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Abstract: This paper reviews recent advancements and applications of hydrological models for effective water resource 
management. Hydrological models have evolved significantly over the past four decades, enhancing their ability to simulate 
complex hydrological processes with improved spatial and temporal precision. Advances such as the integration of high-
resolution data, adaptive grid resolutions, and data assimilation techniques like the Ensemble Kalman Filter have improved 
model accuracy, especially in flood prediction and catchment-scale hydrological assessments. However, challenges persist, 
including high computational demands, data scarcity in certain regions, and limitations in modelling nonlinear flow dynamics in 
diverse environments. The review underscores the need for continued research, particularly in machine learning and remote 
sensing, to refine model capabilities. These advancements will be crucial for addressing the impacts of climate change on water 
resources and supporting sustainable watershed management strategies. 
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I. INTRODUCTION 
This study presents a comprehensive literature review to understand and highlight the significance of water balance studies 
conducted across the world and its drawbacks. Estimating water yield and water balance within a river catchment is essential for 
determining water stocks across different components of the hydrologic cycle and understanding fluxes between them (Zhang et al., 
2024). This method is vital for sustainable water resource management at the watershed level. Evaluating water resources at scales 
smaller than the watershed allows for effective regional watershed management. Knowing the volume of water within different 
hydrologic cycle components aids in (a) sustainably managing water resources and preventing overuse and pollution, (b) assessing 
climate change impacts on water availability, (c) analysing how land-use changes affect water resources, (d) identifying recharge 
zones, and (e) supporting rainwater harvesting efforts (Sidle, 2021). This foundational knowledge supports effective planning and 
resource management by addressing the dynamic interactions within the hydrological cycle at local and regional levels. 
Hydrological modelling provides an effective approach for consistently analysing the long-term hydrologic patterns at a catchment 
or basin scale and conducting various behavioural studies (Su et al., 2024). These hydrologic components are represented 
mathematically and known as hydrological models. Hydrological models can simulate the physical processes governing the 
movement of water, sediment, chemicals, and nutrients within catchments and help quantify the impacts of human activities on these 
dynamics (Anand et al., 2018). The need to accurately determine runoff volumes from specific events has been a primary driver 
behind the development of rainfall-runoff models, which are essential for predicting and managing water flow in response to 
rainfall. Now a days, it is difficult to address a water resource issue without the application of a hydrologic model (Sidle, 2021). 
Hydrologic models have become essential tools for solving a wide range of ecological and water resource challenges, from the 
design and development stages to planning and managing available water resources effectively. Their versatility and evolving 
precision have made them central to sustainable water resource management. A wide range of simulation models exists, and 
selecting the most suitable model involves balancing data needs with implementation costs. The value of a hydrologic model lies in 
its ability, when appropriately selected and calibrated, to extract the most accurate insights from available data, providing reliable 
information essential for sustainable water resource management.  
Hydrological models have become increasingly sophisticated with advancement in computational power and the enhanced 
availability of spatial and temporal data from satellite technology (Sidle, 2021). The integration of remote sensing data has 
revolutionized hydrological modelling by providing large-scale, high-resolution data on key parameters such as rainfall, land use, 
soil moisture, and snow cover. Remote sensing technologies, such as satellites and drones, offer continuous spatial and temporal 
coverage, making them invaluable for monitoring and modelling hydrological processes, especially in areas with limited ground-
based observations. Remote sensing data are particularly useful in physically-based models, which require detailed information 
about the spatial variability of hydrological processes (Naha et al., 2016).  
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For example, satellite-derived precipitation data can be used to improve rainfall estimates in remote or ungauged catchments. 
Despite the advances in remote sensing, challenges remain in integrating these data into hydrological models. One of the main 
issues is the resolution of the data, which may not always match the scale of the model (Chen et al., 2021). Additionally, 
uncertainties in remote sensing measurements, such as errors in estimating precipitation or soil moisture, can affect model accuracy. 
Therefore, further research is needed to improve data assimilation techniques and develop methods for validating remote sensing 
data against ground-based observations (Naha et al., 2016). This review work has been grouped into different sections based on the 
classification of hydrological modelling approaches, their applications and advances, and challenges and limitations. 
 

II. HYDROLOGICAL MODELLING APPROACHES 
A hydrological model is a simplified representation of real-world hydrological processes, utilized to predict water behaviour and 
manage water resources effectively. These models can be categorized based on their structure and the spatial processes they 
simulate, ranging from small-scale physical models to complex mathematical and computer simulations (Chen et al., 2021). 
Hydrological models are primarily classified into empirical/statistical, conceptual, and physical types (Devia et al., 2015; Sidle, 
2021). Empirical models depend solely on observed data, without considering underlying hydrological processes, making them 
data-driven. Conceptual models, in contrast, incorporate key hydrological processes and parameters, while physical models use 
mathematical equations to represent real-world phenomena in an idealized form. Models are further categorized by spatial 
representation—lumped, semi-distributed, or distributed—and by their operational nature as either deterministic or stochastic (Devia 
et al., 2015).  
 
