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Abstract: A coupled two frequency Hill's equation is solved. Analytically approximate solution correct up-to first order is derived 
using modified Lindstedt-Poincare perturbation method. For a wide range of controlling parameters, we compare the numerical 
and analytical solutions. The solution is the first step towards developing a comprehensive understanding of the electrodynamics 
of charged particles in a combinational ion trap utilizing both electrostatic DC and RF fields along with a constant static 
magnetic field with prospects of confining antimatter such as anti-hydrogen for a reasonably long durations of time. 
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I. INTRODUCTION 
Hill's equation [1] is a second order differential equation with periodic coefficients. The equation can be described as 

ẍ + f(t)x = 0#(1)
where f(t) is a period function, often a combination of several cosine and sine functions. Hill's equations find application in several 
diverse areas of applied sciences. The differential equation appears in several settings, such as, in the analysis of lunar stability [2], 
modeling of quadrupole mass spectrometer [3], the dynamics of an electron in a crystal using one dimensional Schrodinger equation 
[4], in a two level system in quantum optics [5] and electromagnetic ion traps [6] in which electrostatic DC and RF fields are used to 
confine charged particles in a limited space in a perturbation free environment. 
A well-known equation arising out of Eq. (1) is the Mathieu equation: 

ẍ + (a − 2qଵcos (2t))x = 0#(2)
Controlling parameters, a, qଵ determine the stability of the solution of Eq. (2). For example, if a = 0, the solutions up-to qଵ = 0.9 
are stable. Stability of Eq. (2) is well documented in the literature. The equation governs the dynamics of charged particles inside an 
electromagnetic ion trap, namely, Paul trap, wherein charged particles are under the influence of electrostatic DC and RF fields 
only. The coefficients a and qଵ are proportional to the applied voltage strengths. In this paper, we attempt to derive analytical 
approximate solution for a coupled two frequency Hill's equation [7] which can be written as 

ẍ− pẏ + (a − 2qଵcos (2ηିଵt)− 2qଶcos (2t))x = 0  (3) 
Such a coupled system has recently gained importance to study the electrodynamics of charge particles relevant to particle 
confinement using two radio frequencies [7,15] in a combinational trap utilizing features of both Paul and Penning trap. In context 
to such a trapping, coefficients a, qଵ, qଶ are proportional to the applied electrostatic DC and RF (radio frequency) and p is the 
proportional to the applied magnetic field. 
To get a better understanding of how Eq. (3) relates to the trapping of particles inside a combinational trap, consider the quadrupole 
potential in a dual frequency Paul trap given by 

Φ(x, y, z, t) = ൫U + Vଵcos (ωଵt) + Vଶcos (ωଶt)൯൫(xଶ + yଶ − 2zଶ)/rଶ൯#(4)  
The electric field generated by this potential is Eሬሬ⃗ (x, y, z, t) = −∇ሬሬ⃗ Φ(x, y, z, t). Since there exists a magnetic field Bሬሬ⃗ = Bk̂ due the 
features attributed to a Penning trap, the net force experienced by a charged particle of charge Q and mass M moving with a velocity 
vሬ⃗  is given by the Lorentz force equation Fሬ⃗ = −Q∇ሬሬ⃗ Φ + Q(vሬ⃗ × Bሬሬ⃗ ). If vሬ⃗ = v୶ ı̂+ v୷ ȷ̂ + vk̂, the components of force in the three 
orthogonal directions, i. e., F୶, F୷, F are given by: 

F୶ = −൫U + Vଵcos (ωଵt) + Vଶcos (ωଶt)൯(2x/rଶ) + Qv୷B#(5)
F୷ = −൫U + Vଵcos (ωଵt) + Vଶcos (ωଶt)൯(2y/rଶ)− Qv୶B#(6)

