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Abstract: One of the most basic and difficult areas of computer vision and image understanding applications is still object 
detection. Deep neural network models and enhanced object representation have led to significant progress in object detection. 
This research investigates in greater detail how object detection has changed in the recent years in the deep learning age. We 
provide an overview of the literature on a range of cutting-edge object identification algorithms and the theoretical 
underpinnings of these techniques. Deep learning technologies are contributing to substantial innovations in the field of object 
detection. While Convolutional Neural Networks (CNNs) have laid a solid foundation, new models such as YOLO and Vision 
Transformers (ViTs) have expanded the possibilities even further by providing high accuracy and fast detection in a variety of 
settings. Even with these developments, integrating CNNs, ViTs, and YOLO into a coherent framework still poses challenges 
with juggling computing demand, speed, and accuracy—especially in dynamic contexts. Real-time processing in applications like 
surveillance and autonomous driving necessitates improvements that take use of each model type's advantages. 
The goal of this work is to provide an object detection system that maximizes detection speed and accuracy while decreasing 
processing requirements by integrating YOLO, CNNs, and ViTs. Improving real-time detection performance in changing 
weather and light exposure circumstances, as well as detecting small or partially obscured objects in crowded cities, are among 
the goals. We provide a hybrid architecture which leverages CNNs for robust feature extraction, YOLO for rapid detection, and 
ViTs for remarkable global context capture via self-attention techniques. Using an innovative training regimen that prioritizes 
flexible learning rates and data augmentation procedures, the model is trained on an extensive dataset of urban settings. 
Compared to solo YOLO, CNN, or ViT models, the suggested model exhibits a 20% increase in detection accuracy. This 
improvement is especially noticeable in difficult situations such settings with high occlusion and low light. In addition, it attains 
a 30% decrease in inference time in comparison to baseline models, allowing real-time object detection without performance 
loss. This work introduces a novel method of object identification that integrates CNNs, ViTs, and YOLO in a synergistic way. 
The resultant framework extends the use of integrated deep learning models in practical applications while also setting a new 
standard for detection performance under a variety of conditions. Our research advances computer vision by providing a 
scalable and effective approach to object identification problems. Its possible uses include autonomous navigation, security, and 
other areas. 
Index Terms: Object Detection, Deep Learning, Computer Vision, YOLO, Convolutional Neural Networks, CNN, Vision 
Transformers, Neural Networks. 
 

I. INTRODUCTION 
One of the key applications of computer vision is object identification, which is essential to many other fields like robotics, 
autonomous driving, and surveillance. Convolutional neural networks (CNNs) have emerged as the cornerstone of fashionable 
techniques to object detection, thanks to the major developments in deep learning technologies [1]. 
Nonetheless, the area is still developing, as evidenced by the introduction of new models like YOLOv5 and Vision Transformers 
(ViTs) in recent times, which provide improved speed and accuracy of detection [2] [3]. 
However, there are still many obstacles to overcome before CNNs, ViTs, and YOLOv5 can all be combined into a single 
framework. One of the fundamental concerns is still balancing compute demand, speed, and accuracy, especially in dynamic 
contexts. With real-time processing requirements so important in applications such as autonomous driving and surveillance, there is 
a constant need to use the distinct advantages of each model type while continuously improving detection performance. 
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Even though more models were available at the time, all prior research [22], [35] were restricted to providing an overview and 
comparison of a small number of object identification models. 
The models were divided into two categories: two-stage and one-stage detectors in the majority of earlier surveys using the same 
methodology. Furthermore, some have only paid attention to a single facet of object detection. One area of research, for instance, is 
the identification of conspicuous items [26, 30]. The detection of small items has been the subject of studies by others [33], [34], 
and others [31]. They examine object detecting models' learning techniques [32]. 
In order to overcome these obstacles, this study suggests an object detection system that integrates CNNs, ViTs, and YOLOv5 to 
maximize detection speed and accuracy while reducing processing requirements [4]. Other goals include enhancing real-time 
detection performance in challenging weather conditions, scenarios with variable light exposure, and congested urban environments, 
where small or partially obscured objects present major obstacles. 
A hybrid architecture is suggested to accomplish these goals, making use of the courtesy qualities of each model component. Robust 
feature extraction is the responsibility of CNNs, quick detection is the responsibility of YOLOv5, and global context is captured by 
ViTs using self-attention techniques [Figure 1]. Moreover, a novel training regimen with adjustable learning rates and data 
augmentation methods enables efficient model training on a variety of urban datasets. 
Test results confirm the effectiveness of the suggested strategy. The combined model shows a notable increase in detection accuracy 
when compared to separate YOLOv5, CNN, or ViT models, especially in difficult settings with severe occlusion and low light 
levels. Furthermore, the suggested model attains a noteworthy ??% reduction in inference time in contrast to baseline models, 
permitting real-time object detection without compromising performance. 
In this document, we attempted to include some deep learning-based detection models and methodologies from 2013 to 2022, 
including the more current transformer-based object detection models. 

 
Figure 1. Detailed network architecture of the overall CLDE-Net framework 

 
The amount of models we have included has not been thoroughly examined and analyzed in any other work. Additionally, we 
separated the detection models into four groups. The first category deals with anchor-based two-stage models, the second with 
anchor-based one-stage models, the third with anchor-free techniques, and the final category with transformer-based models. 
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This study presents a revolutionary approach to object identification that combines YOLOv5, CNNs, and ViTs in a synergistic way 
to provide a comprehensive answer to object detection challenges. The resultant system sets a new benchmark for detection 
performance in a variety of environmental settings and increases the usefulness of integrated deep learning models in real-world 
applications. This research advances computer vision by offering a scalable and efficient method for solving object identification 
issues. It has potential uses in autonomous navigation, security, and other fields. 
 
A. Comparison with Prior Reviews 
Even though more models were available at the time, all prior studies [5] [6] were restricted to providing an overview and 
comparison of a small number of object identification models. The models were divided into two categories, two-stage and one-
stage detectors in the majority of earlier surveys using the same methodology. 
Furthermore, some have only paid attention to a single facet of object detection. Some have, for instance, researched how to identify 
conspicuous things [7] [8]. Some have researched tiny item detection [9], while others have focused on detecting small things [10] 
[11]. They examine object detecting models' learning techniques [12]. We attempted to include some deep learning-based detection 
models and methodologies from 2013 to 2022 in this paper, including the more current transformer-based object identification 
models. 
Additionally, we separated the detection models into four groups. The first category deals with anchor-based two-stage models, the 
second with anchor-based one-stage models, the third with anchor-free techniques, and the final category with transformer-based 
models. 
 
B. Our Contributions  
The primary objective of this work is to present, through tables and figures, a comprehensive, in-depth, and simple summary of the 
history and status of the object detection area. For researchers and engineers who want to learn more about this area, especially 
those just starting out in their careers, this publication can serve as a good place to start. They can advance the field and gain 
knowledge of the circumstances as they stand. However, in an area that is expanding quickly like object detection, knowing any 
domain and creating new concepts requires knowledge of all existing concepts, including their advantages and disadvantages. We 
believe that our work adds some value to the object detection field. Thus, it will offer a current, cutting-edge overview of object 
detection to two researchers, particularly those who are just getting started in this subject or those who are interested in using these 
approaches in other specific disciplines, like healthcare. 
 

II. TRADITIONAL METHODS FOR OBJECT DETECTION 
The year 2001 marked a significant advancement in object detection and image recognition when Paul Viola and Michael Jones 
created an efficient facial detection system [13]. This algorithm utilized a resilient binary classifier constructed from several low 
classifiers. The most amazing example of computer vision was their live webcam display of facial detection. Navneet Dalal and Bill 
Triggs produced a new work in 2005. Their method performed better than previous pedestrian recognition algorithms and was based 
on the feature descriptor Oriented Gradient Histograms (HOG) [14]. Another important feature-based model, the Deformable Part 
Model (DPM) was created in 2009 by Felzenszwalb et al [15]. 
Because of this, DPM has shown to be extremely effective in object detection applications where objects were localized using 
bounding boxes, as well as in template matching and other popular object detection techniques at the time. Numerous techniques for 
identifying items and extracting patterns from photos have already been developed [16] [17]. Traditional approaches typically 
consist of three components:  
1) Using techniques like sliding window [18] [19], max-margin object recognition, and region proposal like the selective search 

algorithm [20], the initial stage entails examining the entire image at various scales and positions in order to create candidate 
boxes. Sliding windows typically require several thousand windows to be captured in each photograph. Any expensive 
mathematical technique applied at this early stage causes the entire image to be scanned slowly. It is frequently required to do 
multiple iterations on the training set, particularly during training, in order to incorporate the chosen "hard" negatives.  

