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Abstract: For many years FFT coprocessors has been hot topic of research, as they have a significant impact on the 
performance of communication systems. It mainly consists of butterfly units that are dubbed from consecutive multiply add 
operations over complex numbers. Nowadays applying floating-point arithmetic to butterfly units has become more popular. It 
reduces the compute-intensive tasks from general-purpose processors by dismissing FP related tasks. However, the major 
disadvantage of FP butterfly unit is its delayed calculations compared to its counterpart fixed point numbers. Hence there is a 
need to develop a faster FP butterfly FP butterfly architecture. A faster FP butterfly unit using a fused-dot product-add (FDPA) 
unit, to compute AB±CD±E, based on BSD representation. The proposed FDPA unit mainly consists of FP constant multiplier 
and a BSD adder. Hence the speed of the FDPA unit is improved. The modified Booth encoding is also used to accelerate the 
BSD multiplier. After synthesizing the proposed FP butterfly architecture, it is concluded that the unit is much faster than the 
previous counterparts. 
Keywords: FFT, Butterfly unit, Floating-point, Fixed-point, Single precision, Double precision, redundant number system, three 
operand addition. 

I. INTRODUCTION 
By using Floating point numbers the real numbers can be represented in the binary format; there are two different floating point 
number formats according to IEEE 754 standard 

A. Binary interchange format 
B. Decimal interchange format. 
The main critical requirement for DSP applications is multiplying floating point numbers that involve large dynamic range. The 
main focus in this paper is only on double precision normalized binary interchange format. The IEEE 754 double precision binary 
format representation is shown in the Fig.1;  

 
Fig. 1(a) Double Precision Floating point 

It consists of one sign bit (S), an eleven bit exponent (E), and a fifty two bit fraction (M or Mantissa). An extra bit called as 
significand 1 is added to the fraction. If the exponent is greater than 0 and smaller than 2047, and if there is 1 in MSB of the 
significand then number is a normalized number. To multiply the two floating point numbers: 

C. The exponent part of the two numbers is added and then the bias is subtracted from the result 
D. The significand part along with the normalized 1 of the two numbers is multiplied 
E. The sign of the product is calculated by XORing the sign of the two numbers 
The final multiplication result is represented as a normalized number by keeping 1 in the MSB of the result that is also called as 
leading one. 

Due to the tiny power consumption of CMOS circuits the huge chips can be fabricated. As the much of the power is dissipated as 
heat, and chips have very less heat dissipation capacity, power consumption is very critical at the chip level. Though the system in 
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which a chip is located can provide vast amounts of power, most of the chips are packed to dissipate less than 10 to 15 watts of 
power before they are damaged permanently. 
There are several consecutive multipliers and adders in FFT circuit over complex numbers. To accommodate this, an appropriate 
number representation must be chosen. The fixed-point arithmetic is been used in most of the FFT architectures, until recently they 
are replaced by floating-point numbers [2], [3]. By using FP arithmetic over fixed-point arithmetic a vast dynamic range is 
introduced; but on the other hand cost is increased. Using IEEE-754-2008 standard for FP arithmetic, there will be an FFT 
coprocessor in collaboration with general purpose processors [4]. These reduce the computer-intensive tasks from the processors 
and also higher performance is achieved.  However, the major disadvantage of FP butterfly unit is its delayed calculations compared 
to its counterpart fixed point numbers. Hence there is a need to develop a faster FP butterfly FP butterfly architecture. One way to 
reduce the delay is by merging several operations into a single FP unit, and hence delay, area and power consumption are saved. 
Another method is to use redundant number systems to overcome FP slowness, as there is no word-wide carry propagation. 
A number system, defined by a radix r and a digit-set [a, b] is redundant iff b-a+1>r  [5]. 
To convert a number form no-redundant to redundant format no carry is generated, but the reverse operation needs carry 
propagation. Hence when there are many consecutive arithmetic operations then redundant format is more beneficial. A butterfly 
architecture that uses redundant FP arithmetic is proposed in this paper. It is useful for floating point FFT coprocessors and also 
contributes to DSP applications. There are other works that use redundant FP number systems, but they are not utilized for butterfly 
architecture. 

