm{q}^{-\mathrm{p}} ; \alpha / \delta, \beta \mathrm{q}^{\mathrm{p}}, \mathrm{q}^{-\mathrm{r}} ; \mathrm{q}, \mathrm{q} \tag{1.2}\\
\beta: & \delta \mathrm{q}^{\mathrm{r}} & ; & \alpha \mathrm{q}^{\mathrm{p}}
\end{array}\right]=\left(\frac{\delta}{\alpha}\right)^{\mathrm{p}-\mathrm{r}} \frac{(\alpha ; \mathrm{q})_{\mathrm{p}}(\delta ; \mathrm{q})_{\mathrm{r}}}{(\alpha ; \mathrm{q})_{\mathrm{p}}(\alpha ; \mathrm{q})_{\mathrm{r}}}
$$

II. DEFINITIONS AND NOTATIONS

The Gauss hypergeometric function is represented as:

$$
{ }_{2} \mathrm{~F}_{1}\left[\begin{array}{c}
\mathrm{a}, \mathrm{~b} ; \mathrm{z} \tag{2.1}\\
\mathrm{c}
\end{array}\right]=\sum_{\mathrm{n}=0}^{\infty} \frac{(\mathrm{a})_{\mathrm{n}}(\mathrm{~b})_{\mathrm{n}} \mathrm{z}^{\mathrm{n}}}{(\mathrm{c})_{\mathrm{n}} \mathrm{n}!},
$$

Where,

$$
\begin{equation*}
(\mathrm{a})_{\mathrm{n}}=\mathrm{a}(\mathrm{a}+1) \ldots . .(\mathrm{a}+\mathrm{n}-1)=\frac{\Gamma(\mathrm{a}+\mathrm{n})}{\Gamma(\mathrm{a})}, \quad(a)_{0}=1 \tag{2.2}
\end{equation*}
$$

The generalised hypergeometric function is defined as:

$$
{ }_{A} F_{B}\left[\begin{array}{c}
(a) ; z \tag{2.3}\\
(b)
\end{array}\right]=\sum_{n=0}^{\infty} \frac{[(a)]_{n} z^{n}}{[(b)]_{n} n!}
$$

Where (a) stands for A-parameters of the form $a_{1}, a_{2}, \ldots \ldots \ldots . a_{A}$. A double hypergeometric function is defined by

$$
\mathrm{F}_{\mathrm{C}: \mathrm{D} ; \mathrm{D}^{\prime}}^{\mathrm{A} \cdot \mathrm{~B} ; \mathrm{D}^{\prime}}\left[\begin{array}{c}
(\mathrm{a}):(\mathrm{b}) ;(\mathrm{b}) ; \mathrm{x}, \mathrm{y} \tag{2.4}\\
(\mathrm{c}):(\mathrm{d}) ;\left(\mathrm{d}^{\prime}\right)
\end{array}\right]=\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty} \frac{[(\mathrm{a})]_{\mathrm{m}+\mathrm{n}}[(\mathrm{~b})]_{\mathrm{m}}\left[\left(\mathrm{~b}^{\prime}\right)\right]_{\mathrm{n}} \mathrm{x}^{\mathrm{m}} \mathrm{y}^{\mathrm{n}}}{[(\mathrm{c})]_{\mathrm{m}+\mathrm{n}}[(\mathrm{~d})]_{\mathrm{m}}\left[\left(\mathrm{~d}^{\prime}\right)\right]_{\mathrm{n}} \mathrm{~m}!\mathrm{n}!}
$$

And in case of $\mathrm{B}=\mathrm{B}^{\prime}, \mathrm{D}=\mathrm{D}^{\prime}$, we simply write the function as,

$$
\mathrm{F}_{\mathrm{C}: \mathrm{D}}^{\mathrm{A}: \mathrm{D}}\left[\begin{array}{c}
(\mathrm{a}):(\mathrm{b}) ;\left(\mathrm{b}^{\prime}\right) ; \mathrm{x}, \mathrm{y} \\
(\mathrm{c}):(\mathrm{d}) ;\left(\mathrm{d}^{\prime}\right)
\end{array}\right]
$$