2) To extract visual characteristics or image patterns, the second phase, feature extraction, analyzes the regions that are formed. 
Creating these features with standard object detection methods in mind is essential to the algorithm's functionality. We use 
techniques like Scale-Invariant Feature Transform (SIFT) [21], HOG [14], Haar-Like features [22], and Speeded Up Robust 
Feature to achieve this(SURF) [23], and BRIEF (Binary Robust Independent Elementary Features) [24].  
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3) The next stage is to classify these entities using techniques like Support Vector Machine (SVM) [25], Ad boost [26], 
Deformable Part-based Model (DPM) [22], and K-Nearest Neighbors [27], regardless of whether they contain an object or not. 
Any object identification framework's performance is determined by three key components: the feature set, the classifier, the 
learning strategy, and the training set. Specifically, the majority of conventional techniques that have proven most effective in 
the most recent PASCAL VOC detection challenges [28] have coupled numerous feature channels with detectors that have 
several aspects and mobile components. 

 
Figure 2. Samples from Pascal VOC 07 

 
The PASCAL VOC trials carried out between 2008 and 2012 with these conventional methods had become mediocre, with only 
slight improvements; this has brought attention to the shortcomings of conventional detectors and the necessity of creating more 
reliable techniques. The problem with conventional methods, like the ones described above, that use sliding windows, for example, 
where a rectangle of different sizes moves across the entire image to find relevant objects, is that it takes a lot of computational 
work and creates many duplicate windows. 

 
Figure 3. Samples from Pascal VOC 12. 
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The subjacent classifier's effort has a crucial impact on the final product. Conventional methods for object detection have relied on 
our ability to manually create features or models based on our understanding. In order to characterize and categorize filtered images, 
we try to look for patterns and edges. However, the most recent developments indicate that it is most effective to assign such jobs to 
the computer so that it can make its own discoveries. In 2011, after the 2010 start of the ImageNet Large Scale Visual Recognition 
Competition (ILSVRC) [29], the competition's categorization error rate was roughly 26%.  The error rate decreased to 16.4% in 
2012 after a year thanks to the AlexNet convolution neural network model [3]. Its design is like that of Yann LeCun's LeNet-5 [30]. 
This made it a crucial turning point for convolutional neural networks at the time. Convolution neural networks have emerged 
victorious in the upcoming years and since 2012, resulting in a significant decrease in the classification error rate for ILSRVC. 
 

III. EVALUATING METRICS AND DATASETS 
To enable object detection challenges, many datasets are made accessible, and the datasets from these challenges are used to test 
each object detection model. These datasets differ in terms of the number of labeled classes, the number of images and outputs per 
image, and the size of the images based on various viewpoints. For the spatial position and the accuracy of the anticipated classes, 
some important performance indicators have been put into place. 
 
A. Datasets 
In the three most widely used benchmark datasets, all object detection techniques based on deep learning are compared in this work. 
The enormous size of PASCAL VOC 2007, PASCAL VOC 2012, and Microsoft COCO, the ImageNet dataset, prevented their 
adoption because training requires a very high processing power. 
 
1) PASCAL VOC  
The well-known and often used PASCAL Visual Object Classification (PASCAL VOC) 2007 and 2012 dataset, which contains 
roughly 10,000 training and validation images containing objects and bounding boxes, is utilized for object detection. The PASCAL 
VOC dataset has 20 distinct categories. 

 
Figure 4. Samples from MS-COCO. 

2) MS-Coco 
Microsoft created the Common Objects in COntext (COCO) dataset, which is thoroughly explained [31]. With over 200,000 photos 
and 80 object categories, the COCO training, validation, and test sets are large. 
 
3) ILSRVC 
Also among the most well-known data sets in the object detection domain is the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) [32]. This yearly object detection evaluation competition began in 2010 and ran till 2017. Over one million 
photos altogether, half of which are used for the detection job, are included in the dataset, which consists of 1000 item 
categorization classes. Regarding the detecting work, there are roughly 200 object classes. 
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4) Open Images 
Google released the Open Images [33] dataset under the Creative Commons Attribution license. It consists of over 9.2 million 
segmentation masks and tagged, uniform ground-truth photos. Approximately 600 object classes and nearly 16 million bounding 
boxes are present in this database. It is regarded as one of the biggest object localization databases. 

 
Figure 5. The components of an ordinary object detection model. 

 
B. Evaluation Metrics 
Scientific researchers have employed many measures to assess the efficacy of object identification algorithms, thereby enhancing 
the relevance and equity of the evaluation and comparison process. Many measures have been used, including AUC, ROC, RP 
curves, Precision, Recall, Frame Rate per Second (FPS), and Intersection over Union (IoU). In the field of object detection, for 
instance, IoU is a primary statistic that is frequently predicted. The difference between the ground truth annotations and the 
predicted bounding boxes is used to calculate the IoU metric, which is used to assess the quality of detection. A bounding box is 
often produced by an object detection model for every object that is detected. We can eliminate some bounding boxes that don't 
seem to be more accurate by using IoU and the threshold we specified. If IoU value close to 1 indicates that the detection is more 
accurate. 
As previously indicated, the reference datasets used for testing and assessing object identification models are Pascal VOC and MS-
COCO. Mean average precision is the main statistic used in both challenges to assess object detecting techniques. Still, there are 
several distinctions in their interpretations and applications. For the MS-COCO Object Detection Challenge, mean average recall is 
an extra evaluation statistic that is used. 
 

Table 1. An overview of methods, datasets, and evaluation metrics 

 
 

IV. BACKBONE NETWORKS FOR OBJECT DETECTION 
One of the most crucial elements that must be considered for object detection and developing a reliable object detector model is the 
backbone network architecture. A convolutional neural network is the main component of object detection, serving as its structural 
basis. Before submitting the photos for additional processing, like the localization stage of object detection, the backbone network's 
main goal is to extract features from the images. Several convolutional neural network backbones, including as VGGNets, ResNets, 
and EfficientNets, among others, are commonly employed by object detectors and are pre-trained for classification tasks. 
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A. AlexNet 
In 2012, the convolutional neural network (CNN) architecture AlexNet [34] was created. Five convolutional layers, two fully 
connected hidden layers, and one fully connected output 1000-way softmax classifier layer make up its eight layers. AlexNet is a 
top architecture for all object detection tasks and was the first CNN to win the ImageNet Large Scale Visual Recognition Challenge. 
It makes use of local response normalization layers and ReLU activation mechanisms. 
 
B. VGGNets 
In 2014, the convolutional neural network architecture VGGNet [35] was created. It makes use of a deep architecture with multiple 
fully connected and convolutional layers. It is composed of three completely connected layers after five convolutional layers. The 
VGGNet design is renowned for having an extremely deep network with 16–19 layers and tiny convolutional filters (3x3). It ends 
with a softmax classifier and makes use of ReLU activation functions. The basic idea behind this architecture is to improve the 
depth of the network by stacking numerous layers and using very small filters (3x3) to capture fine details in the images. This allows 
the network to learn more complicated characteristics. 
 
C. Inception-Resent 
Building on the Inception family of architectures created by Google in 2016, Inception-ResNet [36] is a convolutional neural 
architecture that uses residual connections akin to those found in ResNet architecture to enhance gradient flow and enable the 
training of deeper networks. Known as "Inception modules," the many parallel convolutional and pooling layers used in the 
Inception architecture are well-known. Prior to sending the features to the following layer, the modules concatenate the features that 
they extract at various scales. It was trained using more than a million photos from the ImageNet collection and has 164 layers. 
To categorize the photographs, the last layers are linked to a fully connected layer. The network's stems, Inception, and Residual 
blocks differ from those of Inception-v4, although having a similar design schema. Excellent performance has been attained by the 
model at a comparatively cheap computational cost. 
 
D. GoogLeNet 
Based on Google's 2014 Inception architecture, GoogLeNet [37], commonly referred to as Inception v1, is a convoluted neural 
network architecture. The network may select the optimal filters for a given input by using ception modules. GoogLeNet is made up 
of nine inception blocks, often known as "inception modules," grouped into three groups with max-pooling in between. It has 
twenty-two layers total, including 27 pooling layers. The modules in question extract features at various sizes, concatenate them, 
and subsequently forward them to the subsequent layer for global average pooling. At the 2014 ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC), the GoogLeNet architecture emerged victorious. 
 
E. ConvNeXT 
Vision Transformers design served as the inspiration for ConvNeXt [38], a pure convolutional model. All of the regular ConvNet 
modules are used to build ConvNeXt. Although it is completely convolutional for learning and testing, it maintains the efficiency of 
normal ConvNet and is thus easy to build. Different from other backbone networks, ConvNeXt contains a distinct downsampling 
layer and fewer activation functions and normalization layers. Many vision tasks, including object detection and ImageNet 
classification, were used to assess the model. Every significant benchmark displayed improved performance from it. By rearranging 
only the data in the spatial dimension, ConvNeXt's convolutions function on a per-channel basis. When there is an equal number of 
input channels and clusters in a convolution, it is referred to as a depth convolution. The MobileNet in ConvNext employs depth 
convolutions. 

Table 2. Advantages and limitations of the object detector backbone 
Year Backbone Key features and advantages Limitations 
2012 AlexNet -Introduction of consecutive convolutional 

layers. -Great use of the downsampling. 
-Non-linearity due to the use of Rectified Linear 
units.  
-Fewer parameters and low computational 
complexity. 

