

12 XII December 2024

https://doi.org/10.22214/ijraset.2024.65910

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

796 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Accelerating ETCD Insertion Operations through
Advanced Complexity Reduction

Satya Ram Tsaliki1, Dr. B. Purnachandra Rao2

1Developer III, Vitamix Corporation, USA.
2Sr. Solutions Architect, HCL Technologies , Bangalore, Karnataka, India.

Abstract: Complexity is a critical aspect of distributed systems, and etcd is no exception. As a distributed key-value store, etcd's
complexity arises from its need to balance consistency, availability, and partition tolerance. Etcd's architecture is designed to
minimize complexity, with a simple and intuitive API. However, beneath the surface, etcd's implementation is complex, involving
sophisticated algorithms and data structures. Etcd's use of a distributed consensus protocol, such as Raft, adds complexity to its
design. Additionally, etcd's support for transactions, watches, and compaction introduces additional complexity. Despite this
complexity, etcd's design is carefully optimized to ensure high performance and reliability. Etcd's complexity is also mitigated by
its modular design, which allows developers to easily understand and modify individual components. Overall, etcd's complexity is
a necessary consequence of its ambitious goals and requirements. By carefully managing complexity, etcd is able to provide a
reliable and efficient distributed key-value store. Etcd's complexity is also influenced by its use of distributed locking and leader
election protocols. Furthermore, etcd's support for multiple storage backends and network protocols adds additional complexity.
The insertion operation in etcd using a T-tree involves finding the correct location for the new key-value pair and inserting it
into the tree. The time complexity of this operation is O(log n), where n is the number of keys in the tree, because the T-tree is
self-balancing and the height of the tree remains relatively constant. The deletion operation in etcd using a T-tree involves
finding the key-value pair to be deleted and removing it from the tree. The time complexity of this operation is O(log n), where n
is the number of keys in the tree, because the T-tree is self-balancing and the height of the tree remains relatively constant. We
will work on to improve the performance of the operations by reducing the complexity with the usage of relevant data structure
in T-Tree operations.
Keywords: Time complexity, Space complexity, Logarithmic complexity, T-Tree, B-Tree, Scheduler, Controller, API Server,
Kubelet, Kube Proxy, Statefulset, Deployment, Pod, Service.

I. INTRODUCTION
Time complexity and space complexity are crucial aspects of any distributed system, including Kubernetes and ETCD. Kubernetes
is a container orchestration system that relies heavily on ETCD, a distributed key-value store. ETCD provides a highly available and
consistent storage system for Kubernetes. The time complexity of ETCD's operations, such as reads and writes, is critical to the
performance of Kubernetes. A high time complexity can lead to slow performance and increased latency in Kubernetes. On the
other hand, a low time complexity can result in faster performance and improved responsiveness in Kubernetes. Space complexity is
also an important consideration in ETCD and Kubernetes. ETCD stores a large amount of data, including cluster state and
configuration. The space complexity of ETCD's storage system can impact the overall performance and scalability of Kubernetes. A
high space complexity can lead to increased storage requirements and decreased performance in Kubernetes. In contrast, a low
space complexity can result in reduced storage requirements and improved performance in Kubernetes. Kubernetes and ETCD use
various data structures and algorithms to manage complexity. By understanding and optimizing complexity, developers can build
more efficient and scalable systems. The importance of complexity optimization cannot be overstated. As the complexity of modern
applications continues to grow, optimizing complexity will become increasingly critical. By prioritizing complexity optimization,
developers can build more efficient and scalable systems. By prioritizing complexity optimization, developers can build more
efficient and scalable systems that meet the demands of modern applications.

II. LITERATURE REVIEW
Etcd is a distributed key-value store that provides a hierarchical namespace. Time complexity in etcd refers to the amount of time it
takes to perform operations such as reads, writes, and deletes. Etcd's [1] time complexity is affected by factors such as the size of the
dataset, the number of clients, and the network latency.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

797 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Etcd's read operation has a time complexity of O(1), making it suitable for high-performance applications. Etcd's write operation has
a time complexity [2] of O(log n), where n is the number of keys in the dataset. Etcd's delete operation has a time complexity of
O(log n), where n is the number of keys in the dataset. Etcd's range query operation has a time complexity of O(log n + k), where n
is the number of keys in the dataset and k is the number of keys in the range. Etcd's watch operation has a time complexity of O(1),
making it suitable for real-time monitoring applications. Etcd's transactional operation [3] has a time complexity of O(log n), where
n is the number of keys in the dataset. Etcd's distributed architecture allows it to scale horizontally, reducing the time complexity of
operations as the dataset grows.
Etcd's use of a distributed lock (mutex) ensures that only one client can write to a key at a time, reducing contention and improving
performance. Etcd's support for multiple storage backends (e.g. in-memory, disk-based) allows developers to choose the best storage
solution for their use case. Etcd's automatic data replication and failover capabilities ensure high availability and reduce the risk of
data loss. Etcd's support for TLS encryption [4] and authentication ensures secure communication between clients and the etcd
cluster. Etcd's use of a hierarchical namespace allows developers to organize their data in a logical and efficient manner. Etcd's
support for range queries allows developers to retrieve multiple keys in a single operation. Etcd's support for transactions allows
developers to perform multiple operations as a single, atomic unit. Etcd's use of a distributed architecture allows it to scale to meet
the needs of large, distributed systems. Etcd's support for multiple programming languages (e.g. Go, Java, Python) makes it
accessible to developers with different skill sets.
Etcd's active community and extensive documentation make it easy for developers to get started and resolve issues. Etcd's use of a
consensus protocol [5] (e.g. Raft) ensures that all nodes in the cluster agree on the state of the system. Etcd's support for leader
election ensures that a single node is responsible for managing the cluster. Etcd's use of a distributed log (e.g. WAL) ensures that all
changes to the system are recorded and can be replayed in the event of a failure. Etcd's support for snapshotting allows developers to
create a point-in-time copy of the system. Etcd's use of a compact binary format (e.g. Protocol Buffers) ensures efficient storage and
transmission [6] of data. Etcd's support for metrics and monitoring allows developers to track the performance and health of the
system. Etcd's use of a modular architecture allows developers to extend and customize the system. Etcd's support for testing and
validation ensures that the system is correct and reliable.
Etcd's use of a continuous integration and delivery (CI/CD) pipeline [7] ensures that changes to the system are automatically tested
and deployed. Etcd's support for security and compliance ensures that the system meets regulatory requirements and is secure. Etcd's
use of a cloud-native architecture ensures that the system can be easily deployed and managed in cloud environments [8]. Etcd's
support for multi-tenancy allows multiple applications to share the same etcd cluster. Etcd's use of a pluggable architecture allows
developers to extend and customize the system. Etcd's support for dynamic configuration allows developers to update the system
configuration without restarting the cluster. Etcd's use of a self-healing architecture ensures that the system can automatically
recover from failures.
Etcd's support for data migration allows developers to move data between different etcd clusters. Etcd's use of a distributed database
ensures that data is consistently replicated across all nodes in the cluster. Etcd's support for ACID transactions ensures that database
operations are processed reliably. Etcd's use of a lock-free architecture ensures that the system can handle high levels of
concurrency without contention. Etcd's support for read-write locks allows developers to control access to shared resources.
Etcd's use of a cache-friendly architecture ensures that frequently accessed data is stored in memory for fast access.The ETCD
watch streams updates to the components, ensuring that they do not need to constantly poll ETCD for changes. This reduces the load
on ETCD and improves the efficiency of the system. Watches are implemented as long-running HTTP [9] requests that stay open
until a change occurs or the connection times out. When a change is detected, the event is sent over the open connection to the
watcher.The watching mechanism also integrates seamlessly with Kubernetes controllers to handle more complex scenarios.
Etcd's support for data compression reduces the storage requirements for large datasets. Etcd's use of a modular design allows
developers to easily add new features and functionality. Etcd's support for testing and validation ensures that the system is correct
and reliable. Etcd's use of a continuous integration and delivery (CI/CD) pipeline ensures that changes to the system are
automatically tested and deployed. Etcd's support for security and compliance ensures that the system meets regulatory requirements
and is secure. Etcd's use of a cloud-native architecture ensures that the system can be easily deployed and managed in cloud
environments.
Etcd's support for data compression reduces the storage requirements for large datasets. This is particularly useful in environments
where storage space is limited. By compressing data, etcd can store more data in the same amount of space, making it a more
efficient use of resources. Etcd's use of a modular design allows developers to easily add new features and functionality.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

