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Abstract: The Advanced High-performance Bus (AHB) protocol has gained widespread adoption as a fundamental interconnect 
standard in system-on-chip (SoC) designs, facilitating efficient communication between various hardware components. This 
paper presents an in-depth exploration of utilizing the AHB protocol for data transactions within complex digital systems.The 
primary objective of this research is to investigate the design considerations, analyze the protocol's advantages, and evaluate its 
performance in data-intensive scenarios. The study delves into the key features of the AHB protocol that make it suitable for 
handling diverse data transactions, such as read, write, burst, and exclusive access operations. The paper discusses the 
architectural components of the AHB protocol, including the Master, Slave, and Arbiter modules, and provides insights into 
their functionalities and interactions. Furthermore, the research presents a comprehensive analysis of the AHB protocol's 
benefits, including efficient bus utilization, support for multiple bus masters, and the provision for high-bandwidth data 
transfers. 
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I. INTRODUCTION 
In the ever-evolving landscape of digital system design, efficient and robust data communication is paramount to ensure the 
seamless operation of modern computing devices. The Advanced High-performance Bus (AHB) protocol has emerged as a 
cornerstone in this endeavor, providing a standardized and efficient interconnect mechanism for facilitating data transactions within 
complex system-on-chip (SoC) architectures. This paper delves into the intricacies of utilizing the AHB protocol to manage data 
transactions, offering a comprehensive exploration of its design principles, benefits, and real-world applicability. The exponential 
growth in computing capabilities and the integration of diverse hardware components within a single chip have led to a pressing 
need for an effective communication infrastructure. The AHB protocol, developed by ARM, has addressed this challenge by 
offering a versatile and efficient framework that supports various data transaction types, ranging from single transfers to high-
bandwidth burst operations. Its versatility makes it an ideal candidate for enabling seamless communication between different 
functional units, memory modules, and peripheral devices. The AHB is a high-performance bus protocol developed by ARM as part 
of the AMBA specification. It provides a high-bandwidth, pipelined, and multiplexed bus architecture for connecting various 
components in a system-on-chip (SoC). The AHB protocol supports multiple bus masters and slaves, allowing concurrent data 
transactions. This paper seeks to provide a holistic understanding of the AHB protocol's role in data transaction management. It 
delves into the protocol's architectural components, elucidating the functionalities of the Master, Slave, and Arbiter modules. By 
establishing a clear understanding of these modules' interactions, the paper sets the stage for a thorough exploration of the protocol's 
capabilities and advantages. In the context of modern digital systems, where performance and efficiency are paramount, the 
advantages offered by the AHB protocol are pivotal. Its ability to support multiple bus masters, enabling concurrent data 
transactions, enhances system throughput and responsiveness. Furthermore, the protocol's hierarchical structure aids in optimizing 
resource allocation, ensuring a balanced distribution of access privileges among competing masters. 
 

II. LITERATURE SURVEY 
Embedded hardware accelerators with constrained resources are increasingly finding applications in security domains. To expedite 
system-on-chip (SoC) development, an effective approach involving hardware/software co-design and a robust validation platform 
has become indispensable. The use of Electronic System Level Simulation (ESL), implemented through SystemC, stands as a 
primary solution for swift hardware modeling and verification. Nonetheless, prevailing simulators often struggle to strike the right 
balance between precision and performance. Moreover, no ESL simulators have been tailored explicitly for cryptographic SoCs. 
Addressing this gap, this concise article introduces a novel concept: a virtual prototype (VP) featuring integrated cryptographic 
accelerators[1]. This VP is designed for a cryptographic SoC built on the RISC-V architecture, with the intent of bolstering 
functional and performance simulations of the SoC. 
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The VP is meticulously crafted to serve as an adaptable and customizable platform, specifically tailored for cryptographic SoCs 
through an efficient hardware/software co-design strategy. To achieve a highly authentic hardware emulation, the VP incorporates a 
flexible AHB-TLM interface and a core timing model[2]. These components collectively enable accurate real-world hardware 
emulation. Comparative analysis reveals that our custom VP exhibits impressive performance gains over RTL (Register Transfer 
Level) simulations, demonstrating speed improvements ranging from 10 to 450 times faster. Notably, this enhanced performance 
comes with a marginal simulation error of merely about 4%. 
 
A. AHB System Design 
In a typical AMBA AHB system configuration, several key components work together to facilitate efficient data communication. 
These components include the AHB master, AHB slave, AHB arbiter, and AHB decoder.The AHB master functions as the initiator 
of read and write operations, employing address and control information to trigger data transfers. It's important to note that only a 
single bus master is granted access to the bus at any given time, ensuring orderly communication. On the other side, the AHB slave 
operates as the responder to read or write operations, reacting according to the specific address space range it covers. The role of the 
AHB arbiter is critical in maintaining bus integrity. It orchestrates data transfers by allowing only one bus master to initiate each 
transaction, thereby preventing conflicts and ensuring data integrity. While the core protocol is standardized, the design of the 
arbitration algorithm can be customized to suit the specific needs of the application. An essential participant, the AHB decoder, 
tackles the task of address decoding for each transfer. The Figure.1 shows the single master AHB system design. This component 
deciphers the address information and generates select signals that guide the appropriate slave to respond. An important note is that 
a single, centralized decoder is a consistent requirement across all AHB implementations. 
 