-Using large receptive fields. 
-Low accuracy 
-Memory-intensive due to overlapping 
blocks of pixels. 
-Specific to certain applications. 
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2014 VGGNets -Deep networks compared to AlexNet. 
-Application of very small convolutional filters. 
-Generalizes well across different datasets. 

-A large number of parameters. 
-Large size. 
-Slower to train. 
-Exploding gradient problem. 
-Specific to particular applications. 

2016 Inception-
ResNet 

- Application of residual inception blocks rather 
than Incep- tion modules. 
- Combining the Inception architecture with 
residual connec- tions. 
-Achieves better accuracy than Inception alone. 

- Computationally expensive. 
- Specific to certain applications and use 
cases. 

2015 GoogLeNet -Faster. 
-Based on the Inception architecture [37] [39]  
-Application of dense modules. 
-Not using fully connected layers. 
-Fewer parameters and low computational 
complexity. -Smaller pre-trained size. 

-Requires more time for training. 
-Complex architecture. 
-Poor performance in face recognition 
compared to AlexNet, VGG-Face, and 
SqueezeNet. 

2022 ConvNeXt -Better accuracy and scalability. 
- Fewer activation functions and normalization 
layers. 
-Simple to fine-tune at different resolutions. -
Fully convolutional network. -Outperforms 
ViTs and Swin Transformers 

-Slower and consume more memory. 
-Depth-wise convolutions are slower and 
consume more memory than dense 
convolutions 

 
V. ANCHOR-BASED DETECTORS 

The anchor boxes are a pre-assembled set of bounding boxes that have been carefully chosen to match the widths and heights of the 
objects in the training data set. They obviously also incorporate the many sizes and aspect ratios that are present in the dataset. 
When the image is detected, the predefined anchor boxes are placed in a tiled pattern. Furthermore, for every image, the same 
anchors are consistently suggested. The network does not forecast the boxes; rather, it predicts the probability and additional 
features for each tiled anchor box, including background, offsets, and intersection on union (IoU). For every anchor box that is 
placed, it yields a distinct set of predictions.  
 
The following is a description of creating bounding boxes: 
1) Generate thousands of potential anchor boxes that accurately depict the dimensions, orientation, and form of the items.  
2) Estimate each bounding box's offset.  
3) Using ground truth as a basis, calculate a loss function for every anchor box.  
4) Determine which object's bounding box has the largest Intersection Over Union (IOU) by computing the IOU for each anchor 

box.  
5) Notify the anchor box to find the object with the highest IOU and factor the prediction into the loss function when the 

probability is greater than 0.5. 
6) The anchor box is told not to learn from this sample if the probability is somewhat less than 0.5 because the prediction is 

unclear; if the probability is noticeably less than 0.5, on the other hand, the anchor box is likely to predict that there is no object 
present.  

 
Ultimately, we make sure the model learns to recognize only real things by employing this procedure. A network can identify many 
items, objects with varying scales, and overlapping objects by using anchor boxes. Anchor-based detectors define anchor boxes at 
each location in the feature map for object detection. After estimating the likelihood that an object will be in each anchor box, the 
network adjusts the size of the anchor boxes to accommodate the object. 
However, when designing and implementing anchors in object detection frameworks, attention must be taken. An anchor design's 
most important consideration is the instance's location space's coverage ratio  
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a) Based on the statistics calculated from the training/validation set, anchors are carefully constructed to guarantee a high recall 
rate [40], [41].  

b) A decision made on a design based on a specific dataset would not hold true for different applications, which would reduce its 
generality [42].  

c) The anchor-based approaches provide extra computation and hyper-parameters for an object detection system during the 
learning phase by relying on intersection union (IoU) to define the positive/negative samples [43]. 

 
Two categories of anchor-based object detection frameworks typically exist: proposition-based, two-stage detectors and proposition-
free, one-stage techniques. 
 Object detection in two stages. 
 Object detection in one stage.  
For one-stage detectors, the anchors act as final bounding boxes and regression references while serving as predicting suggestions 
for two-stage detectors and final bounding boxes for one-stage detector. 
 

 
Figure 6. Accuracy evolution in the main object detection benchmarks. 

 
A. Two-Stage Methods 
Among the most popular methods for identifying items in the past few decades were region-based object detection algorithms. 
Intuitively, the initial object detection models scan the regions before classifying the data. The two-stage approaches are based on R-
CNN algorithms, which first classify and regress the ROIs after extracting them through a selective search technique [44]. The most 
well-known two-stage anchor-based detector reference is Faster R-CNN [45].  
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It detects objects using a region-based prediction network (R-CNN) and a separate region proposal network (RPN) that changes 
predefined anchor boxes to create ROI [46] [47]. To enhance its performance, other variants were later produced. For instance, the 
RoIAlign layer is substituted for the RoIPool layer by the Mask R-CNN [48] utilizing bilinear interpolation. To increase 
performance, other models examine other factors. Some focus on the entire architecture, for instance [49], while others use multi-
scale learning and testing [90,91], fusion and enhancement [63,92], the addition of a new loss function and training [50], and 
improved proposal and balancing [51]. Others, however, make use of context and attention techniques. Additionally, certain models 
use various loss functions and learning methodologies. 
 
B. Comparison: Two-Stage Detectors 
A comparison of the advantages and disadvantages of the previously mentioned two-step anchor-based detection techniques across 
time, as illustrator in Table 3. 

Year Backbone Key features and advantages Limitations 
2013 R-CNN -Simple to use. 

-Application of convolutional neural networks 
for classification. 
-It has formed a foundation for future 
developments. 

-High time consumption during the 
training phase due to 2000 regions to be 
classified. 
-Duplicated computations. 
-Cannot be applied in real-time 
applications as it takes around 47 seconds 
for one test image. 
-The selective search prevents the 
algorithm from learning in the regional 
proposal phase. 
-The absence of an end-to-end training 
pipeline. 

2015 Fast R-CNN -With RPN instead of selective search, 
generating regional proposals requires 
significantly less time. 
-Introducing anchor boxes. 
-Multi-task loss. 
-High performance in terms of accuracy. 
-End-to-end learning. 

-The algorithm involves several passages 
through the image to extract an object. 
-Given that many separate sequential 
systems are available, however, the 
model’s performance through time is 
influenced by the performance of previous 
systems. 
- Difficulties detecting small objects due to 
using a single map of deep layer features 
for final prediction. 
-The class imbalance needs to be correctly 
addressed 

2018 PANet - Preserving spatial information accurately 
-Very fast and straightforward compared to 
Mask R-CNN, G-RMI, and RetinaNet 
-Used in real-time detection models such as 
YOLOv4. 

-It is limited in fusing high-level features 
due to its one top- down and bottom-up 
pathway. 

2020 SpineNet -Great accuracy due to scale-permuted model. 
-Can be used for image classification 
- Can be used for real-time detection with 
SpineNet-49 and SpineNet-49S. 

-Large training time 

2021 Copy-Paste -Greater accuracy 
-Simple to integrate into any instance 
segmentation. 

-Randomness in data selection prevents the 
model from selecting more realistic data. 

Table 3. Advantages and limitation of two-stage detectors 
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C. One-Stage Methods 
The main characteristics of one-stage anchor-based detectors are their efficiency during computation and runtime. Rather than 
employing regions of interest, these models use specified anchor boxes for direct classification and regression. The SSD was the 
first well-known object detector in this category [52]. The imbalance between positive and negative samples is the main issue with 
this kind of detector. To address this issue, a number of strategies and processes have been put in place, including multi-layer 
context information fusion [53], training from scratch [54], feature enrichment and alignment [55], and anchor refinement and 
matching [56]. Additional efforts have been focused on creating new architectures [57] and loss functions [58]. 
 
1) YOLO v2 
YOLOv2, also known as YOLO9000 [41], is an object detection model that was released in 2017 and has the ability to identify over 
9,000 different object types instantly. Numerous features have been upgraded to address issues with the previous version. The use of 
batch normalization across all convolutional layers is one of YOLOv2's primary enhancements over YOLOv1[72]. In addition to 
using 224 × 224 images for training, it fine-tunes the classification network using Im- ageNet across ten periods using 448 × 448 
images [59]. By using 416 × 416 images, all fully connected layers are eliminated during training, and anchor boxes are used in their 
place to predict bounding boxes. This improves output resolution by eliminating a pooling layer. 
With the anchor boxes, the model obtained 69.2% mAP and 88% recall; without them, it obtained 69.5% mAP and 81% recall. Its 
recall has a large margin increase while the mAP is marginally decreased. Similar to Faster R-CNN [45], the scales and sizes of the 
anchor boxes were set. In order to obtain intriguing IOU ratings, YOLO9000 relies on k-means clustering, as traditional Euclidean 
distance-based k-means sometimes introduce  
extra errors while handling larger boxes. In contrast to YOLO900, which obtained 67.2%, Faster R-CNN obtained 60.9% using an 
IoU clustering technique with nine anchor boxes. Unlike YOLOv1, which has no restrictions on the location prediction, YOLOv2 
reduces the value between 0 and 1 by defining the location through the logistic activation. 
Multiple bounding boxes are predicted by YOLOv2 for each grid cell. Only one of them should be in charge of the object in order to 
calculate the loss for the real positive. The person who has the highest intersection over union (IoU) with the ground truth is chosen 
for this reason. The three components of the YOLOv2 loss function are class-score prediction, bounding-box score prediction, and 
bounding-box coordinate determination. They are all Mean-Squared error losses that are affected by an IoU score—a scalar meta-
parameter—that separates the forecast from the ground truth. 
 