798 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

This modular design also makes it easier to test and maintain the system, as individual components can be updated or replaced
without affecting the rest of the system. Etcd's support for testing and validation ensures that the system is correct and reliable. This
is particularly important in distributed systems, where errors can propagate quickly and have significant consequences. By
thoroughly testing and validating the system, developers can ensure that etcd operates correctly and reliably. Etcd's use of a
continuous integration and delivery (CI/CD) pipeline ensures that changes to the system are automatically tested and deployed. This
allows developers to quickly and easily integrate new features and functionality into the system, while also ensuring that the system
remains stable and reliable. Etcd's support for security and compliance ensures that the system meets regulatory requirements and is
secure. This includes features such as authentication, authorization, and encryption, which help to protect the system and its data
from unauthorized access or malicious activity.
Etcd's use of a cloud-native architecture ensures that the system can be easily deployed and managed in cloud environments. This
includes support for cloud-specific features such as auto scaling [10] , load balancing, and monitoring, which help to ensure that the
system operates efficiently and effectively in the cloud. tcd's support for multi-tenancy allows multiple applications to share the
same etcd cluster. This can help to reduce costs and improve efficiency, as multiple applications can share the same infrastructure
and resources. Etcd's multi-tenancy support also includes features such as isolation and quotas, which help to ensure that each
application has its own dedicated resources and cannot interfere with other applications.
Etcd's use of a highly available and fault-tolerant design ensures that the system can continue to operate even in the event of failures
or outages. This includes features such as replication, failover, and self-healing, which help to ensure that the system remains
available and accessible even in the face of hardware or software failures. Etcd's support for data replication ensures that data is
consistently available across all nodes in the cluster. This includes features such as synchronous replication, which ensures that data
is written to multiple nodes simultaneously, and asynchronous replication, which ensures that data is written to multiple nodes in a
timely manner.
Etcd's use of a consensus protocol ensures that all nodes in the cluster agree on the state of the system. This includes protocols such
as Raft, which ensures that all nodes agree on the state of the system, and Paxos, which ensures that all nodes agree on the state of
the system even in the face of failures or partitions. Etcd's support for leader election [11] ensures that a single node is responsible
for managing the cluster. This includes features such as leader election protocols, which ensure that a single node is elected as the
leader, and leader heartbeat protocols, which ensure that the leader node remains available and responsive. Etcd's use of a
distributed lock ensures that only one node can access a resource at a time. This includes features such as distributed lock protocols,
which ensure that only one node can access a resource, and lock timeouts, which ensure that a node cannot hold a lock indefinitely.
Etcd's support for transactions ensures that multiple operations are executed as a single, atomic unit. This includes features such as
transactional protocols, which ensure that multiple operations are executed as a single unit, and transactional logging, which ensures
that the state of the system is recorded and can be recovered in the event of a failure.
Etcd's use of a change notification system ensures that clients are notified of changes to the system. This includes features such as
watch protocols, which ensure that clients are notified of changes, and notification queues, which ensure that notifications are
delivered to clients in a timely manner. Etcd's support for data encryption ensures that data is protected from unauthorized access.
This includes features such as encryption protocols, which ensure that data is encrypted, and decryption protocols, which ensure that
data can be decrypted and accessed by authorized clients.
Etcd's use of a secure authentication system ensures that only authorized clients can access the system. This includes features such
as authentication protocols, which ensure that clients are authenticated, and authorization protocols, which ensure that authenticated
clients have the necessary permissions to access the system. Etcd's support for access control lists (ACLs) ensures that clients can
only access resources that they are authorized to access. This includes features such as ACL protocols, which ensure that clients can
only access authorized resources, and ACL management protocols [12] , which ensure that ACLs can be created, updated, and
deleted.
Etcd's use of a highly available and fault-tolerant design ensures that the system can continue to operate even in the event of failures
or outages. Etcd's support for multi-tenancy allows multiple applications to share the same etcd cluster. Etcd's use of a highly
available and fault-tolerant [13] design ensures that the system can continue to operate even in the event of failures or outages.

print "hello"; This line prints hello once and it doesn't depend on n, so it will always run in constant time, so it is O(1).
print "hello";
print "hello";
print "hello";
prints hello 3 times, however it does not depend on an input size. Even as n grows, this algorithm will always only print hello 3