The basic analogue of (2.3) known as generalized basic hypergeometric function is defined by,

$$
{ }_{A} F_{B}\left[\begin{array}{c}
(a) ; z \tag{2.5}\\
(b) ; q^{\lambda}
\end{array}\right]=\sum_{n=0}^{\infty} \frac{[(a)]_{n} z^{n} q^{\lambda n(n-1) / 2}}{\left[(b)_{n}\right]_{n}(q)_{n}},
$$

Where (a) stands for A-parameters of the form $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots \ldots . \mathrm{a}_{\mathrm{A}}$: and

$$
(\mathrm{a})_{\mathrm{n}}=(\mathrm{a} ; \mathrm{q})_{\mathrm{n}}=(1-\mathrm{a})(1-\mathrm{aq}) \ldots\left(1-\mathrm{aq}^{\mathrm{n}-1}\right) ;(\mathrm{a} ; \mathrm{q})_{0}=1 .
$$

The basic double hypergeometric function is defined as:

III.MAIN RESULTS

A. Analytic Proof of (1.2)

In this section we shall give analytic proof of (1.2).Les us represent the left hand side of (1.2) by Ω, then

$$
\begin{align*}
\Omega=\sum_{m, n}^{p, r} \frac{\left(\frac{\delta}{\alpha}\right)_{m}\left(\beta q^{r}\right)_{m}\left(q^{-p}\right)_{m}\left(\frac{\alpha}{\delta}\right)_{n}\left(\beta q^{p}\right)_{n}\left(q^{-r}\right)_{n} q^{m+n}}{(\beta)_{m+n}\left(\delta q^{r}\right)_{m}\left(\alpha q^{p}\right)_{n}(q)_{m}(q)_{n}} \\
=\sum_{m=0}^{p} \frac{(\delta / \alpha)_{m}\left(\beta q^{r}\right)_{m}\left(q^{-p}\right)_{m} q^{m}}{(\beta)_{m}\left(\delta q^{r}\right)_{m}(q)_{m}}{ }_{3} \Phi_{2}\left[\begin{array}{c}
\alpha / \delta, \beta q^{p}, q^{-r} ; q \\
\beta q^{m}
\end{array}\right] \tag{3.1}
\end{align*}
$$

Now, transforming the inner ${ }_{3} \Phi_{2}$ series, we get

$$
\Omega=\sum_{m=0}^{p} \frac{\left(\frac{\delta}{\alpha}\right)_{m}\left(\beta q^{r}\right)_{m}\left(q^{-p}\right)_{m} q^{m}\left(\frac{\beta \delta q^{m}}{\alpha}\right)_{r}}{(\beta)_{m}\left(\partial q^{r}\right)_{m}(q)_{m}\left(\beta q^{m}\right)_{r}}\left(\frac{\alpha}{\delta}\right)^{r} \times{ }_{3} \Phi_{2}\left[\begin{array}{c}
q^{-\mathrm{r}}, \alpha / \delta, \alpha / \beta ; q^{1+p-m} \tag{3.2}\\
\alpha q^{p}, \quad \alpha / \beta \delta \quad q^{1-m-r}
\end{array}\right]
$$

Summing the inner ${ }_{3} \Phi_{2}$ series with the help of Saalschütz summation formula, we get,

$$
\Omega=\frac{(\delta)_{\mathrm{p}+\mathrm{r}}(\beta)_{\mathrm{p}+\mathrm{r}}(\alpha)_{\mathrm{p}}\left(\frac{\beta \delta}{\alpha}\right)_{\mathrm{p}}\left(\frac{\beta \delta}{\alpha}\right)_{\mathrm{r}}\left(\frac{\alpha}{\delta}\right)^{\mathrm{r}}}{(\alpha)_{\mathrm{p}+\mathrm{r}}(\beta \delta / \alpha)_{\mathrm{p}+\mathrm{r}}(\delta)_{\mathrm{p}}(\beta)_{\mathrm{p}}(\beta)_{\mathrm{r}}} \times{ }_{3} \Phi_{2}\left[\begin{array}{l}
\mathrm{q}^{-\mathrm{r}}, \delta / \alpha, \beta \delta / \alpha, \mathrm{q}^{\mathrm{r}}, \mathrm{q} \tag{3.3}\\
\delta \mathrm{q}^{\mathrm{r}},
\end{array}\right] \delta / \alpha=
$$