A. Empirical Models 
Empirical models are observation-oriented, or data-driven models, rely entirely on information from existing datasets without 
directly incorporating the features or physical processes of the hydrological system. These models, often called “black box” models, 
use mathematical relationships derived from historical input and output data rather than actual catchment processes. As a result, they 
work within specific data boundaries and may not apply outside these limits. The unit hydrograph is a classic example of this 
approach, as it establishes the relationship between rainfall and runoff without accounting for internal catchment dynamics. 
Statistically based models, such as regression and correlation techniques, aim to define functional relationships between inputs and 
outputs. Machine learning methods, like artificial neural networks (ANNs) and fuzzy regression, are increasingly used in 
hydrological modelling to capture complex patterns in data-driven models.  
Additionally, empirical models like the Curve Number method, ANNs, and regression techniques rely entirely on data and are 
typically employed in two key applications: (1) modelling rainfall–runoff relationships from existing data, ANNs; (Srinivasulu and 
Jain, 2006) and (2) estimating runoff in ungauged catchments by transferring empirical parameters from nearby gauged catchments 
with similar hydrological characteristics  (Blöschl, 2006). Recent advancements have enabled these models to incorporate some 
aspects of catchment characteristics (Asadi et al., 2019; Blöschl, 2006), enhancing their utility in data-scarce or ungauged regions.  
However, these models often oversimplify precipitation distribution and struggle to capture complex physical processes within a 
catchment, which can introduce errors. They tend to perform well in predicting downstream discharge but usually lack detailed 
spatial information about within-catchment processes (Sitterson et al., 2018). Despite improvements in representing non-linear 
rainfall–runoff responses (Sivakumar et al., 2001), empirical models remain limited for predicting outcomes in complex catchments 
with diverse land cover and geomorphology, and they often cannot accurately reflect the impacts of land-use changes (Sidle, 2021). 
 
B. Conceptual Models 
Conceptual hydrological models connect various water cycle components within a catchment area using straightforward, functional 
algorithms that simulate the main hydrologic processes. These algorithms include parameters that may not correspond directly to 
physical measurements and thus require calibration to align model outputs with observed data hence considered as “grey box”. 
Conceptual models often use multiple “reservoirs” arranged in series, representing the flow and storage of water through the 
atmosphere, surface, and subsurface layers, including soil and groundwater systems (Wagener et al., 2010).  
The Stanford Watershed Model (SWM), developed by (Crawford and Linsley, 1966), paved a way for numerous conceptual 
hydrological models and platforms. Recently, TOPMODEL, a semi-distributed conceptual model introduced by (Beven and Kirkby, 
1979), has become widely used in hydrological studies. Its flexible time-step structure, added in later developments, addressed some 
of the earlier limitations in fixed time-stepping seen in similar models, making it adaptable to a broader range of applications (Clark 
and Kavetski, 2010).  
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The lumped structure of this model effectively represents hydrological pathways, providing simplicity in calculations. The studies 
by (Phuong et al., 2018; Yokoo et al., 2001) have shown that this type of models often performs better than more complex models. 
However, these models do not account for the detailed catchment characteristics and spatial variability.  
(Wagener et al., 2010) showed that calibrating conceptual hydrological models usually requires extensive meteorological and 
hydrological data to assess how sensitive different parameters are to changes in the system. Calibration is typically done by 
adjusting model parameters to fit historical data, allowing the model outputs to match observed system behaviour. However, this 
process can complicate analysis, especially when inferring the impacts of land-use changes (Beven and O’Connell, 1982). For 
highly parameterized conceptual models or complex process-based models, sensitivity analysis is essential. This step, often 
involving a comparison of various approaches, helps optimize model performance and identify any unnecessary parameters before 
starting the modelling process (Song et al., 2015). 
 