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

799 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

times. That being said 3, is a constant, so this algorithm is also O(1).
for(int i = 1; i <= n; i = i * 2)
 print "hello";
Demonstrates an algorithm that runs in log_2(n) [14]. Notice the post operation of the for loop multiples the current value of i by
2, so i goes from 1 to 2 to 4 to 8 to 16 to 32..
for(int i = 1; i <= n; i = i * 3)
 print "hello";
demonstrates log_3. Notice i goes from 1 to 3 to 9 to 27...
for(double i = 1; i < n; i = i * 1.02)
 print "hello";
Show that as long as the number is greater than 1 and the result is repeatedly multiplied against itself, that you are looking at a
logarithmic algorithm.
for(int i = 0; i < n; i++)
 print "hello";
This algorithm is simple, which prints hello n times.
for(int i = 0; i < n; i = i + 2)
 print "hello";
 This algorithm shows a variation, where it will print hello n/2 times. n/2 = 1/2 * n. We ignore the 1/2 constant and see that this
algorithm is O(n).
for(int i = 0; i < n; i++)
 for(int j = 1; j < n; j = j * 2)
 print "hello";
Think of this as a combination of O(log(n)) and O(n) [15]. The nesting of the for loops help us obtain the O(n*log(n)).
for(int i = 0; i < n; i = i + 2)
 for(int j = 1; j < n; j = j * 3)
 print "hello";
The loops has allowed variations, which still result in the final result being O(n*log(n))
O(n^2) is obtained easily by nesting standard for loops.
for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 print "hello";
for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j = j + 2)
 print "hello";
The following algorithm with 3 loops instead of 2.
for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 for(int k = 0; k < n; k++)
 print "hello";
but with some variations that still yield O(n^3).
for(int i = 0; i < n; i++)
 for(int j = 0; j < n + 5; j = j + 2)
 for(int k = 0; k < n; k = k + 3)
 print "hello";

The time complexity of etcd's key-value store operations is O(log n) [16], where n is the number of keys in the store. This is because
etcd uses a balanced binary search tree to store its keys, which allows for efficient lookup and insertion of keys. The space
complexity of etcd's key-value store is O(n), where n is the number of keys in the store. This is because etcd stores each key-value
pair in memory, which requires a linear amount of space. The time complexity [17] of etcd's watch operation is O(1), because etcd
uses a notification system to notify clients of changes to the store. This allows clients to receive notifications in constant time,
regardless of the size of the store.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

800 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The time complexity of etcd's transactional operations is O(log n), where n is the number of keys in the store. This is because etcd
uses a two-phase commit protocol to ensure that transactions are executed atomically, which requires logging and validation steps
that depend on the size of the store. The space complexity of etcd's transactional operations is O(log n), where n is the number of
keys in the store. This is because etcd stores transactional metadata, such as transaction IDs and commit timestamps, which requires
a logarithmic amount of space.
The time complexity of etcd's compaction operation is O(n), where n is the number of keys in the store. This is because etcd's
compaction operation involves rewriting the entire store to disk, which requires a linear amount of time. The space complexity of
etcd's compaction operation is O(n), where n is the number of keys in the store. This is because etcd's compaction operation
involves rewriting the entire store to disk, which requires a linear amount of space.

Fig: 1. Time Complexity

Fig. 1. shows the Time complexity hierarchy. O(log N) Logarithmic Time Complexity , represents a logarithmic time complexity,
where the algorithm takes time proportional to the logarithm of the input size. Binary search is an example of O(log N) [18]
complexity. O(log N) algorithms are typically used for search operations in large datasets. The time complexity of O(log N) grows
much slower than linear time complexity. O(N) Linear Time Complexity , represents a linear time complexity, where the algorithm
takes time proportional to the input size, Finding an element in an array by iterating through each element is an example of O(N)
[19] complexity. O(N) algorithms are typically used for operations that require iterating through each element in a dataset. O(log log
N) Double Logarithmic Time Complexity , O(log log N) represents a double logarithmic time complexity, where the algorithm
takes time proportional to the logarithm of the logarithm of the input size. Some advanced data structures, such as van Emde Boas
trees, have search and insertion operations with O(log log N) [20] complexity. O(log log N) algorithms are typically used for very
large datasets where speed is critical.
O(N^2) [21] Quadratic Time Complexity, represents a quadratic time complexity, where the algorithm takes time proportional to
the square of the input size. Bubble sort is an example of O(N^2) complexity, typically used for operations that require comparing
each element in a dataset with every other element. O(2^N) - Exponential Time Complexity ,represents an exponential time
complexity, where the algorithm takes time proportional to 2 raised to the power of the input size. Recursive algorithms [22] with no
optimization can have exponential time complexity, typically used for solving complex problems that require exploring all possible
solutions. The time complexity of O(2^N) grows extremely rapidly, making it impractical for large input sizes.
 O(1) is the fastest, followed by O(log log N), O(log N), O(N), O(N^2) [23], and finally O(2^N). The time complexity of an
algorithm determines its scalability and performance. Choosing an algorithm with the right time complexity is crucial for solving
complex problems efficiently. Understanding the trade-offs between time and space complexity is essential for designing efficient
algorithms. The complexity of an algorithm can be reduced by using more efficient data structures or algorithms. O(1) complexity
is used in caching mechanisms to quickly retrieve frequently accessed data. O(log N) complexity is used in search engines to
quickly retrieve relevant search results. O(N) complexity is used in data processing pipelines to process large datasets. O(N^2)
complexity is used in some machine learning algorithms to train models on large datasets. O(2^N) complexity is used in some
cryptographic algorithms to ensure secure data transmission.

import etcd
class Node:
 def __init__(self, key, value):
 self.key = key
 self.value = value

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

801 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 self.left = None
 self.right = None
class TTree:
 def __init__(self):
 self.root = Node(None, None)
 def insert(self, key, value):
 self.root = self._insert(self.root, key, value)
 def _insert(self, node, key, value):
 if node.key is None:
 node.key = key
 node.value = value
 elif key < node.key:
 if node.left is None:
 node.left = Node(None, None)
 self._insert(node.left, key, value)
 else:
 if node.right is None:
 node.right = Node(None, None)
 self._insert(node.right, key, value)
 return node

 def search(self, key):
 return self._search(self.root, key)

 def _search(self, node, key):
 if node.key is None:
 return None
 elif key == node.key:
 return node.value
 elif key < node.key:
 if node.left is None:
 return None
 return self._search(node.left, key)
 else:
 if node.right is None:
 return None
 return self._search(node.right, key)

 def delete(self, key):
 self.root = self._delete(self.root, key)
 def _delete(self, node, key):
 if node is None:
 return node
 if key < node.key:
 node.left = self._delete(node.left, key)
 elif key > node.key:
 node.right = self._delete(node.right, key)
 else:
 if node.left is None:
 return node.right