Again, applying the transformation formula and then summing the ${ }_{3} \Phi_{2}$ series on the right hand side of (3.3) with the help of, we get the right hand side of (1.2).

B. General Transformation Formula

We shall establish the following general transformation formula:

$$
\begin{align*}
& \Phi_{C: D+1 ; D^{\prime}+1}^{A: B+1 ; 1^{\prime}+1} 2\left[\begin{array}{l}
(\mathrm{a}):(\mathrm{b}), \alpha ;\left(\mathrm{b}^{\prime}\right), \delta ; \delta z_{1} / \alpha, \alpha z_{2} / \alpha \\
\text { (c):(d), } \alpha ;\left(d^{\prime}\right), \alpha ; q, q
\end{array}\right]=\sum_{m, n=0}^{\infty} \frac{[(\mathrm{a})]_{\mathrm{m}+\mathrm{n}}[(\mathrm{~b})]_{\mathrm{m}}\left[\left(\mathrm{~b}^{\prime}\right)\right]_{\mathrm{n}}(\beta)_{\mathrm{m}+\mathrm{n}}(\alpha)_{\mathrm{m}}(\delta / \alpha)_{\mathrm{m}}(\alpha / \delta)_{\mathrm{n}}\left(-\mathrm{z}_{1}\right)^{\mathrm{m}}\left(-\mathrm{z}_{2}\right)^{\mathrm{n}}}{[(\mathrm{c})]_{\mathrm{m}+\mathrm{n}}[(\mathrm{~d})]_{\mathrm{m}}\left[\left(\mathrm{~d}^{\prime}\right)\right]_{\mathrm{n}}(\alpha)_{\mathrm{m}+\mathrm{n}}(\partial)_{\mathrm{m}+\mathrm{n}}(\beta)_{\mathrm{m}}(\beta)_{\mathrm{n}}(\mathrm{q})_{\mathrm{m}}(\mathrm{q})_{\mathrm{n}}} \times \\
& \times \Phi_{C ; D+2 ; D^{A}+2}^{A ; B+2 ; B^{\prime}+2}\left[\begin{array}{c}
(a) q^{m+n}:(b) q^{m}, \beta q^{m+n}, \alpha q^{m} ;\left(b^{\prime}\right) q^{n}, \beta q^{m+n}, \delta q^{n} ; z_{1}, z_{2} \\
\text { (c) }) q^{m+n}:(d) q^{m}, \beta q^{m}, \alpha q^{m+r} ;\left(d^{\prime}\right) q^{n}, \beta q^{m}, \delta q^{m+n} ; q, q
\end{array}\right] \tag{3.4}
\end{align*}
$$

Proof:
Let us represent the left hand side of (3.4) by \wedge, then

$$
\wedge=\sum_{\mathrm{p}, \mathrm{r}}^{\infty} \frac{[(\mathrm{a})]_{\mathrm{p}+\mathrm{r}}[(\mathrm{~b})]_{\mathrm{p}}[(\mathrm{~b})]_{\mathrm{r}} \mathrm{z}_{1}^{\mathrm{p}} \mathrm{z}_{2}^{\mathrm{r}} \mathrm{q}^{\mathrm{p}(\mathrm{p}-1) / 2+\mathrm{r}(\mathrm{r}-1) / 2}}{[(\mathrm{c})]_{\mathrm{p}+\mathrm{r}}[(\mathrm{~d})]_{\mathrm{p}}\left[\left(\mathrm{~d}^{\prime}\right)\right]_{\mathrm{r}}(\mathrm{q})_{\mathrm{p}}(\mathrm{q})_{\mathrm{r}}}\left\{\frac{(\alpha)_{\mathrm{p}}(\delta)_{\mathrm{r}}}{(\delta)_{\mathrm{p}}(\alpha)_{\mathrm{r}}}\left(\frac{\delta}{\alpha}\right)^{\mathrm{p}-\mathrm{r}}\right\} .
$$