II. FAST FOURIER TRANSFORM (FFT) 
The FFT is a very complex computation as there is intensive access of the memory and parallel calculations are to be done very 
frequently. To realize FFT algorithm in VLSI there should be pipelined architecture and parallelism. The multiplicative complexity 
should be as low as possible at algorithm level. The delay-feedback buffering strategy is to be used to reduce the memory size at 
algorithm level. There should be modular and regular models, local routing and very little control complexity. The DFT X(k) of an 
N-point sequence x(n) given by 

X(k)=∑ ேିଵݔ
௡ୀ଴ (݊) ேܹ

௡௞;  k=0,1,2……..N-1   (1) 
 ேܹ

௡௞= cosቀଶగ.௡௞
ே
ቁ- j.sinቀଶగ.௡௞

ே
ቁ    (2) 

In equation (2) ேܹ
௡௞ is called as twiddle factor. 

The very first step on the algorithm level is to select an FFT radix which is mainly a trade-off between area, speed and power. As 
the radix increases the implementation and control becomes difficult. The number of butterfly elements in radix-2 FFT is more 
when compared to radix-4 FFT. Hence radix-4 is selected in this paper. The Fig.2 (a) shows the better understanding of radix-4 FFT 
algorithm 
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Fig. 2(a) Signal flow graph of 16 point radix-4 FFT 

To implement complex multiplication of –j the real and imaginary parts of the incoming data are exchanged and then the sign of the 
imaginary part is inverted. The signal flow graph is mapped to the architecture as shown in the figure 2. By using Cooley and 
Turkey's algorithm, a DFT can be decomposed into successive smaller DFTs. The equations for the algorithm of high speed 
pipelined DIT FFT architecture is given by 

൤ܺ(݇) ,ܺ(݇ +
ܰ
4 ),ܺ(݇ +

ܰ
2 ),ܺ(݇ +

3ܰ
4 )൨

்
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Here  
Fn1(k) =∑ ଵି(௡/ସ)ݔ

௡మୀ଴ (݊ଵ + 4݊ଶ) ேܹ/ସ
௡మ.௞ 

for n=0,1,2,3;  k=0,1,2…….ே
ସ
− 1. 

The twiddle factors can also be calculated and listed in figure 2(a). They are stored in the RAM with 16-bit fix point in the 
hardware. 

A. Butterfly Unit 
A butterfly unit is a portion of the computation that combines the results of smaller FFT into a larger FFT, or vice versa. The 
Butterfly Diagram builds on the Danielson-Lanczos Lemma and the twiddle factor to create an efficient algorithm. 
A FP FFT butterfly architecture is made of FP multipliers followed by FP adders/subtractors, consider AB+CD+E 

 
Fig. 2(b) FFT Butterfly Architecture 

B. FFT for composite of two integers 
The DFT of a vector (x0… xN-1) Є CN is given by 

௞ෞݔ = ෍ݔ௝

௡ିଵ

௝ୀ଴

݁ିଶగ௜
௝௞
௡  

As the pre factor 1/N is normal in all, it is usually omitted. To turn the one dimensional formulation of the DFT into a two 
dimensional one the following change of variables are used 
j=j(a, b) =aN1+b;      0 ≤ a< N2 , 0 ≤b < N1 

k=k(c, d) =cN2+d;    0 ≤ c < N1, 0 ≤ d < N2 

It follows 

௝ݔ = ො(c,d) and ேܹݔ =௞ෞݔ ,(a, b)ݔ = ݁ି
మഏೕ
ಿ : 

∑=ො(c,d)ݔ ∑ x(a, b) ேభିଵ
௕ୀ଴

ேమିଵ
௔ୀ଴  ேܹ

(௔ேభା௕)(௖ேమାௗ) 

  =∑ ேܹ
௕(௖ேమାௗ)ேభିଵ

௕ୀ଴ ∑ x(a, b)ேమ
௔ୀ଴  ேܹమ

௔ௗ 
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=ො(b,d)ݔ    ∑ x(a, b) ேమ
௔ୀ଴  ேܹమ

௔ௗ 

Since  ேܹ
௔௖ேభேమ = ேܹ

௔௖ே = 1 and ேܹ
௔ௗேభ = ேܹଶ

௔ௗ, this can be treated as calculating the first N DFT- values with length N2  and then 
calculating N DFT- values with length N1 with new data, But arithmetic complexity of O(N.N1 + N.N2) increases, but compared to 
the direct approach it is better. Due to this, it can be stated that the number of complex multiplications needed for a DFT is ten lakh 
sample points with the direct and FFT approach. 