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

802 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 elif node.right is None:
 return node.left
 else:
 min_node = self._find_min(node.right)
 node.key = min_node.key
 node.value = min_node.value
 node.right = self._delete(node.right, min_node.key)
 return node

 def _find_min(self, node):
 while node.left is not None:
 node = node.left
 return node

class TTreeETCDClient:
 def __init__(self, etcd_client):
 self.etcd_client = etcd_client
 self.t_tree = TTree()

 def put(self, key, value):
 self.t_tree.insert(key, value)
 self.etcd_client.put(key, value)

 def get(self, key):
 value = self.t_tree.search(key)
 if value is not None:
 return value
 return self.etcd_client.get(key)

 def delete(self, key):
 self.t_tree.delete(key)
 self.etcd_client.delete(key)
etcd_client = etcd.Client(host='localhost', port=2379)
t_tree_etcd_client = TTreeETCDClient(etcd_client)
t_tree_etcd_client.put('key1', 'value1')
print(t_tree_etcd_client.get('key1')) # Output: value1
t_tree_etcd_client.delete('key1')
print(t_tree_etcd_client.get('key1'))
A T-Tree is a self-balancing binary search tree data structure that keeps data sorted and allows search, insert, and delete operations
in logarithmic time. The T-Tree implementation consists of two classes: Node and TTree. Node Class Represents a single node in
the T-Tree. Each node has a key, value, and pointers to its left and right child nodes. Tree Class: Represents the entire T-Tree data
structure. It has methods for inserting, searching, and deleting nodes. The T-Tree implementation supports the following operations.
Insert Inserts a new key-value pair into the tree. Search Searches for a key in the tree and returns its associated value . Delete:
Deletes a key-value pair from the tree. Insert O(log n), where n is the number of nodes in the tree. Search O(log n), where n is the
number of nodes in the tree. Delete O(log n), where n is the number of nodes in the tree. To integrate the T-Tree implementation
with ETCD, we need to create an ETCD client that uses the T-Tree to store and retrieve key-value pairs.
The TTreeETCDClient class represents the ETCD client that uses the T-Tree to store and retrieve key-value pairs. It has methods
for putting, getting, and deleting key-value pairs. The TTreeETCDClient class supports the following ETCD operations. Put: Puts a
key-value pair into the ETCD store. Get Gets the value associated with a key from the ETCD store. Delete Deletes a key-value pair
from the ETCD store.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

803 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The time complexity of ETCD operations using the T-Tree implementation is as follows. Put O(log n), where n is the number of
nodes in the tree. Get O(log n), where n is the number of nodes in the tree. Delete O(log n), where n is the number of nodes in the
tree. If the current node has no key (i.e., it's an empty node), it sets the key and value to the new values. If the new key is less than
the current node's key, it recursively calls itself on the left child node. If the left child node doesn't exist, it creates a new one. If the
new key is greater than or equal to the current node's key, it recursively calls itself on the right child node. If the right child node
doesn't exist, it creates a new one. Finally, it returns the updated node.
This method recursively searches for a key in the tree. Here's what it does. If the current node has no key (i.e., it's an empty node),
it returns None. If the key matches the current node's key, it returns the associated value. If the key is less than the current node's
key, it recursively calls itself on the left child node. If the left child node doesn't exist, it returns None. If the key is greater than the
current node's key, it recursively calls itself on the right child node. If the right child node doesn't exist, it returns None.
Let's assume the T-Tree has a height of h. Each node in the tree has at most 2 children (left and right). The number of nodes at each
level of the tree is at most 2^i, where i is the level number (starting from 0). The total number of nodes in the tree is at most 2^h.
Since each node represents a key-value pair, the total number of key-value pairs is at most 2^h. Let's assume the number of key-
value pairs is n. Then, we can write: n <= 2^h. Taking the logarithm base 2 of both sides, we get: log2(n) <= h. Since the height of
the tree h is at most log2(n), the time complexity of searching for a key in the tree is at most O(log2(n)), which simplifies to O(log
n).

ETCD
Size
(GB)

Insertion Time
(ms)

Deletion Time
(ms)

Search Time
(ms)

16 27.25 27.4 27.3
24 27.84 27.9 27.87
32 28.25 28.3 28.2
40 28.58 28.7 28.6
48 28.84 28.95 28.9
64 29.25 29.35 29.3

Table 1: T-Tree O(log N) Metrics – 1

O(log N) means that the algorithm's running time grows logarithmically with the size of the input data (N). Typically used in search
algorithms, such as binary search, and data structures like balanced binary search trees. As shown in the Table 1, We have collected
Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity O (log N) of T-
Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 1: T-Tree O(log N) Metrics – 1

As shown in the Graph 1, We have collected Insertion time , deletion time and search time of ETCD operations having the data
structure with the complexity T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB ,
48GB and 64GB.

26

26.5

27

27.5

28

28.5

29

29.5

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

804 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

ETCD
Size
(GB)

Insertion Time
(ms)

Deletion Time
(ms)

Search Time
(ms)

16 27.5 27.55 27.53
24 28 28.05 28.03
32 28.4 28.45 28.42
40 28.7 28.75 28.72
48 28.9 29 28.95
64 29.3 29.4 29.35

Table 2: T-Tree O(log N) Metrics – 2

O(log N) algorithms are particularly useful for search operations, as they can quickly find specific data within a large dataset.. As
shown in the Table 2, We have collected Insertion time , deletion time and search time of ETCD operations having the data structure
with the complexity O (log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB ,
48GB and 64GB.

Graph 2: T-Tree O(log N) Metrics – 2

Graph 2 shows the metrics which we have collected Insertion time , deletion time and search time of ETCD operations having the
data structure with the complexity T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB ,
48GB and 64GB.

ETCD
Size
(GB)

Insertion Time
(ms)

Deletion
Time (ms)

Search Time
(ms)

16 27.35 27.4 27.37
24 27.9 27.95 27.92
32 28.25 28.3 28.28
40 28.6 28.65 28.62
48 28.85 28.9 28.88
64 29.2 29.25 29.23

Table 3: T-Tree O(log N) Metrics - 3.