Putting the value of $\left\{\frac{(\alpha)_{\mathrm{p}}(\delta)_{\mathrm{r}}}{(\delta)_{\mathrm{p}}(\alpha)_{\mathrm{r}}}\left(\frac{\delta}{\alpha}\right)^{\mathrm{p}-\mathrm{r}}\right\}$, in the form of double series from (1.2) we get,

$$
\wedge=\sum_{\mathrm{p}, \mathrm{r}}^{\infty} \frac{[(\mathrm{a})]_{\mathrm{p}+\mathrm{r}}[(\mathrm{~b})]_{\mathrm{p}}[(\mathrm{~b})]_{\mathrm{r}^{2}} \mathrm{z}_{1}^{\mathrm{p}} z_{2}^{\mathrm{r}} \mathrm{q}^{\mathrm{p}(\mathrm{p}-1) / 2+\mathrm{r}(\mathrm{r}-1) / 2}}{[(\mathrm{c})]_{\mathrm{p}+\mathrm{r}}[(\mathrm{~d})]_{\mathrm{p}}[(\mathrm{~d})]_{\mathrm{r}}(\mathrm{q})_{\mathrm{p}}(\mathrm{q})_{\mathrm{r}}} \times \sum_{\mathrm{m}=0}^{\mathrm{p}} \sum_{\mathrm{n}=0}^{\mathrm{r}} \frac{(\delta / \alpha)_{\mathrm{m}}\left(\beta \mathrm{q}^{\mathrm{r}}\right)_{\mathrm{m}}\left(\mathrm{q}^{-\mathrm{p}}\right)_{\mathrm{m}}(\alpha / \delta)_{\mathrm{n}}\left(\beta q^{\mathrm{p}}\right)_{\mathrm{n}}\left(\mathrm{q}^{-\mathrm{r}}\right)_{\mathrm{n}}}{(\beta)_{\mathrm{m}+\mathrm{n}}\left(\delta q^{\mathrm{r}}\right)_{\mathrm{m}}\left(\alpha \mathrm{q}^{\mathrm{p}}\right)_{\mathrm{n}}(\mathrm{q})_{\mathrm{m}}(\mathrm{q})_{\mathrm{n}}} \mathrm{q}^{\mathrm{m}}
$$

Now changing the order of summations and putting $\mathrm{p}+\mathrm{m}, \mathrm{r}+\mathrm{n}$ for p and r respectively, we get the right hand side of (3.4) after some simplifications.

IV.SPECIAL CASES OF (3.4) AND RESULTS:

A. Putting $\mathrm{A}=\mathrm{C}=0, \mathrm{~B}=\mathrm{B}^{\prime}=\mathrm{D}=\mathrm{D}^{\prime}=1, \mathrm{~b}_{1}=\delta, \mathrm{d}_{1}=$ and $\mathrm{d}_{1}^{\prime}=\delta$ in (3.4) we get,

$$
\sum_{u, v=0}^{\infty} \frac{q^{u(u-1) / 2+v(v-1) / 2}}{(q)_{u}(q)_{v}}\left(\frac{\delta}{\alpha}\right)^{u-v} z_{1}^{u} z_{2}^{v}
$$

