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Abstract: In this paper, Delay and Doppler shift estimation of moving targets of OFDM based radar system by utilizing 
Maximum Likelihood Estimation(MLE) strategy has been produced. Taking benefits of OFDM waveform, the range Doppler 
coupling issues can be overcome for radar applications and complex balance filter is never again fundamentally used to adapt to 
frequency selective fading channel in view of multipath. Here Weighted Orthogonal Frequency Division Multiplexing 
(WOFDM) system is utilized, and the Delay and Doppler shift estimation of WOFDM is compared with Constant Envelope 
OFDM (CEOFDM). The comparing Cramer-Rao limits (CRB) for the parameters are derived. Weighted OFDM waveforms are 
planned with subject to limitations on peak to average power ratio (PAPR). For the delay estimation, The proposed WOFDM 
modulation have bring down CRB esteem compared with the great constant envelope OFDM regulation while meeting the 
prerequisite on the PAPR level. 
Keywords: OFDM, Cramer-Rao bounds, WOFDM, CEOFDM, PAPR, SNR 

I. INTRODUCTION 
The growing technologies in communication has lead to spectrum scarcity problem this becomes main problem due to interference 
which leads to operation capability limitations the use of spectrum sharing is to make S band and WiFi system to share the same 
spectrum generally a fixed spectrum is allocated to mitigate interference for communication system and radar systems but due to 
huge growth in cellular communication system for commercial applications more bands are allocated this leads to difficulty in fixed 
spectrum allocation scheme. Until the recent      improvement in developing of Time Division Duplex transceiver architecture was 
proposed there is no hardware platform demonstrated. In this method one time period is made in to four equal time slots. To 
estimate the Doppler shift and range a technique called trapezoidal frequency modulation continuous wave is transmitted and for 
this ,the first three time slots are used. For enabling the transmission of communication signal and its processing the last time slot is 
allocated. The interference between communication and radar is eliminated by this time domain method, and then the transmission 
of data which uses radio technique and estimation of parameter. Which uses radar technique can separately implemented. However 
high data rate transmission in wireless communication cannot be satisfied by time division duplex waveforms. Reconfigurable 
platforms,such as single RF wireless platform [1] is an alternative approach to get spectrum sharing which can realize radar and 
communication functions.We have to design a dual-used modulation waveform for both communication and radar because their 
primary goals are different as radar is sensing devices which is based on transmitting waveforms and detecting target and estimating 
it and tracking so to achieve a high resolution but communication system is different because modulation and demodulation will 
accomplish the transfer of information bits.We can use many modulation schemes for both radar and communication on a same 
radio frequency platform.In the radar ,orthogonal frequency division multiplexing and its variations are used.OFDM modulation has 
two main advantages. Primary is limited hardware is used for both radar detection and communication by reusing the waveform of 
OFDM. Another advantage is OFDM has robustness to the multipath fading [2]. Generally for hardware realization constant 
envelope including phase modulation is used. However the waveform of constant envelope OFDM offers greater peak to average 
power ratio.The subcarrier frequencies are taken as Upper band [3].So we can limit the estimation performance by individual 
orthogonal frequency division multiplexing symbols.To estimate delay and Doppler shift of target in this paper we represent a non-
linear least squares method which is based on weighted OFDM scheme.The WOFDM is non-constant envelope based method. In 
WOFDM the weights of symbols are made by optimization of the errors bound of estimator which is subjected to PAPR and energy 
of total transmission. 
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II. OFDM-RADAR SIGNAL MODELS 
We consider an OFDM signaling system with N subcarriers. Each subcarrier is modulated with a data symbol. The transmitted time 
domain complex envelop signal in the m-th pulse (m = 1,··· ,M) is written as 
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( ) ( , , )n

N
j f t

m m n m PRI p
n

s t a e I t T T
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

                                              (1) 

where the m-th pulse is a rectangular function defined by 

Im(t,TPRI,Tp)=  ൜
1                       ݉ ௉ܶோூ ≤ ݐ ≤ ݉ ௉ܶோூ +       ݌ܶ

    0                   ݉ ௉ܶோூ + > ݌ܶ ݐ < (݉ + 1) ௉ܶோூ   
          (2) 

The symbol ,m na  represents the complex weights transmitted over the n-th subcarrier of the m-th pulse. TPRI  is the pulse repetition 

interval. Tp is the OFDM symbol duration. The spacing between  the subcarriers is represented as  ∆f = 1/ Tp = B/N, where B is the 
bandwidth of the signal. The individual subcarrier frequency is 

f  =(f  - )+ n f,  n = 0,1,.....N-1
2n c
B

                                             (3) 

where fc denotes the carrier frequency of the radar. It is in the case of reflecting target is presented at distance R with relative 
velocity v, the corresponding Doppler shift is β = 2v/ c . Hence, the induced Doppler frequency at the n-th subcarrier is 

2( )d n c
p

n vf f f
T c

                                                         (4) 