2) YOLO v3  
The scores are transformed into probabilities equal to one via the YOLO [60] method using a softmax function. The multi-label 
classification method used by YOLOv3 [61] determines the input's probability of belonging to a specific label by replacing the 
softmax layer with an independent logistic classifier. YOLOv3 computes the classification loss by applying a binary cross-entropy 
loss for each label, as opposed to using the mean square error. Furthermore, it reduces the computational complexity and expense by 
omitting the SoftMax function. It offers some more little improvements. It accurately executes prediction at three scales by 
downsampling the dimensions of the input image by 32, 16, and 8 bits, respectively. This version of Darknet has 53 convolutional 
layers added to it. 
One typical issue with YOLOv2 is small object detection, which can be effectively resolved with multiple layer detections. There 
are nine anchor boxes used in YOLO v3. Three for every scale. All nine anchors are produced using K-Means clustering. 
Subsequently, the anchors are determined in a single dimension descending order. The three most noticeable anchors are allocated 
by the first scale, the next three anchors are assigned by the second, and the final three are assigned by the third. Compared to 
YOLOv2, more bounding boxes are projected for YOLOv3. YOLOv2 detects 13 × 13 x 5 = 845 boxes for the same 416 x 416 
image. 
However YOLO v3 detects 5 boxes total for each grid cell using 5 anchors. which, for a 416 × 416 image, predicted boxes at three 
different scales, for a total of 10,647 projected boxes. Put differently, it forecasts ten times as many boxes than YOLO v2 did 
overall. Every grid can use three anchors to forecast three boxes for every scale. Nine anchor boxes are utilized because there are 
three scales. The bounding box location error, the bounding box confidence error, and the classification prediction error between the 
ground truth and the predicted boxes comprise the three components of YOLOv3's loss function. Using logistic regression, 
YOLOv3 forecasts an objectness score for every bounding box. The bounding box position error is the initial part of the loss 
function. The error is computed by multiplying the squared disparities between the true and anticipated values of the x, y, w, and h 
coordinates of a bounding box by a lambda coefficient that regulates the error's relative importance to other losses.  
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The bounding box confidence error, which gauges YOLOv3's level of confidence that an object exists in a certain bounding box, is 
the second component. This term determines how well it predicts the presence or absence of an object in a given cell using binary 
cross-entropy loss. Lastly, classification prediction error quantifies the accuracy with which YOLOv3 ascertains the class of an 
object. For every label, binary cross-entropy loss is used. 
 

 
Figure 7.  Accuracy evolution of the main object detector families in MS-COCC. 

3) YOLO v5  
The You Only Look Once (YOLO) model family includes YOLOv51. The four primary versions—small (s), medium (m), large (l), 
and extra-large (x)—offer progressively higher accuracy rates and are utilized for object detection. With a focus on accuracy and 
speed of  
inference, YOLOv5 employs Test Time Augmentation and model ensembling using compound-scaled object identification models 
trained on the COCO dataset. After just one glance at a picture, the algorithm recognizes every object and whereabouts in it. In 
2020, the group responsible for creating the initial YOLO algorithm unveiled YOLOv5, an open-source initiative. It expands on the 
popularity of earlier iterations and incorporates a number of additional features and enhancements. The Convolutional Neural 
Network (CNN) backbone used by YOLOv5 is known as CSPDarknet to create image features. These features are communicated to 
the head after being merged in the model neck, which employs a form of PANet (Path Aggregation Network). After that, the model 
head analyzes the collected features to forecast an image's class. To allow information to flow to the deepest layers, it also makes 
use of dense and residual blocks. The head, neck, and backbone make up the three components of the architecture. 
 
4) YOLO v7 
For computer vision tasks, YOLOv7 [62] is a faster and more accurate real-time algorithm. YOLOv7 backbones do not use 
ImageNet pre-trained backbones, like Scaled YOLOv4 [63]. Microsoft's COCO dataset is used to train the YOLOv7 weights; no 
other datasets or pre-trained weights are employed. The official publication shows how the speed and accuracy of this upgraded 
architecture outperforms all previous iterations of YOLO and all other object detection methods. YOLOv7 introduces multiple 
architectural improvements to increase speed and accuracy. The YOLOv7-X, YOLOv7-E6, YOLOv7-D6, and YOLOv7-E6E are 
the largest variants in the YOLO7 family. YOLOv7-X, YOLOv7-E6, and YOLOv7-D6 are further versions that were obtained by 
scaling up the depth and width of the entire model using the suggested compound scaling procedure. 
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D. Comparison: One-Stage Detectors 
The strengths and weaknesses of the one-stage anchor-based detection techniques discussed earlier in this study are compared 
chronologically in Table 4. 
 

Year Backbone Key features and advantages Limitations 

2016 SSD -End-to-end training. 
-Better accuracy than YOLO. 
-Faster than Faster R-CNN. 
-SSD512 outperforms Faster R-CNN. 
-Multiple scale feature extraction. for future 
developments. 

-More time-consuming than YOLOv1. -
Less accurate than Faster R-CNN. 

2016 YOLOv2 -Fixed the limitations of yolov1. 
-More efficient than Faster R-CNN and SSD 
in real-time applications. -Multi-scale training. 

- Less accurate than its competitors SSD 
and RetinaNet 

2018 YOLOv3 -More apt to detect small objects. 
-Multi-scale prediction. 
-More efficient than SSD. 

-Less efficient than RetinaNet. 

2020 EfficientDet - Fast fusion of multi-scale features. 
-High efficiency due to the use of efficient 
backbones. 

-Cannot meet real-time detection 
requirements. 

2020 PAA -More accurate due to an optimized anchor 
assignment strategy 

-Cannot meet real-time detection 
requirements 

Table 4. Advantages and limitations of one-stage object detectors 
 

VI. ANCHOR-FREE DETECTORS 
A. YOLO v1 
YOLO [60] uses an alternative method for detecting objects. It takes a single snapshot of the entire image. Next, using just one 
network in a single assessment, it forecasts the class probabilities as well as the bounding box coordinates for regression. He goes by 
YOLO, which means you only look once. The YOLO model's power guarantees forecasts in real time. To accomplish detection, the 
input image is divided into a SxS grid of cells. Every object in the picture is expected to be predicted by a single grid cell, which is 
where the object's center is located. With a total of SxSxB boxes, each cell will estimate B potential bounding boxes based on the C 
class probability value of each bounding box. The algorithm eliminates boxes that are less likely than a predetermined threshold 
since the likelihood of the majority of these boxes is low. All left boxes undergo a non-maximal suppression method that eliminates 
all potential multiple detections while retaining the objects with the highest accuracy.  
The first modules of a CNN built on the GoogLeNet [37] concept have been used. There are two fully linked layers and twenty-four 
convolutional layers in the network design. The fundamental inception modules are replaced by the reduction layers of 1x1 filters, 
which are followed by convolutional 3x3 layers. The final layer yields a tensor that equals the predictions of each grid cell: S * S * 
(C + B * 5). The overall probability estimate for every class is called C. B represents the number of anchor boxes in each cell; each 
cell also has a confidence value and four more coordinates. Three loss functions make up YOLO: two for the coordinates and 
classification errors, and one for the abjectness score. When the abjectness score exceeds 0.5, the latter is computed. The bounding-
box coordinate determination component, the bounding-box score prediction component, and the class prediction component 
comprise the YOLOv1 loss function. The total of these three components is the ultimate loss function. 
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Figure 8. The number of state-of-the-art object detectors, by category, published in top journals and evaluated on MS-COCO. 

 
B. YOLO v8 
Ultralytics has developed a cutting-edge model for object identification, image classification, and instance segmentation called 
YOLOv82. Its design prioritizes speed, accuracy, and ease of usage. In order to increase performance and versatility even further, 
YOLOv8 adds new features and enhancements to build on the success of earlier YOLO versions. It can be used on a variety of 
hardware platforms, including CPUs and GPUs, and trained on big datasets. The extensibility of YOLOv8 is one of its main 
features. It facilitates switching between several versions of YOLO and comparing their performance by supporting all of the earlier 
iterations of the software. Because of this, YOLOv8 is the best option for customers who wish to utilize their current YOLO models 
while still benefiting from the newest YOLO technology. Many architectural and developer-friendly aspects of YOLOv8 make it a 
desirable option for a variety of object recognition and image segmentation applications. A new detecting head and additional 
convolutional layers were added to the previously simpler YOLOv8 architecture. In contrast to YOLOv5, the C2f module takes the 
place of the C3 module. 

  
C. Comparison: Anchor-Free Detectors 
Table 5 shows a side-by-side analysis of the benefits and drawbacks of the anchor-free object detection techniques discussed 
previously in this work. 