Certain transformation formulae for basic hypergeometric series

$$
=\sum_{m, n=0}^{\infty} \frac{(\delta)_{m}(\alpha)_{n}(\beta)_{m+n}(\delta / \alpha)_{n}(\alpha / \delta)_{n}\left(-z_{1}\right)^{m}\left(-z_{2}\right)^{n}}{(\alpha)_{m+n}(\delta)_{m+n}(\beta)_{m}(q)_{m}(q)_{n}}{ }_{2} \Phi_{2}\left[\begin{array}{c}
\delta q^{m}, \beta q^{m+n} ; z_{1} \tag{3.5}\\
\beta q^{m} ; \alpha q^{m+n} ; q
\end{array}\right], \Phi_{2}\left[\begin{array}{c}
\alpha q^{n}, \beta q^{m+n} ; z_{2} \\
\beta q^{n} ; \delta q^{m+n} ; q
\end{array}\right]
$$

Taking $z_{1}=z_{2}$ and then equating the coefficients of $\mathrm{z}^{\mathrm{utv}}$ of both sides we get the following summation formula:

$$
\left.\begin{array}{l}
\left.\sum_{r=0}^{u} \sum_{s=0}^{v} \frac{\left(q^{-u}\right)_{r}\left(q^{-v}\right)_{s}\left(\frac{q^{1-u-v}}{\beta}\right)_{r+s}\left(\frac{q^{1-u-v}}{\alpha}\right)_{s}\left(\frac{q^{1-u-v}}{\delta}\right)_{r}\left(\alpha q^{u+v}\right)^{r}\left(\delta q^{u+v}\right)^{s}}{\beta}\right)_{r}\left(\frac{\alpha}{\delta} q^{1-u}\right)_{r}\left(\frac{q^{1-u-v}}{\beta}\right)_{s}\left(\frac{\alpha}{\delta} q^{1-u}\right)_{s}(q)_{r}(q)_{s} q^{\text {rs }}
\end{array}\right]==\frac{(\alpha)_{u+v}(\delta)_{u+v}(\beta)_{u}(\beta)_{v}(-)^{u+v} q^{(u / 2)+(v / 2)}(\delta / \alpha)^{u+v}}{(\beta)_{u+v}(\delta)_{u}(\partial / \alpha)_{u}(\alpha)_{v}(\alpha / \delta)_{v}}
$$

B. Putting $A=C=0, B=B^{\prime}=D^{\prime}=D^{\prime}=1, b_{1}=\beta, d_{1}=\alpha, b_{1}^{\prime}=\beta, d_{1}^{\prime}=\alpha$ IN (3.4) WE GET :

$$
\begin{array}{r}
{ }_{1} \Phi_{1}\left[\begin{array}{cc}
\beta ; z_{1} & \delta / \alpha \\
\partial ; q
\end{array}\right]_{1} \Phi_{1}\left[\begin{array}{cc}
\beta ; z_{2} & \alpha / \delta \\
\alpha ; q
\end{array}\right] \\
=\sum_{m, n=0}^{\infty} \frac{(\beta)_{m+n}(\delta / \alpha)_{m}(\alpha / \delta)_{n}\left(-z_{1}\right)^{m}\left(-z_{2}\right)^{n}}{(\delta)_{m+n}(\alpha)_{m+n}(q)_{m}(q)_{n}} \times{ }_{1} \Phi_{1}\left[\begin{array}{c}
\beta q^{m+n} ; z_{1} \\
\alpha q^{m+n} ; q
\end{array}\right]{ }_{1} \Phi_{1}\left[\begin{array}{c}
\beta q^{m+n} ; z_{2} \\
\delta q^{m+n} ; q
\end{array}\right] \tag{3.7}
\end{array}
$$

Taking $\mathrm{z}_{1}=-\alpha / \beta$, and $\mathrm{z}_{2}=-\delta / \beta$, in (3.7) and summing ${ }_{1} \Phi_{1}$ series of both sides we get an identity:

$$
\begin{equation*}
\sum_{m, n=0}^{\infty} \frac{(\beta)_{m+n}(\delta / \alpha)_{m}(\alpha / \delta)_{n}(\alpha / \beta)^{m}(\delta / \beta)^{n}}{(q)_{m}(q)_{n}}=1 \tag{3.8}
\end{equation*}
$$