 We assume that the fc ≫ B, i.e., the carrier frequency is practically larger than the signal  
bandwidth. Hence it is legal to had the appearance of that the Doppler  frequency is a constant by all of respect to the sub-carriers, 
i.e., the average Doppler frequency is 

2
d c

vf f
c

                                                                               (5) 

Incorporating Doppler shift fd and the round trip delay τ between the radar and the signal is 
1
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where A is the target reflection coefficient. In general, the parameter A is complex and varies 
 with different subcarriers. For simplicity, here we assume that the coherence bandwidth of the target channel response is greater 
than the modulation bandwidth B, by means of this A is approximately a deterministic constant. Wm(t) is the clutter and 
measurement noise, following a zero mean complex Gaussian distribution.Inserting (3) and (5) to (6), we obtain 

( ) ( , , ) ( )s
m m m P R I P mx x t I t T T w t                                          (7) 

where the signal component is 
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The corresponding baseband signal is 
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m m m PRI P my t x t I t T T e w t                                        (9) 
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Note that, for an OFDM system, the sampling interval Ts is typically chosen such that ∆fTs =1/N  Hence, the sampled version of 
ym(l) with (l = 0,··· ,N −1) becomes 
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where Q = TPRI/Tp. Next, we define 

2 ( ) 2 ( )
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By the definition of inverse DFT and using Ts = ଵ
ே∆௙

, we re-write (12) as 
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where the term 
12 dfj

f Ne

  represents the  modulation in time domain. Hence the DFT of ym(l) has a corresponding frequency shift 

df
f . Thus, applying DFT to (14) yields 
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where W′m,n  is the DFT of the noise term wm(l). In radar parameter estimation, we consider a that  fd ≤ ∆f, thus the only term 

specifically influenced by modulation is  2j n f fce     . By re-writing n = n- df
f , we obtain 
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where A′ = AN 2 cj fe    and is invariant term respect to m and n. In order to remove the impact of OFDM symbols am,n, one 
approach is to divide the known OFDM symbols on both sides, which yields 

2 ( )'
, ,

d sj mf T QN n f
m n m nY Ae W                                                   (18) 

where Ym,n= Y ′m,n am,n and Wm,n = W′m,n am,n . Hence, the problem of interest is to estimate delay 

 τ and Doppler fd from the exponential terms 2j n fe   and 2 d sj mf T QNe   of the discrete data 
Y = {Ym,n},m = 1,··· ,M; n = 1,··· ,N, respectively. 

III. MAXIMUM LIKELIHOOD ESTIMATION (MLE) 

We consider Q' AjA be  be the target response with ܾ and ߶A are representing  the magnitude and phase of target response. The 
parameter vector of interest is 

ߠ = [b,ϕA,fd, ߬]                                                                                                    (19) 

From the above signal parameter vector model (18), the nonlinear least-squares error function is,      

1 1
2

,
0 0

( ; )
M N

a
n m n

m n
L Y W

 

 

                                                                                                   (20) 

1 1
2 ( ) 2

,
0 0

d sA

M N
j mf T QN n fj

m n
m n

Y be e  
 

 

 

     

where ܯ is the no of pulses in the coherent processing interval. Hence, we get 
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The parameters ࣂ can be determined by minimizing the error function, i.e., 

find      ˆ a rg m in ( ; )nL Y


                                                                                                (22) 

Since the vector ࣂ contains four parameters, a sequence of optimization steps are taken. We start by, the error function is partial 
derivated with respect to the unknown phase ߶A, which yields 
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Note that the 2-D discrete time Fourier transform of ܻm,n is 
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Inserting (24) in (23) we obtain 

{ ( , )} 0Aj
djbe Z f                                                         (25) 

Since ܾ and ∣(݂d,߬)∣ are positive real values, only the real component of the phase term must be zero. Hence we have 

cos ( , ) 0
2 A dZ f      

                                                           (26) 

This is a simple trigonometric equation and the solution is 

( , )A dk Z f                                                                       (27) 

where ݇ is an integer. Using this estimate equation (27) in the error function (21) and avoiding the terms which are independent of 
ܾ, we obtain 
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which simplifies to 
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By equating the partial derivative with respect to ܾ to zero yields 
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Inserting the estimate (30) in (29) we get 
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which is a scaled the periodogram of the 2D-DTFT in (24). Hence, we obtain the final optimization problem for unknown delay and 
doppler frequency parameters as 

find    

2
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d

d
d f

Z ff
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
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 
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The solution to (32) can be determined by finding the peak of un-windowed two dimensional (2D) periodogram of the signal ܻ݉,. 
This estimation can be accomplished by a two-dimensional search [3]. 
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IV. CRAMER-RAO LOWER BOUNDS 

Note that if ܹm,n in  is a Gaussian random process, 
^
  is a large sample realization of the maximum-likelihood estimator of ࣂ. Since 

the maximum-likelihood estimator is required to accomplish the Cramer-Rao Low Bound (CRLB) as ܯ or ܰ increases, it takes after 

that under the Gaussian assumption no other estimator could perform better in large samples than
^
 . In this segment, we determine 

the Cramer-Rao lower bound of
^
 . The probability model of the measurements   = {ܻm,n } is  