C. Physically-based models 
Physically-based models, also known as process-based or mechanistic models, are designed to represent the fundamental physical 
processes governing hydrological systems within a catchment. Unlike empirical or conceptual models, which rely on simplified 
relationships or aggregated representations, physical models use mathematical equations to simulate real-world hydrological 
processes, including the conservation of mass, energy, and momentum. These models rely on state variables, measurable quantities 
that vary over time and space, such as water depth, soil moisture, and flow velocity to describe water movement through the system. 
Physically-based models can integrate parameters with direct physical interpretations, making it possible to simulate a wide range of 
hydrological conditions and predict behaviour under diverse scenarios. This method often uses finite difference equations to model 
water movement between surface and subsurface layers, ensuring that critical interactions, such as infiltration, percolation, and 
surface runoff, are accounted in detail (Abbot et al., 1986). These models are highly adaptable and, when properly calibrated, can 
provide detailed insights into the complex interactions within hydrological systems, offering a robust framework for scientific and 
practical applications in water resource management. 
These models typically require extensive data inputs describing catchment characteristics such as initial soil moisture, topography, 
river network dimensions, and topology. Because of these detailed requirements, physically-based models often demand substantial 
computational resources and detailed field data, making them complex to implement and calibrate (Beven and O’Connell, 1982). 
Additionally, they also face criticism due to their high data demands, nonlinear behaviour, and issues related to scale compatibility 
(Beven, 2012; Grayson et al., 1992). 
Recent advances in remote sensing and computational power have solved the problem of extensive data inputs to physically-based 
models and aided to simulate processes across scales and provided information even beyond the physical boundaries of the data 
inputs, which is invaluable for understanding responses to external influences like climate change or land-use change (Blöschl, 
2006; Sidle et al., 2017). Some popular examples of physically-based models include MIKE-SHE, HEC-HMS and NOAH. These 
models can effectively simulate the exchange of water and energy balances between plant-land-atmosphere interaction in catchment 
involving sediments, nutrients and chemicals. 
 

III. MODEL APPLICATIONS AND ADVANCES 
(Thornthwaite and Mather, 1957) pioneered the water balance method to help assess water needs for irrigation and other related 
requirements. Expanding on this approach, (Vasiliades et al., 2011) utilized a water balance-derived drought index to evaluate 
drought patterns in Greece’s Pinios River Basin. Similarly, (Imteaz et al., 2012) used a water balance model to determine the ideal 
size for rainwater tanks for domestic use in southwest Nigeria. In another application, (Zeleke and Wade, 2012) estimated 
evapotranspiration by combining soil water balance data with weather and crop information. (Campos et al., 2016) also applied this 
method by integrating water balance modelling with evapotranspiration data to gauge soil water availability in vineyards. (Plagnes 
et al., 2017) used water balance modelling to guide management strategies for a uranium mill effluent system in northern 
Saskatchewan, Canada. (Xia et al., 2022) incorporated irrigation processes into land surface-hydrological models to improve the 
accuracy of evapotranspiration estimates and highlights the redistribution of water resources due to irrigation in Yangtze River 
Basin, China. (Jasrotia et al., 2009) demonstrated that using Thornthwaite and Mather’s models, enhanced by remote sensing and 
GIS, effectively detects moisture surplus and deficit within watersheds. (Loucks et al., 2017) further highlighted the value of water 
balance modelling for planning, designing, and operating water systems, emphasizing its importance in effective water resource 
management. 
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(Abbaspour et al., 2015) developed a comprehensive hydrological model of Europe using the SWAT (Soil and Water Assessment 
Tool) model, allowing them to measure various hydrologic components at a sub-basin scale on a monthly basis. (Visakh et al., 2019) 
also applied the SWAT model to simulate long-term water balance components across river basins in Eastern India’s delta districts, 
providing insight into the regional hydrology. (Siderius et al., 2013) combined four hydrological models named: VIC, JULES, 
LPJmL, and SWAT, with regional climate models to assess snowmelt contributions to streamflow in the Ganges Basin on both 
seasonal and annual scales. (Singh et al., 1999) used the MIKE SHE model to compute water balance in a small catchment, aiming 
to design an irrigation plan. (Rahim et al., 2012) also employed MIKE SHE to simulate water balance and various hydrological 
components for the Paya Indah Wetlands watershed. (Su et al., 2024) employed two models (VIC and NOAH-MP) for improving 
the runoff simulation through calibration in the Western United States. (Meles et al., 2024) coupled Hydrus-1D and KINEROS2 
model to simulate overland and subsurface flow at catchment scale. This coupled modelling framework effectively addressed the 
complexities of hydrological processes by utilizing a dynamic time-stepping approach and boundary condition switching, which 
enhances the simulation of water movement across different domains. 
Recently, data assimilation (DA) techniques are used in hydrological modelling as they merge observational data with process-based 
models, enhancing prediction accuracy and reducing uncertainty. Methods like the Ensemble Kalman Filter (EnKF) and advanced 
deep learning approaches are commonly used to handle hydrological system complexities. EnKF, for example, has shown 
effectiveness in updating model states and parameters, especially in snow-dominated regions, where adjusting hyperparameters 
plays a crucial role in improving forecast accuracy (Sabzipour et al., 2023). (Wang et al., 2024) incorporated soil moisture and leaf 
area index data into farmland hydrological models to significantly improve the simulation of water and carbon fluxes, with dual-
factor assimilation outperforming single-factor approaches. (Zhang et al., 2024) have applied an innovative deep learning methods 
to address non-linear hydrological relationships, enhancing both computational efficiency and model precision. These advancements 
underscore the versatility and value of DA techniques in hydrological sciences, demonstrating their capacity to address a wide range 
of challenges in modelling and forecasting (Castelli, 2023). 
Another data assimilation technique Direct Insertion (D.I.) is used in hydrological modelling to improve prediction accuracy by 
directly incorporating observational data into model states. This approach is particularly effective for indirect observations, like 
snow cover area and soil moisture, where it has sometimes outperformed techniques such as EnKF in certain applications (Naha et 
al., 2016). D.I enables real-time updates using satellite-derived data, making it valuable in dynamic environments with varying 
spatial and temporal conditions (Castelli, 2023; Pathiraja et al., 2016). Its effectiveness is highlighted by its ability to reduce 
uncertainties in model parameters and enhance the representation of processes like snowmelt runoff, which is crucial for improved 
water resource management (Naha et al., 2016). Recent advancements have introduced hybrid models, which integrate different 
approaches like machine learning or artificial intelligence with traditional hydrological models to enhance flexibility and accuracy 
in hydrological simulations to understand the complex interactions within a catchment (Wang et al., 2021).  
 