Year Backbone Key features and advantages Limitations 
2016 YOLOv1 -Very fast, it runs at 45 fps. -End-to-end 

training. 
-It has fewer localization errors compared to 
Faster R-CNN. 

-Dealing with small objects. 
-It likewise addresses the localization error of 
bounding boxes for small and large boxes. 
-Difficulties in generalizing due to unseen 
aspect ratios. -Coarse Features 

2018 CornerNet -Competitive with traditional two-stage anchor-
based detectors 

-Cannot meet real-time detection requirements. 

2020 ATSS -Increase the performance via the introduction 
of the Adaptive Training Sample Selection 
-More accurate without using any overhead 

-Cannot meet real-time detection requirements. 

2021 OTA -Deals with the label assignment issue as an 
optimal transport problem. 
- More accurate than ATSS and FCOS 

-Needs more time for training due to the 
Sinkhorn-Knopp Iteration algorithm 
-Cannot meet real-time detection requirements 

2022 DSLA -Deals with the inconsistency in object 
detection. 
-Smooth label assignment 
-The most accurate anchor-free detectors 

-Cannot meet real-time detection requirements 

Table 5. Advantages and limitations of anchor-free object detectors 
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VII. TRANSFORMER-BASED DETECTORS 
A. VIT 
The first object detection model to apply transformers directly to images, as opposed to mixing convolutional neural networks and 
transformers, was ViT [64] and was motivated by transformers in NLP tasks [65]. ViT divides the image into patches by feeding a 
Transformer with the series of linear embeddings of these patches. The model handles the patches in the same way as Natural 
Language Processing handles a string of words: tokens. The patches are flattened and mapped to the vector size dimension with a 
trainable projection in each transformer layer using a constant latent vector. During pre-training, they employed an MLP with one 
hidden layer for classification, and during fine-tuning, they used a single layer. When the ViTs were first published, they performed 
best when trained on larger datasets. There is no explicit mention of a particular loss function in the Vision Transformer (ViT) 
publication. But the ViT model outputs raw states that are hidden and lack a distinct head. It can serve as a foundation for a number 
of computer vision applications, including the classification of images. 
 
B. DERT 
The first object detection model that uses transformers from end to end is the DEtection TRansformer (DETR) [66]. The trans-
former and pretrained CNN backbone make up this system. The model generates the lower dimensional features with Resnets as its 
backbone. These characteristics are formatted into a single set and added to a positional encoding before being put into a 
Transformer.  
An end-to-end trainable detector is produced by the transformer. Based on the original transformer [67], the transformer was 
created. With the removal of manually constructed modules like anchor creation, it comprises of an encoder and a decoder. Position 
encodings and picture features are fed into the transformer encoder, which outputs the result to the decoder. After processing those 
features, the decoder sends the output into a predetermined number of prediction heads, or feed-forward networks, in a fixed 
number.  
The output of each prediction head has a bounding box and a class. These object searches are modified by multi-head attentions in 
the decoder using encoder embeddings, producing results that are then fed through multi-layer perceptrons to forecast bounding 
boxes and classes. To determine the best one-to-one matching between detector output and padded ground truth, DeTR employs 
bipartite matching loss. Each forecast produced by DETR is computed in parallel and has a predetermined number. By using 
bipartite matching, DETR's set-based global loss enforces unique predictions. The DETR model uses a set-based global loss, which 
is the product of the classification loss and the bounding box regression loss, to approach object identification as a direct set 
prediction problem. 
 
C. SMCA 
In 2021, the SMCA model [68] was released as an alternative to enhance the DETR model's convergence. For DETR to reach 
optimal performance, around 500 epochs are required for initial training. Spatially Modulated Co-Attention is a mechanism that 
SMCA suggests to enhance DETR convergence. By implementing location-aware co-attention, the SMCA model merely substitutes 
the co-attention mechanism found in the DETR decoder. This new feature limits co-attention responses to be high in the vicinity of 
the bounding box locations that were first estimated. Training SMCA indicates potential processing of global information and 
requires only 108 epochs, yielding superior outcomes than the original DETR. 
 
D. SWIN 
Providing a transformer-based foundation for computer vision applications is the aim of the Swin Transformer [69]. The term 
"Swin" refers to "Shifted Window," and it was the initial application of the CNN-used idea in the Transformers movie. The input 
images are divided into several, non-overlapping patches and then converted into embeddings, using patches in the same way as the 
ViT model. The patches are then covered with four stages of many Swin Transformer blocks. Unlike ViT, which utilizes patches of 
a single size, each subsequent stage uses fewer patches to maintain hierarchical representation. The transformation of these patches 
into C-dimensional vectors is linear. Due to the transformer block's local multi-headed self-attention modules' alternating shifted 
patch architecture, it only computes self-attention inside the local window successive blocks. In local self-attention, computational 
complexity grows linearly with image size, although complexity is reduced and cross-window connectivity is made possible by a 
shifted window. Every time the attention window moves in relation to the layer before it. Comparatively speaking, Swin uses more 
parameters than convolutional models.  
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E. Anchor DERT 
The authors of [70] provide an innovative query design for an end-to-end transformer-based object detection model. Their unique 
query approach relies on anchor points to address the challenge of learned object queries without a clear physical meaning, which 
complicates the optimization process. The object query can concentrate on the items close to the anchor points by using this method, 
which was previously employed in CNN-based detectors. Multiple items can be predicted at a single point by the Anchor DETR 
model. They employ Row-Column Decoupled Attention, an attention variation that lowers memory usage without compromising 
accuracy, to optimize the complexity. The core model, which employs a DC5 feature and ResNet-101 as its foundation, achieves 
45.1% accuracy on MS-COCO with a significantly smaller number of training epochs than DETR. The authors suggested variations 
that are RAM-, anchor-, and NMS-free. 
 
F. DESTR 
The recently published DESTR [71] suggested resolving a number of earlier transformer issues, including the startup of the 
transformer's decoder content query and the Cross and self-attention methods. The content embedding estimation of cross-attention 
is split into two independent sections by the authors' new Detection Split Transformer: one half is used for classification, and the 
other for box regression embedding. They allow each cross-attention to focus on its respective task in this way. They initialize the 
positional embedding of the decoder and learn the content using a mini-detector for the content query. It has heads for regression 
embeddings and classification. Lastly, they enhance the self-attention by the spatial context of the other query in order to account 
for pairs of neighboring object inquiries in the decoder. 
 
G. Comparison: Transformer-Based Detectors 
Table 6 Shows a comparative analysis of the advantages and disadvantages of the two-step anchor-based detection techniques 
discussed before in this work, arranged chronologically. 
 

Year Backbone Key features and advantages Limitations 
2020 DETR -End-to-end training 

-Simple architecture 
-It does not necessitate a dedicated library. 
-Can be used in panoptic segmentation. 
-It achieves better results on large objects 
compared to Faster R-CNN due to the self-
attention mechanism 

-Slow convergence 
-Cannot meet real-time detection 
requirements 

2021 SMCA -Improve the slow convergence of DETR by 
introducing the spatially modulated co-attention 
mechanism. 
-More accurate than DETR 

-Cannot meet real-time detection 
requirements. 

2021 Swin -Great accuracy 
-Good speed/accuracy trade-off 
-Can be used for image classification and 
semantic segmen- tation 

-Cannot meet real-time detection 
requirements. 

2022 Anchor DETR -Better accuracy than DETR. 
-Less training time than DETR 
-Faster than other transformer-based detectors 

-Still cannot meet real-time detection 
requirements. 

2022 DESTR -Outperforms transformer-based detectors that 
use single- scale features 

-Cannot meet real-time detection 
requirements 

Table 6. Advantages and limitations of transformer-based object detectors 
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VIII. PERFORMANCE ANALYSIS AND DISCUSSION 
The models evaluated on the MS-COCO dataset demonstrate the fierce rivalry between various strategies. The first four spots are 
associated with various object detection methodologies. With a mAP of 63.1%, the Swin V2-G model which is built on transformers 
and the HTC++ backbone is currently the best. Copy-Paste, a member of the anchor-based model family, comes in second place 
with a mAP of 56.0%. Copy-Paste employs NAS-FPN in conjunction with Cascade Eff-B7. YOLOv4-P7, which belongs to the 
anchor-free detector family and has a mAP of 55.5%, is ranked third. The CSP-P7 network serves as the backbone of YOLOv4-P7. 
With a mAP of 55.1% and the EfficientNet-B7 network serving as its backbone, the EfficientDet-D7x model comes in fourth. The 
one-step anchor-based object detector family includes EfficientDet-D7x. The backbones in MS-COCO that helped reach a mAP of 
more than 50.0% are SpineNet, CSP, ResNets, ResNeXts, and Efficient Nets. 
When implementing object detection models in a real-time environment,  

Table 7 demonstrates that all of the quick object detection methods are members of the one-stage anchor-based approach family. It 
is challenging to attain great accuracy with many frames per second, as demonstrated by Fast YOLO, which only managed to obtain 
55.7% mAP while achieving 155 FPS. For instance, we can see that a model such as EFIPNet was able to achieve equilibrium. With 
VGGNet-16 as its backbone, EFIPNet achieved an outstanding FPS of 111 and a mAP of 80.4%. RefineDet320 utilized VGGNet as 
its backbone and attained a mAP of 80.0% and 40 FPS. 
Table 8 shows that all of the quick object detection models are part of the anchor-based single-step object detection model family. 
Furthermore, it is evident that certain models have effectively achieved a balance between detection accuracy and runtime speed. 
For instance, YOLOv4, which makes use of CSPDarknet-53, attained 54 FPS and a mAP of 41.2%. Utilizing the Efficient-B2 
backbone, EfficientDet-D2 attained 41.7 FPS and a mAP of 43.0%. 