Taking $\beta \rightarrow \infty$ in (3.8) we get :

$$
\begin{equation*}
\sum_{m, n}^{\infty} \frac{(\delta / \alpha)_{m}(\alpha / \delta)_{\mathrm{n}}(\alpha)^{\mathrm{m}}(\delta)^{\mathrm{n}}(-)^{\mathrm{m}+\mathrm{n}}(\mathrm{q})^{(\mathrm{m}+\mathrm{n})(\mathrm{m}+\mathrm{n}-1) / 2}}{(\mathrm{q})_{\mathrm{m}}(\mathrm{q})_{\mathrm{n}}}=1 \tag{3.9}
\end{equation*}
$$

Replacing q by q^{2} in (3.9) and then taking $\alpha=\delta \mathrm{q}$ and finally putting $\delta=1$, we get:

$$
\begin{equation*}
\sum_{m, n=0}^{\infty} \frac{\left(q^{-1} ; q^{2}\right)_{m}\left(q ; q^{2}\right)_{n} q^{m}(-)^{m+n} q^{(m+n)(m+n-1)}}{\left(q^{2} ; q^{2}\right)_{m}\left(q^{2} ; q^{2}\right)_{n}}=1 \tag{3.10}
\end{equation*}
$$

C. Putting $\mathrm{z}_{1} / \beta, \mathrm{z}_{2} / \beta$ FOR Z_{1} AND Z_{2} IN (3.7) AND THEN TAKING $\beta \rightarrow \infty$ WE GET :

$$
{ }_{0} \Phi_{1}\left[\begin{array}{l}
-;-\mathrm{z}_{1} \delta / \alpha \\
\delta ; \mathrm{q}^{2}
\end{array}\right]{ }_{0} \Phi_{1}\left[\begin{array}{c}
-;-\mathrm{z}_{2} \alpha / \delta \\
\delta ; \mathrm{q}^{2}
\end{array}\right]
$$

$$
=\sum_{\mathrm{m}, \mathrm{n}=0}^{\infty} \frac{(\delta / \alpha)_{\mathrm{m}}(\alpha / \delta)_{\mathrm{n}} \mathrm{z}_{1}^{\mathrm{m}} \mathrm{z}_{2}^{\mathrm{n}} \mathrm{q}^{(\mathrm{m}+\mathrm{n})(\mathrm{m}+\mathrm{n}-1) / 2}(-)^{\mathrm{m}+\mathrm{n}}}{(\delta)_{\mathrm{m}}(\alpha)_{\mathrm{m}+\mathrm{n}}(\mathrm{q})_{\mathrm{m}}(\mathrm{q})_{\mathrm{n}}} \times{ }_{0} \Phi_{1}\left[\begin{array}{c}
-;-\mathrm{z}_{1} \mathrm{q}^{\mathrm{m}+\mathrm{n}} \tag{3.11}\\
\alpha \mathrm{q}^{\mathrm{m}+\mathrm{n}} ; \mathrm{q}^{2}
\end{array}\right]{ }_{0} \Phi_{1}\left[\begin{array}{cc}
-;-\mathrm{z}_{2} \mathrm{q}^{\mathrm{m}+\mathrm{n}} \\
\delta \mathrm{q}^{\mathrm{m}+\mathrm{n}} ; & \mathrm{q}^{2}
\end{array}\right]
$$