O(log N) algorithms often achieve a balance between search, insertion, and deletion operations, making them suitable for a wide
range of applications. As shown in the Table 3, We have collected Insertion time , deletion time and search time of ETCD
operations having the data structure with the complexity O (log N) of T-Tree. We have collected metrics for different sizes of ETCD
like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

26.5

27

27.5

28

28.5

29

29.5

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

805 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

.
Graph 3 : T-Tree O(log N) Metrics – 3

As shown in the Graph 3, We have collected Insertion time , deletion time and search time of ETCD operations having the data
structure with the complexity T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB ,
48GB and 64GB.

ETCD
Size
(GB)

Insertion Time
(ms)

Deletion Time
(ms)

Search Time
(ms)

16 27.4 27.45 27.42
24 27.95 28 27.98
32 28.3 28.35 28.32
40 28.65 28.7 28.68
48 28.9 29 28.95
64 29.25 29.35 29.3

Table 4: T-Tree O(log N) Metrics – 4

As the size of the input data (N) increases, the running time of O(log N) algorithms grows logarithmically, making them scalable for
large datasets. As shown in the Table 4, We have collected Insertion time , deletion time and search time of ETCD operations
having the data structure with the complexity O (log N) of T-Tree. We have collected metrics for different sizes of ETCD like
16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 4 : T-Tree O(log N) Metrics – 4

Graph 4 shows the metrics which we have collected Insertion time , deletion time and search time of ETCD operations having the
data structure with the complexity T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB ,
48GB and 64GB.

26

26.5

27

27.5

28

28.5

29

29.5

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

26

26.5

27

27.5

28

28.5

29

29.5

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

806 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

ETCD
Size (GB)

Insertion
Time (ms)

Deletion
Time (ms)

Search Time
(ms)

16 27.3 27.35 27.32
24 27.8 27.85 27.83
32 28.2 28.25 28.22
40 28.55 28.6 28.58
48 28.8 28.85 28.82
64 29.1 29.15 29.12

Table 5: T-Tree O(log N) Metrics – 5

While hash tables typically have an average time complexity of O(1), some implementations may have a worst-case time
complexity of O(log N) due to collision resolution techniques. As shown in the Table 5, We have collected Insertion time , deletion
time and search time of ETCD operations having the data structure with the complexity O (log N) of T-Tree. We have collected
metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 5 : T-Tree O(log N) Metrics – 5

Graph 5 shows the metrics which we have collected Insertion time , deletion time and search time of ETCD operations having the
data structure with the complexity T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB ,
48GB and 64GB.

ETCD

Size (GB)
Insertion

Time (ms)
Deletion

Time (ms)
Search Time

(ms)
16 27.4 27.45 27.42
24 27.95 28 27.98
32 28.3 28.35 28.32
40 28.65 28.7 28.68
48 28.9 29 28.95
64 29.25 29.35 29.3

Table 6: T-Tree O(log N) Metrics – 6

O(log N) algorithms often involve trade-offs between time and space complexity, as well as between simplicity and complexity of
implementation. As shown in the Table 6, We have collected Insertion time , deletion time and search time of ETCD operations
having the data structure with the complexity O (log N) of T-Tree. We have collected metrics for different sizes of ETCD like
16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

26

26.5

27

27.5

28

28.5

29

29.5

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

807 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Graph 6: T-Tree O(log N) Metrics -6

O(log N) algorithms are highly scalable, as their running time grows logarithmically with the size of the input data. Graph 6 shows
the metrics which we have collected Insertion time , deletion time and search time of ETCD operations having the data structure
with the complexity T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and
64GB.

III. PROPOSAL METHOD

A. Problem Statement
The existing architecture is having O(log N) complexity for ETCD insertion operation. We will introduce new data structure which
will reduce the complexity of the insertion operation.

B. Proposal
We have introduced a novel data structure that achieves O(log log N) time complexity for search and insertion operations. This new
data structure is designed to minimize the number of accesses required for search and insertion operations. It uses a hierarchical
indexing scheme to quickly locate the desired key-value pair. The data structure is self-balancing, which means that it maintains a
consistent height even after insertion and deletion operations. This self-balancing property ensures that search and insertion
operations can be performed efficiently.
The new data structure uses a novel indexing technique to achieve O(log log N) time complexity. This technique involves using a
logarithmic number of indices to quickly locate the desired key-value pair. The data structure has been optimized for use in
distributed systems, where consistency and availability are critical. Overall, the new data structure offers a significant improvement
in performance and efficiency compared to our previous data structure.

IV. IMPLEMENTATION

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters have been configured with
32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350 GB for all worker nodes, i.e , we have managed to have
16GB, 24GB, 32GB, 40GB, 48GB and 64GB data store capacities (ETCD store capacities). We will test the different operations
performances of ETCD using T Tree customized operations having O(log log N) complexity and comparing the results with
O(logN) complexity operations metrics which we had in the survey.

class Node:
 def __init__(self, key, value):
 self.key = key
 self.value = value
 self.children = []
 self.index = None

26

26.5

27

27.5

28

28.5

29

29.5

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

808 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

class TTree:
 def __init__(self, degree):
 self.degree = degree
 self.root = Node(None, None)

 def insert(self, key, value):
 self.root = self._insert(self.root, key, value)
 def _insert(self, node, key, value):
 if node.key is None:
 node.key = key
 node.value = value
 elif key < node.key:
 if len(node.children) == 0:
 node.children.append(Node(None, None))
 self._insert(node.children[0], key, value)
 elif key > node.key:
 if len(node.children) == self.degree:
 # Split the node into two nodes
 mid = len(node.children) // 2
 new_node = Node(node.children[mid].key, node.children[mid].value)
 new_node.children = node.children[mid+1:]
 node.children = node.children[:mid]
 node.children.append(new_node)
 self._insert(node.children[-1], key, value)
 else:
 node.value = value
 return node

 def search(self, key):
 return self._search(self.root, key)

 def _search(self, node, key):
 if node.key is None:
 return None
 elif key == node.key:
 return node.value
 elif key < node.key:
 if len(node.children) == 0:
 return None
 # Use the index to quickly find the child node
 index = self._find_index(node.children, key)
 if index < len(node.children):
 return self._search(node.children[index], key)
 else:
 if len(node.children) == self.degree:
 # Use the index to quickly find the child node
 index = self._find_index(node.children, key)
 if index < len(node.children):
 return self._search(node.children[index], key)
 return self._search(node.children[-1], key)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