C. Binary Signed Digit 
A binary signed number is a ternary number, such that each bit carries its own sign. By using this method carry-ripple path can be 
eliminated but at the expense of data conversion. This delay is less compared to carry propagation.   
There is no chance of putting a + or – sign to a number in digital circuits, as they are operated in binary numbers. The binary 
numbers are measured in terms of bits and bytes (8 bits). One byte can have values ranging from 0 to 255, I.e. 256 different 
combinations of bits can be formed. Mathematical numbers are normally made up of a sign and a value in which '+' indicates a 
positive number and '–' indicates negative number. In binary numbers, if signed then the MSB bit represents the positivity or 
negativity of a number. If the MSB is 0 then the number is positive and if the MSB is 1 then the number is negative. This is called 
"Sign magnitude representation". For an n-bit signed binary number nth bit represents the sign of the number and the remaining n-1 
bits represent the magnitude. 
Multiplication is a very crucial operation in digital applications. It consists of mainly two steps: 
1) Partial product generation 
2) Partial product addition 
Hence the efficiency and delay of multiplication can be improved by either reducing the number of partial products or speeding up 
the addition process. The partial product also depends on the numbering system used to represent the operands. By using the 
conventional binary number system the delay is increased because of the dependency on carry chain propagation. But by using the 
BSD representation the delay can be fairly reduced. Several BSD encoding techniques are proposed in the related literatures 
3) 2-bit encoding with two’s complement representation 
4) 2-bit encoding with positive bit and negative bit representation 
5) 3-bit encoding with 1-out-of-3 representation 

III. BUTTERFLY ARCHITECTURE 
Based on an efficient algorithm an FFT could be realized in hardware, in which an N-input FFT is simplified into two N/2-input 
FFTs. By continuously decomposing leads to 2-input FFT block, known as butterfly unit. The proposed butterfly unit is a complex 
fused-dot-product-add operation with FP operands [1]. The required operations for butterfly unit are a dot-product followed by an 
addition operation which leads to the proposed FDPA operation. The exponents of all the inputs are taken, and the significands are 
represented in BSD. In BSD every binary position takes values of {-1, 0, 1} I.e. there is a negative-weighted bit and a positive-
weighted bit. The carry-limited addition circuitry for BSD numbers is shown in the figure 3(a). 

 
Fig. 3(a) BSD Adder (2-digit slice) 

Here the capital letter represents negative bits and small letter represents positive bits. The main critical path of this adder is three 
full-adders. 
The FDPA unit mainly consists of 

A. Redundant FP Multiplier 
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1) Partial Product Generation: The PPG used here is completely different from the other normally used multipliers. To reduce the 
number of partial products the multiplier Wi and Wr are stored in modified booth encoding with radix-4 technique [5]. By using 
this technique we can reduce the number of partial products to n/2 (n is the number of bits in multiplier) whereas by using 
conventional multiplier number of partial products would be n. These are generated according to the modified booth encoding.  

Wi+1 Wi Wi-1 PP 

0 0 0 0 

0 0 1 +B 

0 1 0 +B 

0 1 1 +2B 
1 0 0 -2B 

1 0 1 -B 

1 1 0 -B 

1 1 1 0 

Table 1: Modified Booth Encoding in Radix-4 

 
Fig. 3(b) Partial Product Generator 

2) Partial Product Addition: The partial products so obtained are added by using BSD addition. Every partial product is shifted 
two bits left with respect to the previous partial product and then they are added. 

3) Partial Product Reduction: In double precision floating point architecture we get total of 107 bits after addition of partial 
products, but we can only save up to 52 bits in mantissa, so the remaining bits are to be discarded. The four MSB bits are 
discarded which includes the normalized one and the last 51 bits are discarded. The bits from 52 to 103 are stored in the 
mantissa. 
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Fig. 3(c) Partial Product Reduction 

4) Exponent Addition: The exponents of the multiplier and multiplicand are added by using a normal carry propagation adder and 
the bias is subtracted as bias gets added two times. The exponent is stored in the product floating point number. 