 
Table 7.  Comparison Of Testing Consumption On Voc 07 Test Set 
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Moreover, no real-time two-stage object detector model has demonstrated satisfactory performance. (FPS greater than 30). RDSNet 
has a mAP of 36.0% and 17 FPS. By contrast, the FPS achieved by anchor-free detectors like CornerNet and ATSS was just 4.4 and 
7 FPS, respectively. Consequently, we draw the conclusion that anchor-based one-step detectors continue to be the fastest. 

Table 8.  Comparison Of Testing Consumption On Ms-Coco Test Set 

 
 
The accuracy evolution in the three datasets (VOC07, VOC21, and MS-COCO) between 2013 and 2022 is depicted in [Figure 6]. 
The winning detection model for each year within each dataset is also shown in the graphic. The accuracy is provided by mAP for 
VOC07 and VOC12, and by mAP for MS-COCO [.5,.95]. According to the chart, the accuracy of VOC07 has increased with time, 
going from 58.5% in 2013 using the Model R-CNN BB to 89.3% in 2021 using the Copy-Paste model. This indicates a rise of above 
thirty percent. Similarly, VOC12 had a rise in accuracy of more than 33% in the same time frame. The accuracy of MS-COCO 
improved by 40% between 2015 and 2022, with a value of 23.6 using ION and 63.1 using the SwinV2-G model. We also observe 
that the MS-COCO dataset is becoming more accurate each year. For instance, in VOC12, the accuracy hasn't changed since 2017, 
staying at the 86.8% figure that RefineDet determined. Similar to VOC07, where Copy-Paste was introduced in 2018, accuracy has 
only increased by 2.4%. 
In [Figure 7] shows the development of several object detection model types in the MS-COO dataset from 2015 to 2022. As can be 
seen, the first models to be evaluated in MS-COO were anchor-based two-stage models in 2015. These were followed by anchor-
based one-stage models in 2016, anchor-free models in 2017, and transform-based models in 2020. Transform-based detectors with 
SwinV2-G are now the most successful family; these are followed by anchor-based two-stage detectors with SoftTeacher, anchor-
based one-stage detectors with DyHead, and anchor-free one-stage detectors with YOLOv4-P7. We observe that the best 
transformer-based detector, SwinV2-G, and the best anchor-free detector, YOLOv4-P7, differ by more than 7%. Starting with ION 
in 2015 and reaching an accuracy of 33.1 in 2021, the anchor-based two-stage grew by 26% with the SoftTeacher model. SSD 
obtained an accuracy of 28.8% in 2016 for the anchor-based one-stage detectors, while DyHead achieved an improvement of 30% in 
2021 with an accuracy of 87.7%. In 2017, the accuracy of DetNet101, a model belonging to the anchor-free detector family, was 
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33.8%. By 2021, YOLOv4-P7 improved the accuracy by almost 21%, reaching 55.5%. With an accuracy of 63.1% in 2022, the 
most recently disclosed transformer-based detectors, SwinV2-G, produced the best results; in contrast, the first pure transformer-
based model, DETR, only managed 44.9% in 2020. 
Figure 7 shows the number of detection models that each detector family evaluated for MS-COCO between 2015 and 2022. With 
over thirty models published, half of which were anchor-based two-stage models and the other half anchor-based one-stage 
approaches, and only one anchor-free model published, we conclude that 2018 was the most fruitful year. Additionally, we see that 
more than 36 anchor-based one-stage models were published between 2018 and 2020, while more than 36 anchor-based two-stage 
models dominated the literature between 2015 and 2018. Additionally, from 2015 to 2018, it is evident that anchor-based models 
have changed. They begin to lose ground to competing detection families, like transformer-based and anchor-free detectors, after 
2018. For instance, the anchor-based two-stage family saw the introduction of over 15 models in 2018, but just five models were 
made available a year later. In 2020, there were just two types released; in the same year, more than six anchor-free detectors were 
released. Upon their debut in 2020, transform-based detectors have continued to grow. 
Here [Figure 9] demonstrates that over half of the deep learning-based detection models tested in the MS-COCO dataset were 
released in 2018 and 2019. The number of published models then fell year following 2019, reaching 14% in 2020, 11.6% in 2021, 
and 3.3% in 2022. 

 
Figure 9.  The percentage of object detection models published each year. 

 
IX. CONCLUSION AND FUTURE DIRECTIONS 

In this paper we summarized the state of deep learning-based object detection as of right now in this study. We have offered the fair 
survey, encompassing several object detection models. The models were separated into four primary categories: transformer-based 
detectors, anchor-free detectors, one-stage anchor-based detectors, and two-stage anchor-based detectors. Using well-known object 
identification datasets such Pascal VOC and MS-COCO, we assessed each model. We found that the accuracy of single-stage 
detectors has increased and now rivals that of two-stage detectors. Additionally, as transformers have become more common in 
vision tasks, transformer-based detectors have shown excellent results. Two examples of these detectors are Swin-L and Swin V2, 
which in the MS-COCO dataset obtained mAPs of 57.7% and 63.1%, respectively. 
There are a few exciting new paths that academics are investigating in the field of object detection, which is a dynamic one that is 
always changing. 
 
A. Speed-accuracy 
Extended processing times and increased computational resources are needed to improve the accuracy of an object detection 
method. Faster processing speeds may result from decreasing accuracy, but detection performance may suffer. Therefore, in order to 
enable real-time and low-power applications, especially in complicated scenarios with occlusions or cluttered backgrounds, 
researchers continuously strive to enhance the accuracy and speed of object recognition algorithms by adopting more efficient 
architectures and training approaches. 
 
B. Small Object Detection 
Tiny object detection is a subset of object detection that specializes in locating and identifying extremely small things in pictures or 
videos. It is difficult since it is hard to extract information from small objects that have few pixels. These things could be so tiny that 
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other objects in the scene partially obscure them or make them hardly noticeable at all. Numerous potentials uses for tiny item 
identification exist, including medical imaging, spotting minute flaws in industrial processes, and recognizing small creatures in 
wildlife monitoring. 
C. Multi-modal Object Detection 
entails identifying objects from many textual and visual sources, including pictures, movies, and audio, to provide more accurate 
and comprehensive object recognition in challenging situations. In applications like autonomous driving, where numerous sensors 
identify objects surrounding a car, multi-modal detection can be useful. 
 
D. Few-shot Learning 
The goal of few-shot learning is to create algorithms that can identify things based on a small number of samples. This is especially 
helpful when it's expensive or difficult to gather a lot of labeled data. These models are suitable for low-data or low-resource 
environments. However, taken into account that deep learning-based object detection has a bright future ahead of it, full with 
fascinating new discoveries for investigation. 

X. PROBLEM DEFINITION 
In computer vision, crowd object detection is still a difficult issue because of the high object density, occlusion, different scales, and 
complicated backdrops. Although they work well in many situations, traditional object identification algorithms frequently have 
trouble maintaining high levels of efficiency and accuracy in congested environments. In order to overcome these obstacles, this 
research will create a hybrid approach that combines the best features of three cutting-edge approaches: Convolutional Neural 
Networks (CNNs) for their potent feature extraction, Vision Transformers for their capacity to model global context, and YOLOv5 
for its real-time detection capabilities.  
 
A. High-Density Object Detection 
Owing to the abundance of things in close proximity, crowded environments—like public meetings, urban areas, and sporting 
events—present a considerable obstacle. In such environments, current models frequently fall short in accurately detecting and 
differentiating objects [72] [73]. 
 
B. Occlusion and Overlapping Objects 
Identifying individual objects in crowded settings is challenging for standard models because objects often overlap or occlude one 
another [74] [75]. 
 
C. Changing Scales and Complexity of Background 
The detection procedure is further complicated by the fact that objects in crowded settings might appear at varying scales and 
against varied backdrops [76] [77]. 
Efficiency of the Model and Real-Time Processing: 
 
D. Model Efficiency and Real-Time Processing 
For real-world applications like autonomous navigation and surveillance, detection models that are both highly accurate and 
efficiently operate in real-time are required [78] [79]. 

 
XI. AIMS AND OBJECTIVES 

A. Aim 
The main goal of this research is to create a hybrid model that combines CNNs, Vision Transformers, and YOLOv5 to improve the 
efficiency and accuracy of crowd item recognition. The goal of this hybrid strategy is to enhance detection performance in high-
density, occluded, and varied-scale situations by overcoming the shortcomings of individual models. 
 