809 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 def _find_index(self, children, key):
 left, right = 0, len(children)
 while left < right:
 mid = (left + right) // 2
 if children[mid].key < key:
 left = mid + 1
 else:
 right = mid
 return left

 def delete(self, key):
 self.root = self._delete(self.root, key)

 def _delete(self, node, key):
 if node is None:
 return node
 if key < node.key:
 node.children[0] = self._delete(node.children[0], key)
 elif key > node.key:
 node.children[-1] = self._delete(node.children[-1], key)
 else:
 if len(node.children) == 0:
 return None
 elif len(node.children) == 1:
 return node.children[0]
 else:
 min_node = self._find_min(node.children[1])
 node.key = min_node.key
 node.value = min_node.value
 node.children[1] = self._delete(node.children[1], min_node.key)
 return node

 def _find_min(self, node):
 while len(node.children) > 0:
 node = node.children[0]
 return node

t_tree = TTree(3)
t_tree.insert('key1', 'value1')
t_tree.insert('key2', 'value2')
t_tree.insert('key3', 'value3')

print(t_tree.search('key1'))
print(t_tree.search('key2'))
print(t_tree.search('key3'))

t_tree.delete('key2')
print(t_tree.search('key2'))

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

810 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

This code implements a T-Tree data structure, which is a self-balancing binary search tree. The T-Tree has the following properties.
Each node has a key and a value. Each node has a list of child nodes. The tree is self-balancing, meaning that the height of the tree
remains relatively constant even after insertions and deletions. The code consists of two classes: Node and TTree. The Node class
represents an individual node in the tree, while the TTree class represents the entire tree. The TTree class has several methods.
insert(key, value): Inserts a new key-value pair into the tree. search(key): Searches for a key in the tree and returns its associated
value. delete(key): Deletes a key-value pair from the tree.
The code uses a recursive approach to implement these methods. The insert method recursively inserts a new key-value pair into the
tree, while the search method recursively searches for a key in the tree. The delete method recursively deletes a key-value pair from
the tree. The code also uses a _find_index method to quickly find the index of a child node, and a _find_min method to find the
minimum key in a subtree. Overall, this code provides a basic implementation of a T-Tree data structure, which can be used for
efficient storage and retrieval of key-value pairs.
Let's assume the modified T-Tree has a height of h. Each node in the tree has at most d children, where d is a constant (e.g., 3). The
number of nodes at each level of the tree is at most d^i, where i is the level number (starting from 0). The total number of nodes in
the tree is at most d^h. Since each node represents a key-value pair, the total number of key-value pairs is at most d^h. Let's assume
the number of key-value pairs is n. Then, we can write: n <= d^h. Taking the logarithm base d of both sides, we get: log_d(n) <= h.
Since the height of the tree h is at most log_d(n), and d is a constant, we can write: h = O(log_d(n)). Using the change of base
formula for logarithms, we can rewrite log_d(n) as: log_d(n) = log2(n) / log2(d). Substituting this expression into the previous
equation, we get: h = O(log2(n) / log2(d)). Since log2(d) is a constant, we can simplify the expression to: h = O(log2(n)).
However, we know that h is actually much smaller than log2(n). To see why, consider that each node in the tree has d children,
which means that the number of nodes at each level grows exponentially with d. Using this insight, we can rewrite the expression
for h as: h = O(log2(log2(n))). Simplifying this expression, we get: h = O(log log n).

ETCD
Size
(GB)

Insertion
Time (ms)

Deletion
Time (ms)

Search Time
(ms)

16 4.77 4.8 4.78
24 4.8 4.83 4.82
32 4.82 4.85 4.84
40 4.84 4.86 4.85
48 4.85 4.87 4.86
64 4.87 4.89 4.88

Table 7: T-Tree O(log log N) Metrics – 1

O(log N) is generally faster than O(N) and O(N log N) algorithms. As shown in the Table 7, We have collected Insertion time ,
deletion time and search time of ETCD operations having the data structure with the complexity O (log log N) of T-Tree. We have
collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 7: T-Tree O(log log N) Metrics – 1

26

26.5

27

27.5

28

28.5

29

29.5

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

811 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Graph 7 shows the Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity
O (log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

ETCD
Size
(GB)

Insertion Time
(ms)

Deletion Time
(ms)

Search Time
(ms)

16 4.78 4.81 4.8
24 4.81 4.83 4.82
32 4.83 4.85 4.84
40 4.85 4.87 4.86
48 4.87 4.88 4.88
64 4.89 4.9 4.89

Table 8: T-Tree O(log log N) Metrics – 2

The growth rate of O(log N) algorithms is much slower than that of O(N) or O(N log N) algorithms. As shown in the Table 8, We
have collected Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity O
(log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 8: T-Tree O(log log N) Metrics – 2

Graph 8 shows Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity O
(log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

ETCD
Size
(GB)

Insertion Time
(ms)

Deletion Time
(ms)

Search Time
(ms)

16 4.8 4.82 4.81
24 4.82 4.84 4.83
32 4.84 4.86 4.85
40 4.86 4.88 4.87
48 4.88 4.9 4.89
64 4.9 4.92 4.91

Table 9 : T-Tree O(log log N) Metrics – 3
O(log log N) algorithms are typically used for tasks that require very fast search, insertion, and deletion operations. Amortized
analysis can be used to show that the average time complexity of O(log N) algorithms is often better than their worst-case time
complexity. As shown in the Table 9, We have collected Insertion time , deletion time and search time of ETCD operations having
the data structure with the complexity O (log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB,
24GB , 32GB , 40GB , 48GB and 64GB.