F = ൫U + Vଵcos (ωଵt) + Vଶcos (ωଶt)൯(4z/rଶ)#(7)
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Here, U, Vଵ,ଶ are the applied DC and RF voltages respectively, ωଵ,ωଶ are the primary and secondary RF frequencies, respectively, 
and r is the trap dimension. Upon substituting ωଶt = 2τ, F୶ = Mẍ, F୷ = Mÿ, a = 8QU/Mrଶ, qଵ,ଶ = −4QVଵ,ଶ/Mrଶ, p =
2QB/ωଶM, v୶ = ẋ, v୷ = ẏ and ωଶ/ωଵ = η in Eq. (5), Eq. (6) and rearranging the terms, one obtains the two coupled equations 
given in Eq. (3). Since τ is a dummy variable, without loss of generality, it can be replaced by t in the subsequent equations. The 
confinement in the x− y plane is through a set of coupled differential equations given by Eq. (3), whereas, along the z axis, the 
trapping is on account of a combination of DC and RF voltages, exactly like it is in a dual frequency Paul trap. The Lorentz force 
due to the magnetic field acts inwards. This increases the stability of the charged particles simultaneously being trapped by the 
application of a static and a dynamic electric field in combination with a constant magnetic field. In recent years, the trap employing 
dual frequency has gained importance since it is being viewed as a promising option to trap anti-hydrogen. In general, charged 
particles with varied charge to mass ratio can be trapped effectively inside a dual frequency Paul trap [7]. 
To produce anti-hydrogen, positron and antiproton are to be trapped and a magnetic field is required to trap the resulting neutral 
particle, anti-hydrogen. The limitation of a conventional single frequency Paul trap in trapping two species with different charge to 
mass ratio is that the weakly confined species is pushed away from the trap center [8]. The ALPHA experiment [9,10] and ATRAP 
experiment [11,12] rely on a variation of Penning trap using static magnetic field for their initial confinement. However, it is not 
possible to trap oppositely charged particles in a Penning trap on account of the presence of only DC electric field along with a static 
magnetic field. Hence a combinational trap inheriting features of both a dual frequency Paul trap and a Penning trap holds a lot of 
potential in confinement of oppositely charged species with a large charge to mass variation and will most certainly be a significant 
improvement when compared to earlier methods utilizing both electric and magnetic fields in a conventional single frequency Paul 
trap [13,14]. Dynamics governed by the differential equations given in Eq. (3) is therefore of great interest. It offers a starting point 
to the understanding of the electrodynamics that will emerge inside a combinational trap. In Sec. 2, we derive the time evolution of 
position of the confined particle in x and y direction. In Sec. 3, comparison of the analytical approximate solution with the numerical 
solution for a wide range of control parameters shows the robustness of the solution to depict the particle dynamics. Sec. 4 contains 
a conclusion and a discussion on the importance of the analytical solution. 
 

II. ANALYTICAL APPROXIMATE SOLUTION 
We begin expressing the equations in a concise form by writing A(t) = a − 2qଵcos (2ηିଵt)− 2qଶcos (2t). The coupled differential 
equations in Eq. (3) can now be written as 

ẍ − pẏ + A(t)x = 0#(8)
ÿ + pẋ + A(t)y = 0#(9)  

Multiplying Eq. (8) by imaginary j and adding to Eq. (9) gives 
z̈ − jpż + A(t)z = 0#(10)  

Where z = y + jx. Let z = w(t)exp (jpt/2). The function w(t) is a complex function which can further be substituted as w = X +
jY. Hence upon substituting z = (X + jY)exp (jpt/2) and after some basic manipulations, Eq. (10) can be written as 

ẅ + (A(t) + pଶ/4)w = 0#(11)  
here, ẅ = Ẍ + jŸ. Writing a1 = a + pଶ/4, qଶ = q୰qଵ,Ωଵ = 2ηିଵ,Ωଶ = 2, Eq. (11) can be expressed as 

ẅ + ൫a1− 2qଵcos (Ωଵt)− 2q୰qଵcos (ηΩଵt)൯w = 0#(12)  
Applying Modified Lindstedt-Poincare method [16] in Eq. (12), we begin by writing: 

a1 = νଶ + qଵαଵ + qଵଶαଶ 
Substituting the values of a1 and x from Eq. (13) in Eq. (12) and solving equations, one at a time for ࣩ(qଵ),ࣩ(qଵଵ),ࣩ(qଵଶ), we get 

X = Dଵϕ(t) + Eଵψ(t)#(14)
Y = Dଶϕ(t) + Eଶψ(t)#(15)  

here Dଵ,ଶ and Eଵ,ଶ, are real constants that depend on the initial positions and velocities of the charged particle, i.e., x, y, v୶, v୷. 
Moreover, one can express ϕ(t) and ψ(t), correct up-to first order as 
ϕ(t) = cos (νt) + aଵcos (ν − Ωଵ)t + aଶcos (ν+ Ωଵ)t + aଷcos (ν − ηΩଵ)t + aସcos (ν+ ηΩଵ)t 
ψ(t) = sin (νt) + aଵsin (ν − Ωଵ)t + aଶsin (ν+ Ωଵ)t + aଷsin (ν − ηΩଵ)t + aସsin (ν+ ηΩଵ)t 
here aଵ = qଵ/(νଶ − (ν − Ωଵ)ଶ), aଶ = qଵ/(νଶ − (ν + Ωଵ)ଶ), aଷ = q୰qଵ/(νଶ − (ν − ηΩଵ)ଶ), aସ = q୰qଵ/(νଶ − (ν + ηΩଵ)ଶ) and ν is 
the slow frequency given by 

ν = ට[(a + pଶ/4) + (2qଵଶ/Ωଵଶ)(1 + q୰ଶ/ηଶ)]#(18)  
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In Eq. (13), the constants a1 and x are written up-to second order, even though independent solutions of Eq. (16), Eq. (17) are 
written up-to first order. This has been done to evaluate the slow frequency by deriving expressions for αଵ and αଶ. The value of αଵ, 
to eliminate secular terms for ࣩ(qଵଵ) comes out to be αଵ = 0. Similarly, the value of αଶ, to eliminate secular terms for ࣩ(qଵଶ) comes 
out to be αଶ = (−2/Ωଵଶ)(1 + q୰ଶ/ηଶ). Backtracking from X and Y, the time evolution of position x(t) and y(t) for the charged 
particle is 

ݔ = ܻcos (2/ݐ) + ܺsin (2/ݐ)#(19)
ݕ = ܺcos (2/ݐ)− ܻsin (2/ݐ)#(20)  

It is worth observing that ϕ̇ = ϕ̇(t = 0) = 0 and ψ = ψ(t = 0) = 0. If one writes ϕ = ϕ(t = 0) and ψ̇ = ψ̇(t = 0), the values 
of constants Dଵ,ଶ and Eଵ,ଶ come out to be, Dଵ = y/ϕ, Dଶ = x/ϕ, Eଵ = ൫v୷ + px/2൯/ψ̇ and Eଶ = (v୶ − py/2)/ψ̇. 
 