IV. CHALLENGES AND LIMITATIONS 
Although hydrological models have advanced significantly in recent decades, several challenges remain. One of the primary issues 
is the uncertainty associated with model predictions. Uncertainties arise from various sources, including errors in input data, 
limitations in the model structure, and the inherent variability of hydrological processes (Devia et al., 2015). For example, rainfall is 
one of the most critical inputs in hydrological models, yet it is notoriously difficult to measure accurately due to spatial and temporal 
variability. Similarly, the heterogeneity of soil properties (Yang et al., 2018) and land use can introduce uncertainties into models 
that simulate infiltration and runoff processes (Anand et al., 2018). 
Another challenge is the scaling issue. Hydrological processes operate at different spatial and temporal scales, from small-scale 
infiltration events to large-scale river basin dynamics. Capturing these processes across scales is difficult, particularly in physically-
based models, which require detailed data for each spatial unit (Beven, 2012). The choice of scale also affects the model's 
computational requirements, with finer-resolution models demanding more processing power and memory. 
Calibration and validation are other areas of concern in hydrological modelling. Many models require calibration to ensure that their 
predictions match observed data. However, calibration is often a trial-and-error process, and it can be difficult to achieve good 
results in ungauged basins where no historical data are available (Wagener et al., 2010). Validation, which involves testing the 
model's performance on independent datasets, is equally challenging, especially when data are scarce or incomplete. 
The river routing models, that defines how the water will flow in a river within a catchment, are closely integrated with specific 
land-surface hydrological models.  
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This restricts to have a discharge at a coarser resolution ~ 50 km. However, there are some open models also available to route 
runoff at variable grid resolution, but may oversimplify the kinematic or diffusive wave equations, leading to inaccuracies in 
specific areas (Shaad, 2018). High-resolution schemes require substantial data inputs, including detailed terrain, river network data, 
and calibration datasets. This can make them resource-intensive, limiting accessibility and feasibility for regions with limited data. 

V. CONCLUSIONS 
In conclusion, hydrological and river-routing models have become indispensable tools for understanding, predicting, and managing 
water resources. Over the past four decades, the field has seen considerable advancements driven by increased computational power, 
the availability of high-resolution spatial and temporal data, and the integration of complex physical processes into models. Modern 
hydrological models, with their ability to capture dynamic interactions between surface water, groundwater, and atmospheric 
variables, are now more capable than ever of representing complex hydrological systems across various scales. Models such as 
MIKE SHE, VIC and NOAH demonstrate these advances by integrating variable flow velocities, detailed topographic data, and 
dynamic wave equations, enhancing their accuracy in floodplain and watershed modelling. Additionally, the development of river-
routing schemes also faces limitations. The high demand for extensive datasets and computational resources can restrict their 
application in data-scarce regions and makes real-time usage challenging. Moreover, while models have become more sophisticated, 
capturing intricate hydrological behaviours, they still struggle with nonlinear flow dynamics in complex environments, such as 
floodplains or areas with substantial subsurface flow. Scale dependency remains another challenge, as translating global models to 
local scales without losing accuracy or increasing computational burden is an ongoing difficulty. Moreover, continued innovation in 
data assimilation, machine learning, and high-resolution remote sensing holds promise for addressing some of these challenges. 
Combining these advancements with the adaptive capabilities of open-source platforms could make hydrological models and river-
routing models more accessible, flexible, and accurate, even in data-limited regions. As the impacts of climate change and 
urbanization on hydrological systems intensify, the importance of further developing these models for effective water management 
will only grow. By enhancing model precision and reducing uncertainties, hydrological and river-routing models will remain central 
to water resource planning, disaster mitigation, and sustainable development efforts worldwide. 
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