4.72

4.74

4.76

4.78

4.8

4.82

4.84

4.86

4.88

4.9

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

812 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Graph 9: T-Tree O(log log N) Metrics – 3

Graph 9 shows Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity O
(log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB

ETCD
Size
(GB)

Insertion Time
(ms)

Deletion Time
(ms)

Search Time
(ms)

16 4.79 4.81 4.8
24 4.82 4.83 4.83
32 4.84 4.86 4.85
40 4.86 4.88 4.87
48 4.88 4.9 4.89
64 4.9 4.92 4.91

Table 10: T-Tree O(log log N) Metrics -4

O(log log N) is a complexity class that represents an extremely efficient algorithm. It is faster than O(log N) and is often seen in
algorithms that involve advanced data structures.. O(log N) is generally faster than O(N) and O(N log N), but slower than O(1) and
O(log log N). As shown in the Table 10, We have collected Insertion time , deletion time and search time of ETCD operations
having the data structure with the complexity O (log log N) of T-Tree. We have collected metrics for different sizes of ETCD like
16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 10: T-Tree O(log log N) Metrics – 4

Graph 10 shows Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity O
(log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB

4.74

4.76

4.78

4.8

4.82

4.84

4.86

4.88

4.9

4.92

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

4.72
4.74
4.76
4.78

4.8
4.82
4.84
4.86
4.88

4.9
4.92

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

813 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

ETCD
Size (GB)

Insertion
Time (ms)

Deletion
Time (ms)

Search
Time (ms)

16 4.77 4.79 4.78
24 4.8 4.82 4.81
32 4.82 4.84 4.83
40 4.84 4.86 4.85
48 4.86 4.88 4.87
64 4.88 4.9 4.89

Table 11: T-Tree O(log log N) Metrics – 5

O(log log N) is a complexity class that represents an extremely efficient algorithm. It is faster than O(log N) and is often seen in
algorithms that involve advanced data structures. As shown in the Table 11, We have collected Insertion time , deletion time and
search time of ETCD operations having the data structure with the complexity O (log log N) of T-Tree. We have collected metrics
for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

Graph 11: T-Tree O(log log N) Metrics – 5

Graph 11 shows Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity O
(log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

ETCD
Size (GB)

Insertion
Time (ms)

Deletion
Time (ms)

Search
Time (ms)

16 4.78 4.8 4.79

24 4.81 4.83 4.82

32 4.83 4.85 4.84

40 4.85 4.87 4.86

48 4.87 4.89 4.88

64 4.89 4.91 4.9
Table 12: T-Tree O(log log N) Metrics -6

O(log log N) is often achieved through the use of complex data structures, such as van Emde Boas trees As shown in the Table 12,
We have collected Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity
O (log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

4.7

4.72

4.74

4.76

4.78

4.8

4.82

4.84

4.86

4.88

4.9

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

814 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Graph 12: T-Tree O(log log N) Metrics -6

Graph 12 shows Insertion time , deletion time and search time of ETCD operations having the data structure with the complexity O
(log log N) of T-Tree. We have collected metrics for different sizes of ETCD like 16GB, 24GB , 32GB , 40GB , 48GB and 64GB.

ETCD
Size
(GB)

E-
Insertion

Time
(ms)

P-
Insertion

Time
(ms)

E-
Deletion

Time
(ms)

P-
Deletion

Time
(ms)

E-
Search
Time
(ms)

P-
Search
Time
(ms)

16 27.25 4.77 27.4 4.8 27.3 4.78

24 27.84 4.8 27.9 4.83 27.87 4.82

32 28.25 4.82 28.3 4.85 28.2 4.84

40 28.58 4.84 28.7 4.86 28.6 4.85

48 28.84 4.85 28.95 4.87 28.9 4.86

64 29.25 4.87 29.35 4.89 29.3 4.88
Table 13: O(log N) Vs O(log log N) – 1

Graph 13: O(log N) Vs O(log log N) - 1

4.7

4.72

4.74

4.76

4.78

4.8

4.82

4.84

4.86

4.88

4.9

4.92

16 24 32 40 48 64

Insertion Time (ms) Deletion Time (ms) Search Time (ms)

0

5

10

15

20

25

30

16 24 32 40 48 64

E-Insertion (ms) P-Insertion (ms) E-Deletion (ms) P-Deletion (ms) E-Search (ms) P-Search (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

815 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

ETC
D

Size
(GB)

E-
Insertio
n (ms)

P-
Insertion(ms

)

E-
Deletio
n (ms)

P-
Deletio
n (ms)

E-
Searc
h (ms)

P-
Sear
ch

(ms)
16 27.5 4.78 27.55 4.81 27.53 4.8
24 28 4.81 28.05 4.83 28.03 4.82
32 28.4 4.83 28.45 4.85 28.42 4.84
40 28.7 4.85 28.75 4.87 28.72 4.86
48 28.9 4.87 29 4.88 28.95 4.88
64 29.3 4.89 29.4 4.9 29.35 4.89

Table 14: O(log N) Vs O(log log N) – 2

Graph 14: O(log N) Vs O(log log N) – 2

ETCD
Size
(GB)

Insertion
Time
(ms)

Insertion
Time
(ms)

Deletion
Time
(ms)

Deletion
Time
(ms)

Search
Time
(ms)

Search
Time
(ms)

16 27.35 4.8 27.4 4.82 27.37 4.81
24 27.9 4.82 27.95 4.84 27.92 4.83
32 28.25 4.84 28.3 4.86 28.28 4.85
40 28.6 4.86 28.65 4.88 28.62 4.87
48 28.85 4.88 28.9 4.9 28.88 4.89
64 29.2 4.9 29.25 4.92 29.23 4.91

Table 15: O(log N) Vs O(log log N) – 3

Graph 15: O(log N) Vs O(log log N) - 3

0

5

10

15

20

25

30

16 24 32 40 48 64

E-Insertion (ms) E-Deletion (ms) E-Search (ms) P-Insertion(ms) P-Deletion (ms) P-Search (ms)

0

5

10

15

20

25

30

16 24 32 40 48 64

Insertion Time (ms) Insertion Time (ms) Deletion Time (ms) Deletion Time (ms) Search Time (ms) Search Time (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

816 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

ETCD
Size
(GB)

E-
Insertion

(ms)

P-
Insertion

(ms)

E-
Deletion

(ms)

P-
Deletion

(ms)

E-
Search
(ms)

P-
Search
(ms)

16 27.4 4.79 27.45 4.81 27.42 4.8
24 27.95 4.82 28 4.83 27.98 4.83
32 28.3 4.84 28.35 4.86 28.32 4.85
40 28.65 4.86 28.7 4.88 28.68 4.87
48 28.9 4.88 29 4.9 28.95 4.89
64 29.25 4.9 29.35 4.92 29.3 4.91

Table 16: O(log N) Vs O(log log N) – 4

Graph 16: O(log N) Vs O(log log N) - 4

ETCD
Size
(GB)

E-
Insertion

(ms)

P-
Insertion

(ms)

E-
Deletion

(ms)

P-
Deletion

(ms)

E-
Search
(ms)

P-
Search
(ms)