III. COMPARISON OF ANALYTICAL SOLUTION WITH NUMERICAL SOLUTION 
The solutions are obtained by varying the controlling parameters, namely, p, qଵ, qଶ and η. In Fig. 1, a comparison of the numerical 
and analytical solution is shown with parameter values p = ଵݍ,0.3 = 0.0011,η = 45 in sub figures (a) ݍଶ = 0.15, (b) ݍଶ = 0.2, (c) 
ଶݍ = 0.24 and with parameter values p = ଵݍ ,0.7 = 0.002,η = 45 in sub figures (d) ݍଶ = 0.19, (e) ݍଶ = 0.23, (f) ݍଶ = 0.27.  
In Fig. 2, a comparison of the numerical and analytical solution is shown with parameter values p = ଵݍ,0.9 = 0.002,η = 45 in sub 
figures (a) ݍଶ = 0.15, (b) ݍଶ = 0.17, (c) ݍଶ = 0.2 and with parameter values p = ଵݍ,0.3 = ଶݍ ,0.0011 = 0.2 in sub figures (d) 
η = 5, (e) η = 35, (f) η = 55. The values of ݍଵ and ݍଶ are proportional to the applied RF voltages Vଵ and Vଶ respectively, p is 
proportional to the applied magnetic field strength B and η is the ratio of the secondary voltage frequency ωଶ and primary voltage 
frequency ωଵ. 
 

IV. CONCLUSION AND DISCUSSION 
For particle trajectory in x− y plane, the analytical approximate solution correct up-to first order, is derived for the coupled two 
frequency Hill's equation using modified Lindstedt-Poincare method. The analytical solution matches well with the numerical 
solution obtained by numerical simulating the system of coupled differential equations given in Eq. (3). The analytical solution has a 
limited number of harmonic terms, i.e., (ν ± Ωଵ) and (ν ± ηΩଵ) terms, whereas the numerical solution encompasses the effect of all 
the harmonic terms which make up the complete solution. Therefore, the matching is observed for some range of controlling 
parameters only.  
If the order of the analytical solution is increased, the range of operating parameters for which the two solutions coincide will widen. 
However, the derivation of such higher order terms will be mathematically challenging. It is important to see that the solution 
described by Eq. 16 and Eq. 17 will blow up when η ∼ 1.  
To obtain single frequency solutions one can simply substitute q୰ = 0 and keep η away from unity. In most of the practical settings 
[7,15], the value of η is substantially higher than unity, a regime wherein the analytical solutions are a good match to the numerical 
solutions. Experience guides us that analytical solution correct up-to first and second order are usually sufficient to provide deeper 
insights to both individual particle as well as collective dynamics inside the trap [17-19].  
The relevance of an analytical solution cannot be understated when one must study the collective dynamics inside such 
combinational traps. Since the fields are spatially linear in this set up, one must see if a distribution function can be constructed for 
the particles by the method of inversion [17]. It is well known that RF heating on account of applied RF fields will increase the 
temperature of the charged particles.  
The analytical tracking of temperature variation for each species inside such a trap is therefore important [18-19]. Temperature can 
be evaluated as the second order moment of the distribution function. To the best of my knowledge, such analytical work on 
collective dynamics for combinational traps has not been undertaken. Going ahead in this direction will require us to choose some 
operating parameters for stable configuration. The analytical expressions for particle dynamics derived in this work assumes 
importance as a vital starting point. 
Imperfections in electrode geometry of the trap introduce deviations from the quadrupole potential. It would be interesting to see if 
analytical solutions can be derived for particle dynamics in such a scenario. Study of nonlinear resonances, deviation in the values 
of secular frequencies, changes in the stability regimes of the dynamics are all very interesting problems that could be taken up as 
future work. 
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(a) (d) 

 
 

 
(b) (e) 

 
 

 
(c) (f) 

Fig 1. The plots (a), (b), (c), show a comparison of the numerical and the analytical solutions for parameter values p = 0.3, qଵ =
0.0011,η = 45. Plots (d), (e), (f) show a comparison of the numerical and the analytical solutions for p = 0.7, qଵ = 0.002,η = 45. 
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(a) (d) 
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Fig 2. The plots (a), (b), (c), show a comparison of the numerical and the analytical solutions for parameter values p = 0.9, qଵ =
0.002,η = 45 Plots (d), (e), (f) show a comparison of the numerical and the analytical solutions for p = 0.3, qଵ = 0.0011, qଶ =

0.2. 
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