5) Setting the Sign Bit: If one of the multiplier and multiplicand is positive and the other is negative then the product is negative, 
but if both are either positive or negative then product is positive. This can be accomplished by XOR gate. The sign bit is set by 
XORing the sign bits of multiplier and multiplicand. 

 
Fig. 3(d) Sign setting 

The overall multiplier unit is given by 
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Fig. 3(e) Multiplier Block 

B. Floating Point Three-Operand Adder 
The obvious method to add three floating point numbers is by using concatenated two operand adder, but this leads to high latency, 
area and power consumption. So in order to overcome this three operand FP adder is used [7], [8]. 
First of all the operand with the bigger exponent among the three operands is determined using a comparator as shown in the figure 
below: 

 
Fig. 3(f) Comparator of the Exponents 

Then the operands are assigned in ad, bd and cd respectively depending on the size of their exponents. 
The exponent of the second operand bd is subtracted from the exponent of the first operand ad and bd is shifted right equal to the 
difference. Similarly the exponent of third operand cd is subtracted from the exponent of the first operand ad and cd is shifted right 
equal to the difference. 
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If the MSB of 'ad, bd and cd ' is 1 then the two's complement of the mantissas is stored. If the MSB is 0 then the mantissa is stored 
as it is. This is accomplished by using a 2×1 MUX, the MSB is used as select bit. Then the mantissas of all the three operands are 
added by using BSD addition. 
Then the three operands are added as shown in the figure below: 

 
Fig. 3(g) 3-operand FP adder 

C. BSD Addition 
1) Sign extension bits 0 and 1 are added to the MSB of each operand depending on positive and negative number respectively. 
2) Then X and Y are calculated such that X= ad | bd | cd, Y= ad & bd & cd . 
3) Then from the LSB of Y the bits are inverted as soon as a 1 is observed in Y. 
4) The inversion is stopped when a 0 is observed in X. 
5) This process is repeated until the MSB of X and Y. 
6) The converted number is stored in Yb. 
7) And finally the sum is given by S= X xor Yb [9]. 

IV. EVALUATION AND COMPARISONS 
A. Delay Comparisons of Normal multiplier and Modified Booth Multiplier for Single-Precision Floating-Point 
A normal multiplier was also designed for single precision floating-point multiplier and the results are compared. 
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BLOCK DELAY 
Normal Multiplier 7.866nS 
Modified Booth 

Multiplier 
7.236nS 

Table 2: Delay comparison of different multiplier blocks   

B. Delay Comparisons of Concatenated 2-Operand Adder and 3-Operand Adder for Single Precision Floating-Point 
A truncated 2-operand adder is also designed for single precision and its delay is compared with the 3-operand adder 

BLOCK DELAY 
Truncated 2-operand 

adder 
29.430nS 

3-operand addition 14.739nS 
Table 3: Delay comparisons of two adders 

C. Overall Comparison of Butterfly Unit for Single-Precision Floating-Point 
A butterfly unit with normal multiplier and truncated 2-operand adder is designed in single precision floating point; it is referred to 
as butterfly unit 1. Its delay is compared with its counterpart which is referred to as butterfly unit 2. 

BLOCK DELAY 
Butterfly unit 1 33.487nS 
Butterfly unit 2 19.269nS 

Table 4: Delay comparisons of two butterfly units 

From the above comparisons, it is observed that Butterfly unit with modified booth multiplier and 3-operand adder has less delay 
compared to the Butterfly unit with normal multiplier and truncated 2-operand adder. 
Hence in double precision floating point the butterfly unit with less delay is designed and the final delay observed is 45.760nS 

V. CONCLUSION 
A high-speed FP butterfly architecture is proposed, which is faster than previous works because: 
A. Modified Booth multiplier that reduces the number of partial products and also delay 
B. BSD representation of the significands which eliminates carry-propagation 
C. The new FDPA unit proposed in this brief 
The proposed unit integrates the multiplications and additions that are necessary in FP butterfly. Hence the higher speed is achieved 
The overall delay for Floating point double precision butterfly unit is 45.760nS 
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