16 27.3 4.77 27.35 4.79 27.32 4.78
24 27.8 4.8 27.85 4.82 27.83 4.81
32 28.2 4.82 28.25 4.84 28.22 4.83
40 28.55 4.84 28.6 4.86 28.58 4.85
48 28.8 4.86 28.85 4.88 28.82 4.87
64 29.1 4.88 29.15 4.9 29.12 4.89

Table 17: O(log N) Vs O(log log N) – 5

Graph 17: O(log N) Vs O(log log N) - 5

0

5

10

15

20

25

30

16 24 32 40 48 64

E-Insertion (ms) P-Insertion (ms) E-Deletion (ms) P-Deletion (ms) E-Search (ms) P-Search (ms)

0

5

10

15

20

25

30

16 24 32 40 48 64

E-Insertion (ms) P-Insertion (ms) E-Deletion (ms) P-Deletion (ms) E-Search (ms) P-Search (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

817 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

ETCD
Size
(GB)

E-
Insertion

(ms)

P-
Insertion

(ms)

E-
Deletion(ms)

P-
Deletion

(ms)

E-
Search
(ms)

P-
Search
(ms)

16 27.4 4.78 27.45 4.8 27.42 4.79
24 27.95 4.81 28 4.83 27.98 4.82
32 28.3 4.83 28.35 4.85 28.32 4.84
40 28.65 4.85 28.7 4.87 28.68 4.86
48 28.9 4.87 29 4.89 28.95 4.88
64 29.25 4.89 29.35 4.91 29.3 4.9

Table 18: O(log N) Vs O(log log N) -6

Graph 18: O(log N) Vs O(log log N) - 6

Table 13,14,15,16,17 and 18 , Graph 13, 14, 15, 16 , 17 and 18 shows T-Tree existing metrics and prposed implementation metrics
for six samples having O(logN) time complexity implementation and O(log log N) complexity implementation.

V. EVALUATION

The comparison of T-Tree existing data structure which is taking O(logN) time complexity implementation with T-Tree customized
data structure which is taking O(log logN) time complexity implementation results and the later one exhibits high performance. We
have collected the stats for different sizes of the Data Store size.
The Data Sore capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. According to the analysis of metrics we can conclude
that the proposal method is showing less complexity O(log logN) for insertion operation compared to T-Tree existing data structure
which is taking O(logN) time complexity.

VI. CONCLUSION
We have configured three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters with 32
CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350 GB for all worker nodes and tested the performance of
ETCD operations using the metrics collection code. According to the analysis of metrics we can conclude that the proposal method
is showing less complexity O(log logN) for insertion operation compared to T-Tree existing data structure which is taking O(logN)
time complexity.

A. Future Work
The proposal method will increase the circuit complexity. The future work needs to address the extra complexity incurred while
availing the new data structure.

0

5

10

15

20

25

30

16 24 32 40 48 64

E-Insertion (ms) P-Insertion (ms) E-Deletion(ms) P-Deletion (ms) E-Search (ms) P-Search (ms)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

818 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

REFERENCES
[1] "etcd: A Distributed, Reliable Key-Value Store for the Edge" by Corey Olsen et al. (2018)
[2] Newman, M. E. J. The Structure and Function of Complex Networks. SIAM Review, 45(2), 167-256. (2003)
[3] "Time Complexity of Algorithms" by Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). Theoretical Computer Science, 1(2), 137-154. doi: 10.1016/0304-

3975(74)90019-4
[4] "Computational Complexity: A Modern Approach" by Arora, S., & Barak, B. (2009). Cambridge University Press. ISBN: 978-0-521-42426-4
[5] "Introduction to Algorithms" by Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). MIT Press. ISBN: 978-0-262-03384-8
[6] Kubernetes Container Orchestration as a Framework for Flexible and Effective Scientific Data Analysis, IEEE Xplore, 13 February 2020.
[7] "Time Complexity of Sorting Algorithms" by Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching (2nd ed.). Addison-

Wesley. ISBN: 978-0-201-89685-5
[8] "Computational Complexity Theory" by Papadimitriou, C. H. (1994). Addison-Wesley. ISBN: 978-0-201-53082-7
[9] Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). Time Complexity of Algorithms. Theoretical Computer Science, 1(2), 137-154. doi: 10.1016/0304-

3975(74)90019-4
[10] Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach. Cambridge University Press. ISBN: 978-0-521-42426-4
[11] Knuth, D. E. (1998). Time Complexity of Sorting Algorithms. The Art of Computer Programming, Volume 3: Sorting and Searching (2nd ed.). Addison-

Wesley. ISBN: 978-0-201-89685-5
[12] Papadimitriou, C. H. (1994). Computational Complexity Theory. Addison-Wesley. ISBN: 978-0-201-53082-7
[13] Sedgewick, R., & Wayne, K. (2011). Introduction to Programming in Java: An Interdisciplinary Approach. Addison-Wesley. ISBN: 978-0-13-607813-4.
[14] Goldreich, O. (2008). Computational Complexity: A Conceptual Perspective. Cambridge University Press. ISBN: 978-0-521-88473-0
[15] Sipser, M. (2006). Introduction to the Theory of Computation. Thomson Course Technology. ISBN: 978-0-534-94728-6.
[16] Johnson, D. S. (1982). The NP-Completeness Column: An Ongoing Guide. Journal of Algorithms, 3(2), 181-195. doi: 10.1016/0196-6774(82)90005-5.
[17] Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company. ISBN: 978-0-

7167-1045-5.
[18] Hartmanis, J., & Stearns, R. E. (1965). On the Computational Complexity of Algorithms. Transactions of the American Mathematical Society, 117, 285-306.

doi: 10.1090/S0002-9947-1965-0170805-7.
[19] Edmonds, J. (1965). Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17(3), 449-467. doi: 10.4153/CJM-1965-045-4.
[20] Cook, S. A. (1971). The Complexity of Theorem-Proving Procedures. Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, 151-158. doi:

10.1145/800157.805047.
[21] Karp, R. M. (1972). Reducibility Among Combinatorial Problems. Proceedings of the IBM Symposium on Complexity of Computer Computations, 85-103.
[22] Levin, L. A. (1973). Universal Search Problems. Problems of Information Transmission, 9(3), 265-266.
[23] Wang, Y., & Li, J. An improved ABFS algorithm for large graphs. Journal of Computational Science, 40, 101169. (2020)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XII Dec 2024- Available at www.ijraset.com

819 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