2 21 1
, , 2 ( ) 2

,2 2
0 0

( ) exp d sA

M N
m n m n j mf T QN n fj

m n
m n

a a
P Y Y be e  

 


 

 
 

 

    
       

 
          (33) 

The log-likelihood function is 
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The Cramer-Rao limits for the evaluating parameter 
^

i  are given by the diagonal components of inverse of the 4×4 Fisher 
information J [5], 

1ˆvar( ) Ji ii
                                                                                     (35) 

where ߠi are the four scalar parameters in the vector ࣂ in (19) with ݅ =1 ,2,3,4. Due to space limitations, The determinant of Fisher 
information matrix J is 
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The Cramer-Rao bound o the estimate of b is the first element along the diagonal of J-1 given by 

6
2 2 4 2 2

6

1 128CRB ( Q )(Q ) ( Q ) ( )
det(J)b M M N N s

bM P P Ma T N f





                            (37) 

The diagonal elements of the J-1 are evaluated using the adjoint method. Next, using (36) and upon simplification we obtain 
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The CRLB on fd is the third component along the diagonal of J-1 given by  
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Again upon simplification we obtain 
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Finally, the CRLB on ߬ is the forth element along the diagonal of J-1 defined as, 
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Hence, upon simplification we obtain 
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V. WEIGHTED OFDM SYMBOL DESIGN 
There have been distinctive ways to deal with outline OFDM symbols. For example to enhance signal detection, eigen-value 
decomposition strategy is used for augmenting the non-centrality parameter of complex Wishart distributed segments of the test 
measurement keeping in mind the end goal to optimize waveform with a constraint on PAPR. In low-grazing angle tracking, a 
maximum common data approach is utilized for OFDM symbol design. Different methodologies incorporate limiting the contrast 
between the wideband ambiguity function and the idealized ambiguity function to enhance delay resolution. In this paper, we will 
likely plan weighted OFDM waveform balance to enhance the accuracy of the estimation of radar target parameters. Specifically, 
we consider the classic Cramer-Rao bound (CRB) on the accuracy of the maximum likelihood estimation. Note that the efficiency of 
classical methods such as ambiguity function based radar parameter estimator is also evaluated against the CRB. The go for 
weighted OFDM is to outline OFDM symbols to limit the inverse of det(J) subject to proper constraints.ie 
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Condition (C1) is to impose a constraint on the lower bound of the cost function 2

1
QN Na P

  by 

,
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The purpose of this constraint is to avoid bandwidth loss. Otherwise, OFDM symbols ܽm,n  would allocate zero power in most of 
sub-bands ݊, result in bandwidth loss in the transmission signal. Thus, the range determination could be extremely debased. 
Condition (C2) is to set an upper bound 1ߟ≪ ܰ on the peak to average power ratio (PAPR) defined by                         
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1 2
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since a high PAPR forces extreme weight on the transmitter because of restricted amplification range of the RF amplifier. For 
instance, when phase shift keying (PSK) is used, the upper bound on PAPR is ܰ.Finally, Condition (C3) is the total power 
constraint. The improvement issue defined in (43) and (44) is understood numerically utilizing convex optimization by the dynamic 
set obliged nonlinear strategy [6]. 
A. Results 

 
          Figure1(a): Delay estimate for CEOFDM               (b) Delay estimate for WOFDM 

 
Fig2: Doppler frequency estimation 

Figure1(a) and (b) depicts the Delay estimates with respect to CEOFDM and WOFDM  modulations respectively. Theoretical 
CRLB and the numerical values for the delay and Doppler estimates are derived.WOFDM has smaller CRLB than CEOFDM. It is 

due to we decrease the estimation of the max( ( )ms t   i.e., conveying it nearer to the mean estimation of ( )ms t . Consequently 

we accomplish a higher value for det(J), hence prompting a lower CRLB for delay estimate. 
For Doppler estimate in Figure2, the CRLBs are the same for the two modulation schemes Note that the variance plots of the 
parameter estimates by the WOFDM method closely follows the variance plots of CEOFDM  after the SNR goes above 3 dB. There 
is usually a range of SNR in which the mean-squared error (MSE) rises rapidly as SNR decreases.but here we decreased the MSE 
value at low SNR say 3db, and at even low SNR, the computed SNR follow the CRLB closely. 
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VI. CONCLUSION 
In tis paper We develop the maximum likelihood  estimation method for radar target’s Delay and Doppler shift  using OFDM 
modulation. The Cramer-Rao bounds are derived for the estimators and the estimator accuracy reaches the CRB after the threshold 
SNR. Next, a weighted OFDM modulation based on minimizing the CRB is derived. The CRB for Doppler (i.e., velocity) estimate 
does not change with modulation, however, the CRB of delay (i.e., range) estimate is improved with the weighted symbols. The 
proposed WOFDM scheme provides a promising means to achieve co-existence between radar and communications via a 
reconfiguable RF platform 
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