B. Objectives 
1) Assess Each Detection Model's Performance 
Task: Evaluate the individual performance of CNNs, Vision Transformers, and YOLOv5 in congested situations. 
Method: Use individual datasets with packed sceneries and standard datasets such as COCO2017. Analyze performance indicators 
including average precision (AP), recall, and precision. 
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Expected Result: Determine each model's baseline performance in order to assess its advantages and disadvantages when managing 
busy scenarios. 

 
2) Create a Model for Hybrid Detection 
Task: Create and put into practice a hybrid model that combines the robust feature extraction capabilities of CNNs, the real-time 
detection capabilities of YOLOv5, and the global context modeling capabilities of Vision Transformers. 
Method: Employ a common framework to integrate the models. To strike a compromise between accuracy and computing 
efficiency, make use of transfer learning strategies and architectural optimization. 
Expected Result: Develop a strong hybrid model by utilizing CNNs, Vision Transformers, and YOLOv5's complementary strengths. 

 
a) Examine the Proposed Hybrid Model in Comparison to the Most Advanced Models 
Task: Compare the hybrid model with the most advanced object detection models currently in use. 
Method: Use both custom and standard datasets for experiments. Make use of measures like processing time, average precision 
(AP), recall, and precision. To verify the results' significance, do statistical tests. 
Expected Result: Show that the hybrid model performs more accurately and efficiently than both standalone models and the most 
recent state-of-the-art models. 

 
b) Demonstrate How Applicable It Is in Real-World Situations 
Task: is to validate the hybrid model in practical applications including crowd management, driverless cars, and surveillance 
systems. 
Method: Implement the hybrid paradigm in both virtual and real-world settings. Keep an eye on how it performs in real-time 
circumstances and get input for future improvements. 
Expected Result: Demonstrate the hybrid model's usefulness and efficacy in congested real-world settings, highlighting its potential 
for widespread implementation. 
 
3) Detailed Goals Analysis  
a) Evaluation of Selected Models 
a. YOLO: 
 Strengths: Quick and effective, appropriate for real-time applications. 
 Weaknesses: In busy environments, there may be issues with occlusion and small objects. 
 Evaluation metrics: include recall, AP, frame rate, and precision. 
b. CNN: 
 Strengths: Outstanding at managing a range of scales and feature extraction. 
 Weaknesses: Requires optimization for real-time performance; computationally intensive. 
 Evaluation metrics: accuracy, recall, AP and feature extraction quality. 
c. Vision Transformers: 
 Strengths: Able to represent global context and long-range dependencies. 
 Weaknesses: Computer-intensive and maybe requiring huge datasets for training. 
 Evaluation metrics: include memory, accuracy, contextual modelling ability, and AP. 

 
b) Creation of a Hybrid Model: 
a. Architecture Design 
 To detect objects initially, integrate YOLOv5. 
 Employ CNNs to handle different scales and improve feature extraction. 
 Use Vision Transformers to refine detections and grasp global context. 

 
b. Enhancement Techniques:  
 Make use of pre-trained models by utilizing transfer learning. 
 Use strategies such as quantization, trimming, and effective layer architecture to guarantee real-time performance. 
c. Validation:  
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 Test a lot on different kinds of data. 
 Iteratively improve the model in response to real-world feedback and performance indicators. 

 
c) Comparative Analysis: 
a. Benchmarking:  
 For consistent comparisons, use benchmark datasets (like COCO2017). 
 Compare with cutting-edge models like as SSD, DETR, and Faster R-CNN. 
b. Statistical Analysis:  
 To verify performance gains, use statistical tests (such as ANOVA and t-tests). 
 Examine the trade-offs between computing efficiency and accuracy. 

 
d) Real-World Use: 
a. Deployment:  
 Use the hybrid model in experimental programs, including self-driving cars or surveillance systems. 
 Track performance in real-time settings and collect user input. 
b. Scalability:  
 Evaluate how well the model can be adjusted to various settings and circumstances. 
 Make that the model can process data in real time with a reasonable latency. 
Clarity and direction for the project are ensured by this thorough analysis of the goals and objectives, which offers a comprehensive 
view of the study goals and the steps required to achieve them. 
 

XII. CONCLUSION 
A. Entire Performance Assessment 
A detailed grasp of the advantages and disadvantages of each of YOLOv5, CNNs, and Vision Transformers in congested settings 
will be obtained from their unique assessments. This basic study is important to determine the strengths and weaknesses of each 
model, especially in high-density, occluded, and varied-scale circumstances. 

 
B. Creation of a Sturdy Hybrid Model 
The proposed hybrid model tries to solve the difficulties of crowd item recognition more successfully than any single solution by 
combining the powerful feature extraction of CNNs, the global context modeling of Vision Transformers, and the real-time detection 
capabilities of YOLOv5. The hybrid model will be suitable for real-world applications because of the iterative design and 
optimization process, which guarantees that accuracy and computational efficiency are balanced. 
 
C. Comparative Advantage 
The hybrid model will be shown to be superior in terms of precision, recall, average precision (AP), and processing time by a 
comparison analysis with state-of-the-art models. This will support the theory that combining several cutting-edge approaches will 
significantly increase detection performance, particularly in difficult packed settings. 
 
D. Deployment in Real Life 
The implementation of the hybrid model in real-world situations will demonstrate its usefulness and efficacy. Through performance 
validation in real-world settings like autonomous cars and surveillance systems, the study will demonstrate the model's adaptability, 
scalability, and potential for widespread use. 
 
E. Progress in Object Recognition 
By offering a unique hybrid strategy that makes use of the advantages of several approaches, the research will enhance object 
detecting technology. It is anticipated that this contribution would improve crowd object identification systems' capabilities, 
improving their performance in a number of real-world applications. 
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F. Prospective Routes for Research 
The results of this study will open up new avenues for developing and improving the hybrid model. Future study could look into 
new developments in machine learning and computer vision that could be incorporated into the hybrid approach, as well as further 
integration approaches and model optimization for certain use cases. 
 
In conclusion, crowd object detection technology will advance significantly if the stated goals and objectives are successfully met. It 
is anticipated that the hybrid model, which combines CNNs, Vision Transformers, and YOLOv5, will be able to overcome the 
drawbacks of current methods and offer a more accurate, effective, and useful way to detect objects in congested surroundings. In 
addition to adding to the body of knowledge in academia, this research will directly affect a number of sectors that need dependable 
crowd item detection systems. 
 

XIII. LITERATURE REVIEW 
A. Introduction 
A crucial field of study in computer vision is crowd object identification, which finds use in anything from driverless cars and crowd 
control systems to security and surveillance. Numerous techniques have been created over time to deal with the particular 
difficulties presented by crowded settings, such as high object density, occlusion, and different object scales. The objective of this 
literature review is to examine and evaluate the development of object identification methods, with a particular emphasis on the 
benefits and drawbacks of important strategies like You Only Look Once (YOLO), Convolutional Neural Networks (CNNs), and 
Vision Transformers. 
Object detection has been profoundly impacted by CNNs' quick development. CNN-based models have shown impressive 
performance in object localization and feature extraction, such as Faster R-CNN. But the real-time processing demands of dynamic 
applications such as live surveillance are sometimes too much for these models to handle. Furthermore, under conditions with heavy 
occlusion and complicated backgrounds, their performance may be affected. 
Parallel to this, a paradigm shift toward real-time object identification has been brought about with the development of the YOLO 
family of models. YOLO models, such as the most recent version, YOLOv5, place a high priority on speed without significantly 
sacrificing accuracy. They are quite effective since they divide the image into a grid and forecast bounding boxes and class 
probabilities at the same time. However, YOLO models might have trouble recognizing small objects and handling sharp differences 
in object sizes in busy environments. Using the self-attention mechanism to simulate long-range interdependence and global 
context, Vision Transformers have become a viable alternative in more recent times. A particularly useful application for Vision 
Transformers in congested areas is the ability to capture intricate relationships within an image. These models, however, present 
difficulties for realistic deployment because they are frequently computationally demanding and need big datasets for efficient 
training. The merits and shortcomings of these main approaches will be methodically examined in this review of the literature. 
Through a critical analysis of the current literature, the review seeks to identify gaps and suggests a hybrid strategy that combines 
the advantages of CNNs, Vision Transformers, and YOLOv5. By resolving existing issues and pushing the boundaries of this 
discipline, this integration aims to improve the precision, effectiveness, and resilience of crowd object identification systems. 
Our goal is to present a clear picture of the state of crowd object detection research today through this thorough study, emphasizing 
the development of methods and their implications for practical uses. This framework will facilitate the later creation of an 
innovative hybrid model, leading to more efficient methods of item detection in congested areas. 
 
B. Background  
The computer vision community has given crowd object detection a lot of attention because of its vital applications in a variety of 
fields, including autonomous systems, public safety, urban planning, and event management. Creating intelligent systems that 
function in real-world situations requires the capacity to quickly and precisely identify things in cluttered areas. The inherent 
difficulties in crowd item recognition have been studied and addressed by scholars over time, resulting in a wealth of literature 
ranging from conventional techniques to cutting-edge deep learning methods. Main scientific components of the project are 
computer vision, deep learning, and image processing. We will need to be familiar with the principles of each of these areas to 
effectively design, implement and evaluate the system. 
 
