

2 IX September 2014

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 276

Finite State Machines
Sakshi Ahuja#1, Anjali Rajput*2, Dipti Bhardwaj#3

#CSE-CSE, Maharishi Dayanand University

Abstract— Finite state machines (FSMs) are a common presence in digital circuit design. However, they can be very useful
also for the software developer. Actual operating systems and application software are event-based and communication
issues play a big role; these fields can be more easily handled with software based on finite state machines - software that is
simpler and easier to understand, debug and modify. Embedded systems' software can also benefit
from state machines because of their efficient way of using the limited resources of the system. The paper presents some
basic concepts of finite state machines, some typical applications, with focus on Web technologies (modem control, FTP -
File Transfer Protocol, remote access via Telnet console) and some implementation issues -
programming finite state machines in Delphi for Windows, in microcontroller assembly language and C. Latest trends are
also analyzed - the hardware implementation of state machines in silicon, like the new Texas Instruments MSP430 series of
low power microcontrollers. These electronic packages offer some features like reduced power consumption, a single chip
solution for complex applications and high functional flexibility.

Keywords— FSM(Finite State Machine), Mealy, Moore,

I. INTRODUCTION

A finite-state machine (FSM), or simply a state machine, is a
mathematical model of computation used to design both
computer programs and sequential logic circuits. It is
conceived as an abstract machine that can be in one of a finite
number of states. The machine is in only one state at a time;
the state it is in at any given time is called the current state. It
can change from one state to another when initiated by a
triggering event or condition; this is called a transition. A
particular FSM is defined by a list of its states, and the
triggering condition for each transition.

Finite-state machines can model a large number of problems
among which are electronic design automation
communication protocol design, language parsing and other
engineering applications. In biology and artificial intell-
igence research, state machines or hierarchies of state
machines have been used to describe neurological systems and
in linguistics to describe the grammars of natural languages.
Considered as an abstract model of computation, the finite
state machine is weak; it has less computational power than
some other models of computation such as the Turing
machine. That is, there are tasks which no FSM can do, but

some Turing machines can. This is because the FSM has
limited memory. The memory is limited by the number of
states.

Finite State Machines are mainly of two types:-

1. Deterministic -- Deterministic FSM, meaning that
given an input and the current state, the state
transition can be predicted.

2. Non-Deterministic -- Non-deterministic finite state
machine. This is where given the current state; the
state transition is not predictable. It may be the case
that multiple inputs are received at various times,
means the transition from the current state to another
state cannot be known until the inputs are received
(event driven).Example : Use a random number
generator to select a triggered rule.

II. INFORMAL DESCRIPTION

A finite state machine is usually specified in the form of a
transition table, much like the one shown in Table 8.1 below.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 277

TABLE II.1

CONDITION EFFECT

CURRENT IN OUT NEXT

STATE STATE

q0 – 1 q2

q1 – 0 q0

q2 0 0 q3

q2 1 0 q1

q3 0 0 q0

q3 1 0 q1

For each control state of the machine the table specifies a set
of transition rules. There is one rule per row in the table, and
usually more than one rule per state. The example table
contains transition rules for control states named q0, q1, q2,
and q3.

Each transition rule has four parts, each part corresponding to
one of the four columns in the table. The first two are
conditions that must be satisfied for the transition rule to be
executable. They specify-

 The control state in which the machine must be

 A condition on the ‘‘environment’’ of the machine,
such as the value of an input signal.

The last two columns of the table define the effect of the
application of a transition rule. They specify-

 How the ‘‘environment’’ of the machine is changed,
e.g., how the value of an output signal changes.

 The new state that the machine reaches if the
transition rule is applied.

In the traditional finite state machine model, the environment
of the machine consists of two finite and disjoint sets of
signals: input signals and output signals. Each signal has an
arbitrary, but finite, range of possible values. The condition
that must be satisfied for the transition rule to be executable is
then phrased as a condition on the value of each input signal,
and the effect of the transition can be a change of the values of
the output signals. The machine in Table II.1 illustrates that
model. It has one input signal, named In, and one output
signal, named Out.