Again taking $\delta=q^{1+v_{1}}, \alpha=q^{1+v_{2}}, z_{1}=\frac{x^{2}}{4} q^{1+v_{2}}, z_{2}=\frac{y^{2}}{4} q^{1+v_{1}}$ in (3.11), we get:

$$
\left.\begin{array}{r}
{ }_{0} \Phi_{1}\left[\begin{array}{cc}
-; \frac{x^{2}}{4} q^{1+v_{1}} \\
q^{1+v_{1}} ; & q^{2}
\end{array}\right]{ }_{0} \Phi_{1}\left[\begin{array}{c}
-; \frac{y^{2}}{4} q^{1+v_{2}} \\
q^{1+v_{2}} ; \\
q^{2}
\end{array}\right] \\
=\sum_{m, n=0}^{\infty} \frac{\left(q^{v_{1}-v_{2}} ; q\right)_{m}\left(q^{v_{2}-v_{1}} ; q\right)_{n}\left(\frac{x}{2}\right)^{2 m}\left(\frac{y}{2}\right)^{2 n} q^{\left(1+v_{2}\right) m} q^{\left(1+v_{1}\right) n}}{\left(q^{1+v_{1}}, q^{1+v_{2}} ; q\right)_{m+n}(q)_{m}(q)_{n}} \times \\
q^{(m+n)(m+n-1) / 2}{ }_{0} \Phi_{1}\left[-; \frac{x^{2}}{4} q^{1+v_{2}+m+n}\right. \tag{3.12}\\
q^{1+v_{2}+m+n} ;
\end{array} q^{2}\right]_{0} \Phi_{1}\left[\begin{array}{l}
-; \frac{y^{2}}{4} q^{1+v_{1}+m+n} \\
q^{1+v_{1}+m+n} ; q^{2}
\end{array}\right] \quad .
$$

Changing ${ }_{0} \Phi_{1}$ series into Bessel function of second kind defined by,

$$
J_{v_{1}}^{(2)}(x ; q)=\frac{\left(q^{1+v} ; q\right)_{\infty}(x / 2)^{v}}{(q ; q)_{\infty}} \sum_{n=0}^{\infty} \frac{(-)^{n}\left(x^{2} / 4\right)^{n}\left(q^{1+v}\right)^{n} q^{n^{2}-n}}{(q ; q)_{n}\left(q^{1+v} ; q\right)_{n}}
$$

We get :

$$
\begin{align*}
& \quad J_{v_{1}}^{(2)}(x ; q) J_{v_{2}}^{(2)}(y ; q)=\sum_{m, n=0}^{\infty} \frac{\left(q^{v_{1}-v_{2}} ; q\right)_{m}\left(q^{v_{2}-v_{1}} ; q\right)_{n}(-)^{m+n}(x / y)^{m-n}}{(q)_{m}(q)_{n}} \\
& \times \quad q^{\left(1+v_{1}\right) n+\left(1+v_{2}\right) m} J_{v_{1}+m+n}(y) J_{v_{2}+m+n}(x) \tag{3.13}
\end{align*}
$$

A number of similar other interesting results can also be deduced.

V. CONCLUSION

In this paper, an attempt has been made to give the analytic proof of (1.2) we shall also make use of (1.2) to establish a general transformation formula for basic hypergeometric series of two variables. Special cases have also been studied and some very interesting and new results have been obtained.

VI.ACKNOWLEDGEMENT

My special thanks to my Ph.D supervisor Dr. Rajesh Pandey Department of Applied Science, Institute of Engineering \& Technology (IET) Lucknow for his guidance and encouragement. It was not possible to complete this research paper without his necessary support. I am extremely grateful for his constructive support.

REFERENCES

[1] Gasper, G. and Rahman, M. (1991): Basic hypergeometric series, Cambridge University Press.
[2] Agarwal, R.P., Manocha, H.L. and Rao, K.Srinivas (2001); Selected Topics in special functions, Allied Publisher Limited, New Delhi.
[3] Agarwal, R.P.: Generalized hypergeometric series and its application to the theory of combinatorial analysis and partition theory (Unpublished monograph).
[4] L.J. Slater: Generalized Hypergeometric Functions, Cambridge University Press,(1966).
[5] S. Ramanujan : Notebook, Vol. II, Tata Institute of Fundamental Research, Bombay, (1957).
[6] Jeugt, J. Van der, Pitre, Sangita N, Srinivasa Rao, K. (To appear in J. Phys. A.).

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