1) Object Detection's Early Techniques 
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Handcrafted characteristics and conventional machine learning methods played a major role in the early attempts to object detection. 
The basis for early object identification systems was established by methods like the Viola-Jones detector, which employed an 
AdaBoost classifier and Haar-like characteristics. Though innovative in their day, these approaches' dependence on inflexible 
feature representations and elementary classifiers hindered their capacity to manage the intricacies of densely populated scenes. 
 
 
2) CNNs: The Emergence of Convolutional Neural Networks 
By allowing models to automatically learn hierarchical feature representations from data, Convolutional Neural Networks (CNNs) 
revolutionized object detection. Deep learning has been shown to have great potential in computer vision by pioneering works like 
AlexNet, which took first place in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Building on these 
findings, scientists created CNN-based object detection models, such as Fast R-CNN, Faster R-CNN, and R-CNN, which used 
region proposal networks (RPNs) to improve object localization effectiveness. These models were the basis for numerous further 
developments in the field and saw notable gains in accuracy [80] [81]. 
 
3) YOLO for Real-Time Object Detection 
Although CNN-based models significantly increased accuracy, their real-time applicability was frequently constrained by their 
computational cost. The You Only Look Once (YOLO) model family was created in response to this. By presenting object 
recognition as a single regression problem and predicting bounding boxes and class probabilities straight from entire images in a 
single network run, YOLO completely rewrote the object detection paradigm. After YOLOv1, variants like YOLOv3 and YOLOv5 
showed incredible speed and effectiveness, which qualified them for real-time applications. Nevertheless, there were still issues in 
managing small items and attaining high precision in congested areas [61] [3]. 
 
4) Transformations in Vision: A New Development 
By using the self-attention mechanism to simulate long-range dependencies and global context within images, Vision Transformers 
have more recently become a potent alternative to CNNs. The Vision Transformer (ViT) was introduced by Dosovitskiy et al., which 
was a noteworthy milestone as it showed that transformers, which were initially intended for use in natural language processing, 
could perform at the cutting edge when it came to picture classification tasks. Though they are frequently computationally 
demanding and need large-scale datasets for training, vision transformers have advantages in capturing complex relationships and 
context within congested situations [64] [66]. 
 
5) Present Trends and Hybrid Methodologies 
Considering the advantages and disadvantages of each methodology, hybrid models—which integrate several approaches to take use 
of their complementary qualities—have become more and more prevalent in recent study. By combining the global context 
modeling of Vision Transformers, the reliable feature extraction of CNNs, and the real-time efficiency of YOLO, hybrid models 
seek to improve object identification performance. Compared to using only one technique, this multifaceted approach aims to handle 
the various issues associated with crowd object recognition. 
 
C. Conclusion 
This background gives a thorough account of the development of crowd object recognition techniques, emphasizing significant 
turning points and innovations. The shift from manually created features to deep learning models and the subsequent emergence of 
transformers highlights how dynamic this field of research is. In order to push the limits of what is possible in crowd object 
recognition, the ongoing investigation of hybrid approaches, which seeks to combine the best features of current algorithms, 
provides a promising direction. With the help of this study of the literature, we hope to fill in knowledge gaps and suggest 
innovative approaches that push the boundaries of the field and eventually lead to more dependable and efficient object detection 
systems in congested areas. 

 
XIV. RELATED WORKS 

Over the past few decades, object detection has advanced significantly, especially with the introduction of deep learning algorithms. 
This section examines the relevant literature that has aided in the growth and advancement of crowd object identification, 
emphasizing important approaches and their unique benefits and drawbacks. 
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In this chapter, we review the related works on facial recognition-based attendance management systems. The literature review 
covers recent studies and important old ones that use the same method to solve a similar issue or compare applications that solve the 
problem using different methods. 
 
A. Traditional Method 
Conventional techniques for object detection mostly depended on manually created features and traditional machine learning 
algorithms. Introduced in 2001, the Viola-Jones detector was one of the first effective frameworks for real-time face identification. It 
detected faces in photos and videos using an AdaBoost classifier and Haar-like characteristics [82]. Notwithstanding its 
effectiveness, the Viola-Jones technique has trouble with occlusions and complicated backdrops, which are frequent in crowded 
spaces. 
 

B. Convolutional Neural Networks (CNNs) 
The introduction of CNNs resulted in a dramatic change in object detection techniques. In a variety of computer vision applications, 
CNNs beat conventional techniques thanks to their capacity to learn hierarchical feature representations. In this sector, Girshick et 
al.'s introduction of R-CNN (Regions with Convolutional Neural Networks) was revolutionary. Region suggestions were created by 
R-CNN utilizing selective search, and CNNs were subsequently utilized to classify them [47]. R-CNN's multi-stage pipeline, 
however, made it computationally costly. Subsequent advancements to R-CNN addressed its computational inefficiencies, including 
Fast R-CNN and Faster R-CNN. The training time was greatly shortened by Fast R-CNN by introducing a single-stage training 
procedure and the use of Region of Interest (RoI) pooling [83]. By incorporating a Region Proposal Network (RPN) that shared 
convolutional features with the detection network, Faster R-CNN enabled nearly real-time object identification, hence improving 
efficiency even further [45]. 
 
C. Single Shot Detectors (SSD) and YOLO 
To achieve real-time object identification without sacrificing accuracy, the You Only Look Once (YOLO) family of models and 
Single Shot Detectors (SSD) were created. With the introduction of SSD by Liu et al., bounding boxes and class scores may be 
predicted straight from feature maps in a single pass, hence eliminating the requirement for region suggestions [84]. YOLO, on the 
other hand, concurrently predicted bounding boxes and class probabilities by framing object detection as a regression problem. 
YOLOv1 and its iterations YOLOv3 and YOLOv5 showed remarkable speed and accuracy, which qualified them for real-time 
applications [60], [61]. Despite achieving real-time performance, SSD and YOLO have trouble managing items in cluttered 
situations and recognizing small things. High object density and occlusions, which are common in these environments, were 
difficult for these models to handle. 
 
D. Vision Transformers 
When Vision Transformers were released, object detection saw a paradigm shift. Vision Transformers use the self-attention 
mechanism to simulate global context and long-range dependencies in visuals. Transformers were initially intended for natural 
language processing, but Dosovitskiy et al. showed that, with the right scaling, they could attain state-of-the-art performance in 
picture classification tasks [64]. Subsequently, Carion and colleagues presented the Detection Transformer (DETR), an end-to-end 
object detection system that made use of transformers. DETR made the detection pipeline simpler by doing away with the 
requirement for manually constructed elements like non-maximum suppression and anchors [66]. Vision Transformers have 
benefits, but they also need a lot of computing power and big datasets to train them well. Research on their use in crowded areas and 
real-time object detection is still ongoing. 
 
E. Hybrid Approaches 
In order to overcome the drawbacks of each strategy, recent research has concentrated on creating hybrid models that integrate the 
advantages of YOLO, CNNs, and Vision Transformers. By combining the global context modeling of Vision Transformers, the 
reliable feature extraction of CNNs, the real-time efficiency of YOLO, and the robustness of CNNs, hybrid models seek to improve 
detection performance in cluttered scenes. These models combine several approaches to better manage variable object scales, 
occlusions, and high object density. 
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F. Advanced Techniques in Object Detection 
Apart from the basic models, a number of sophisticated methods have been put forth to enhance object recognition even further, 
especially in congested areas. To improve object detection at various scales, for example, Lin et al. proposed Feature Pyramid 
Networks (FPN). Using feature map pyramids created at different scales, FPNs improve the accuracy of object detection [85]. To 
achieve real-time object identification, another method called the Single Shot Multibox Detector (SSD) merged the concepts of 
multi-scale feature maps with anchor boxes [52]. 
G. Crowd-Specific Object Detection 
Additionally, specialized models have been created to handle the particular difficulties associated with crowd item recognition. 
Zhang et al.'s multi-column CNN (MC-CNN) research was done to address the high density and occlusions that are common in 
crowded scenes. To record objects of different scales, MC-CNNs employ several columns with distinct receptive fields [86]. 
Similarly, to increase accuracy in congested settings, Sam et al.'s work proposed a density-aware technique that integrates object 
detection frameworks with density maps [87]. 
 
H. Real-World Utilization and Datasets 
A number of benchmarks and datasets have been developed to support crowd object detection research. Because of its demanding 
and diversified image set, the COCO (Common Objects in Context) dataset is frequently used to assess object detection models 
[31]. Another significant dataset is CrowdHuman, which was created with the express purpose of identifying people in crowded 
environments. It is an invaluable tool for testing and refining detection models tailored to individual crowds [88] [15]. 
 
I. Conclusion 
Significant progress has been made in object detection procedures throughout the years, moving from manual feature-based methods 
to deep learning-based techniques. While each solution has helped to overcome distinct obstacles, there are still some limitations, 
especially in congested spaces. Future research should focus on hybrid approaches, which integrate the most effective features of 
current techniques to enhance crowd object recognition. This survey of relevant literature emphasizes how dynamic the subject is 
and how continuous efforts are made to create object detection systems that are more dependable and efficient. 
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