A dash in one of the first two columns is used as a shorthand
to indicate a ‘‘don’t care’’ condition (that always evaluates to
the Boolean value true). A transition rule, then, with a dash in
the first column applies to all states of the machine, and a
transition rule with a dash in the second column applies to all
possible values of the input signal. Dashes in the last two
columns can be used to indicate that the execution of a
transition rule does not change the environment. A dash in the
third column means that the output signal does not change,
and similarly, a dash in the fourth column means that the
control state remains unaffected. In each particular state of the
machine there can be zero or more transition rules that are
executable. If no transition rule is executable, the machine is
said to be in an endstate. If precisely one transition rule is
executable, the machine makes a deterministic move to a new
control state. If more than one transition rule is executable a
nondeterministic choice is made to select a transition rule. A
nondeterministic choice in this context means that the
selection criterion is undefined.

III. TURING MACHNES

The above definition of a finite state machine is intuitively the
simplest. There are many variants of this basic model that
differ in the way that the environment of the machines is
defined and thus in the definition of the conditions and the

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 278

effects of the transition rules. For truly finite state systems, of
course, the environment must be finite state as well (e.g., it
could be defined as another finite state machine). If this

requirement is dropped, we obtain the well-known Turing
Machine model. It is used extensively in theoretical computer
science as the model of choice in, for instance, the study of
computational complexity. The Turing machine can be seen as
a generalization of the finite state machine model, although
Turing’s work predates that of Mealy and Moore by almost
two decades.

The ‘‘environment’’ in the Turing machine model is a tape of
infinite length. The tape consists of a sequence of squares,
where each square can store one of a finite set of tape
symbols. All tape squares are initially blank. The machine can
read or write one tape square at a time, and it can move the
tape left or right, also by one square at a time. Initially the
tape is empty and the machine points to an arbitrary square.
The condition of a transition rule now consists of the control
state of the finite state machine and the tape symbol that can
be read from the square that the machine currently points to.
The effect of a transition rule is the potential output of a new
tape symbol onto the current square, a possible left or right
move, and a jump to a new control state.

IV. COMMUNICATING FINITE STATE MACHINES

We assume that signals have a finite range of possible values
and can change value only at precisely defined moments. The
machine executes a two-step algorithm. In the first step, the
input signal values are inspected and an arbitrary executable
transition rule is selected. In the second step, the machine
changes its control state in accordance with that rule and
updates its output signals. These two steps are repeated

forever. If no transition rule is executable, the machine will
continue cycling through its two-step algorithm without
changing state, until a change in the input signal values,
effected by another finite state machine, makes a transition
possible. A signal, then, has a state, much like a finite state
machine. It can be interpreted as a variable that can only be
evaluated or assigned to at precisely defined moments.

We can build elaborate systems of interacting machines in this
way, connecting the output signals of one machine to the input
signals of another. The machines must share a common
‘‘clock’’ for their two-step algorithm, but they are not
otherwise synchronized.

If further synchronization is required, it must be realized with
a subtle system of handshaking on the signals connecting the
machines. Most systems provide a designer with higher-level
synchronization primitives to build a protocol. An example of
such synchronization primitives are the send and receive
operations defined in PROMELA.

V. MEALY AND MOORE NACHINES

Both these machine types follow the basic characteristics of
state machines, but differ in the way that outputs are
generated.

1. Mealy Machines -- Outputs are independent of the
inputs, i.e., outputs are effectively produced from
within the state of the state machine.

Outputs are generated as products of the transitions
between states. In example the light is affected by
the process of changing states.

2. Moore Machines -- Outputs can be determined by the
present state alone, or by the present state and the
present inputs, ie outputs are produced as the
machine makes a transition from one state to
another.

Outputs are generated as products of the states.

In this example the states define what to do ; such
as apply power to the light globe.

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 279

Moore and Mealy FSMs can be functionally equivalent

Mealy FSM has richer description and usually requires

smaller number of states, smaller circuit area. Mealy
FSM computes outputs as soon as inputs change.

Mealy FSM responds one clock cycle sooner than

Equivalent Moore FSM.Moore FSM Has No

combinational path between inputs and outputs.

Moore FSM is less likely to have a shorter critical

Path.

VI. ADVANTAGES AND DISADVANTAGES

Simple, Predictable (deterministic FSM) - given a set of
inputs and a known current state, the state transition can be
predicted, allowing for easy testing. Due to their simplicity,
FSMs are quick to design, quick to implement and quick in
execution. FSM is an old knowledge representation and
system modeling technique, and its been around for a long
time, as such it is well proven even as an artificial intelligence
technique, with lots of examples to learn from. Easy to
transfer from a meaningful abstract representation to a coded
implementation.

The predictable nature of deterministic FSMs can be
unwanted in some domains such as computer games (non-
DFSM tries to solve this). The conditions for state transitions
are ridged, meaning they are fixed. Not suited to all problem
domains, should only be used when a systems behavior can be
decomposed into separate states with well defined conditions
for state transitions. This means that all states, transitions and
conditions need to be known up front and be well defined !!

AI example: Computer Game:

The goal: to use a computer game to illustrate the conceptual
workings of a FSM based on a practical rather than theoretical
implementation. First person computer game called Quake,
under GNU General Public License. Quake makes extensive
use of FSMs as a control mechanism governing the entities
that exist in the game world. Quake is a good example, and a
good learning tool that can show the power of both very
simple finite state machines such as the rocket, and slightly
more complex FSM made up of a hierarchy of FSM and
motivated by goals, such as the Shambler monster.

VII. EXTENDED FINITE STATE MACHINES

The finite state machine models we have considered so far
still fall short in two important aspects: the ability to model
the manipulation of variables conveniently and the ability to
model the transfer of arbitrary values. These machines where
defined to work with abstract objects that can be appended to
and retrieved from queues and they are only synchronized on
the access to these queues. We make three changes to this
basic finite state machine model. First, we introduce an extra
primitive that is defined much like a queue: the variable.
Variables have symbolic names and they hold abstract objects.
The abstract objects, in this case, are integer values. The main
difference from a real queue is that a variable can hold only
one value at a time, selected from a finite range of possible
values. Any number of values can be appended to a variable,
but only the last value that was appended can be retrieved.

The second change is that we will now use the queues
specifically to transfer integer values, rather than undefined
abstract objects. Third, and last, we introduce a range of
arithmetic and logical operators to manipulate the contents of
variables.

Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 280

NEXT

STATE STATE

–

q1

q2

r0

– 0
q0

q1 s0 – q0

q1 s1 – –

q1 s2 – q2

q1 rv – r1

r1 – 1 q1

q2 s0 – q0

q2 s1 – q1

q2 s2 – –

q2 rv – r2

r2 – 2 q2

The extension with variables, provided that they have a finite
range of possible values, does not increase the computational
power of finite state machines with bounded FIFO queues. A
variable with a finite range can be simulated trivially by a
finite state machine. Consider the six-state machine shown in
Table VII.1, that models a variable with the range of values
from zero to two. The machine accepts four different input

messages. Three are used to set the pseudo variable to one of
its three possible values. The fourth message, rv, is used to
test the current value of the pseudo variable. The machine will
respond to the message rv by returning one of the three
possible values as an output message. Thus, at the expense of
a large number of states, we can model any finite variable

without extending the basic model, as a special purpose finite
state machine. The extension with explicit variables, therefore,
is no more than a modeling convenience. Recall that the
transition rules of a finite state machine have two parts: a
condition and an effect. The conditions of the transition rules
are now generalized to include boolean expressions on the
value of variables, and the effects (i.e. the actions) are
generalized to include assignment to variables.

An extended finite state machine can now be defined as a
tuple (Q,q0 ,M,A,T), where A is the set of variable names. Q,
q0, and M are as defined before. The state transition relation T
is unchanged. We have simply defined two extra types of
actions:

boolean conditions on and assignments to elements of set A.
A single assignment can change the value of only one
variable. Expressions are built from variables and constant
values, with the usual arithmetic and relational operators.

In the spirit of the validation language PROMELA, we can
define a condition to be executable only if it evaluates to true,
and let an assignment always be executable. Note carefully
that the extended model of communicating finite state
machines is a finite state model, and almost all results that
apply to finite state machines also apply to this model.

VIII. SUMMARY

The formal model of a finite state machine was developed in
the early 1950s for the study of problems in computational
complexity and, independently, for the study of problems in
the design of combinatorial and sequential circuits. There are
almost as many variants of the basic model of a finite state

www.ijraset.com Vol. 2 Issue IX, September 2014

ISSN: 2321-9653

I N T E R N A T I O N A L J O U R N A L F O R R E S E A R C H I N A P P L I E D S C I E N C E
AN D E N G I N E E R I N G T E C H N O L O G Y (I J R A S E T)

Page 281

machine as there are applications. For the study of protocol
design problems we need a formalism in which we can model
the primitives of process interactions as succinctly as possible.
With this in mind we developed an extended finite state
machine model that can directly model message passing and
the manipulation of variables. Its semantics are closely linked
to the semantics of PROMELA.

There are three main criteria for evaluating the adequacy of
formal modeling tools: Modeling power, Analytical power ,
Descriptive clarity

The main purpose of the modeling is to obtain a gain in
analytical power. It should be easier to analyze the model than
it is to analyze the original system being modelled. We have
chosen the finite state machine as our basic model. There is a
small set of useful properties that can easily be established
with a static analysis of finite state machine models. More
importantly, however, the manipulation of finite state
machines can be automated, and more sophisticated dynamic
analysis tools can be developed. The descriptive clarity of the

finite state machines is debatable. It can well be argued that
they trade descriptive clarity for analytical power. By using
PROMELA as an intermediate form of an extended finite state
machine, however, we can circumvent this problem.

An FSM is considered to be deterministic which means its
actions are easily predictable. Extensions to finite state
machines such as random selection of transitions, and fuzzy
state machines shows us another type of FSM called non-
determinist where the systems actions were not as predictable,
giving a better appearance of intelligence. Finite state
machines are a simple and effective artificial intelligence
technique for controlling a system and providing the
appearance of intelligence. In some cases the perceived
appearance of intelligence is more important than actual
intelligence, and that FSMs are able to provide this
perception.

IX. REFERENCES

[1].https://mailattachment.googleusercontent.com/attachment/
u/0/?ui=2&ik=d13ce03a82&view=att&th=1487f1dc9c339664
&attid=0.1&disp=safe&realattid=f_i05ctljp0&zw&saduie=A
G9B_P_Of8WNiUXyXAPdBHdBKTsV&sadet=1410884290
422&sads=5xYdEEPgq5ckFc6LKkkL8J-P1rk

[2].http://cse.iitkgp.ac.in/~debdeep/teaching/VLSI/slides/fsm.
pdf

[3].http://www.gnu.org/copyleft/gpl.html

[4]. ftp://ftp.idsoftware.com/idstuff/source/q1source.zip

[5].ftp://ftp.idsoftware.com/idstuff/source/q1tools_gpl.tgz

[6]. http://www.iitg.ernet.in/asahu/cs221/Lects/Lec16.pdf

[7].http://embedded.eecs.berkeley.edu/research/hsc/class/ee24

9/lectures/l4-FSM-CFSM.pdf

[8].https://www.google.co.in/search?output=search&sclient=p
syab&q=types%20of%20finite%20state%20machine&pbx=1
&biw=1164&bih=606&dpr=1.1&pf=p&pdl=300&cad=cbv&s
ei=rIkhVMj6JojIuAT3yILQCQ

[9].u.cs.biu.ac.il/~veredm/89-689/FSMMorVered.ppt

[10].http://en.wikipedia.org/wiki/Finite-state_machine

[11].faculty.kfupm.edu.sa/coe/aimane/coe202/Mealy_Moore.p
df

[12].http://www.cse.chalmers.se/~coquand/AUTOMATA/boo
k.pdf

[13].www2.research.att.com/~fsmtools/fsm/

[14].www.spinroot.com/spin/Doc/Book91_PDF/F8.pdf

[15].iasir.net/AIJRSTEMpapers/AIJRSTEM13-147.pdf