Designing a system using the AHB (Advanced High-performance Bus) protocol involves various components and considerations to 
ensure efficient data transfer and communication. Here are the key parts of an AHB protocol system design: 
1) AHB Masters and Slaves: Identify the AHB masters (initiators of transactions) and AHB slaves (responders to transactions) in 

your system. Determine the functionalities of each master and slave component. 
2) Address Map and Decoding: Design the address map to allocate address ranges to different slaves. Implement address decoding 

logic to generate slave select signals based on the accessed address. 
3) Arbitration Logic: Implement the AHB arbiter that determines which master gets access to the bus when multiple masters 

request access simultaneously. Choose an arbitration algorithm based on your system's requirements. 
4) Bus Matrix Configuration: Configure the bus matrix to connect the masters and slaves, ensuring proper routing of transactions. 

Define the priorities and access permissions for different masters. 
5) Data and Control Paths: Design the data paths for transferring data between AHB masters and slaves. Implement control paths 

to manage control signals, transaction types, and response statuses. 
6) Synchronization and Pipelining: Address clock domain crossings by implementing proper synchronization techniques. 

Incorporate pipelining to optimize performance and reduce latency.  
7) Timing and Latency Analysis: Analyze the timing constraints to ensure that data transfers occur within the required time limits. 

Consider pipeline stages and potential delays in various components.  
8) Performance Optimization: Optimize the design for factors like throughput and latency. Use burst transfers and pipelining to 

enhance data transfer rates.  
9) Error Handling and Retry Mechanisms: Implement error handling mechanisms to handle situations like bus errors or timeouts. 

Design retry mechanisms to ensure data integrity in case of unsuccessful transfers.  
10) Verification and Testing: Develop thorough testbenches to verify the functionality of the AHB system. Test different 

transaction types, priorities, and scenarios to ensure proper operation.  
11) Power Management: Implement power management strategies to optimize power consumption in the system. Consider 

techniques like clock gating and power domains.  
12) Documentation and Debugging: Document the design decisions, configurations, and key parameters for future reference. 

Incorporate debugging features to aid in diagnosing issues during development and testing.  
13) Integration with SoC: Integrate the AHB system into the larger system-on-chip (SoC) design. Ensure proper interaction with 

other components, peripherals, and memory modules. 
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Figure 1 shows a single Manager AHB system design with the AHB Manager and three AHB Subordinates. A Subordinate-to-
Manager multiplexor and one address decoder make up the bus connectivity logic. In order to choose the correct Subordinate during 
the data phase of a transfer, the decoder keeps track of the Manager's address during the address phase. The multiplexor returns to 
the Manager the corresponding Subordinate output data. The usage of an interconnect component by AHB, which allows arbitration 
and signal routing from various Managers to the appropriate Subordinates, supports multi-manager architectures as well. 

 

Figure 1  Single Manager AHB system design 
 

B. The Finite State Machine of AHB Master and write operation 
The State diagram of AHB master is shown in Figure. 2. The AHB (Advanced High-performance Bus) protocol write channel is a 
fundamental component of the AHB architecture that facilitates the transfer of data from an AHB master to an AHB slave. This 
channel is responsible for carrying out write transactions, where the master sends data to a specific address range within a slave 
device. Here's how the AHB protocol write channel operates: 
1) Transaction Initiation: The AHB master initiates a write transaction by asserting the HTRANS (transfer type) signal with the 

value "01" (Write). The HADDR (address) signal specifies the memory address where the data is to be written. The HSEL 
(slave select) signal indicates the specific slave that will receive the write request. 

2) Arbitration and Slave Selection: If there are other bus masters competing for access to the bus, the AHB arbiter selects the 
master based on the predetermined arbitration algorithm. The selected master gains control of the bus, while other masters wait 
for their turn.  

3) Address Decoding: The AHB decoder decodes the HADDR signal to determine the specific slave that corresponds to the 
address range where the data will be written. The appropriate slave device is selected by asserting the corresponding slave 
select signal.  

4) Data Transfer: The AHB master places the data to be written onto the HWDATA (write data) signal. The HWRITE signal is 
asserted to indicate that this is a write transaction.  

5) Data Acceptance and Response: The selected slave processes the incoming data from the HWDATA signal and performs the 
necessary write operation. The HREADY (ready) signal indicates that the slave is ready to accept data and that the write 
operation is complete.  

6) Master Response: The HRESP (response) signal indicates the status of the write transaction. It can be set to "OKAY" to 
indicate a successful write or "ERROR" to indicate an error condition.  

7) Transaction Completion: After the write transaction is completed, the bus is released, allowing other masters to access the bus.  
 
The AHB write channel ensures efficient and reliable write transactions within the AHB protocol architecture. It supports multiple 
masters and slaves, enabling the smooth transfer of data from masters to slaves across a range of memory and peripheral devices in a 
system-on-chip (SoC) design. The Finite State Machine (FSM) of an AHB (Advanced High-performance Bus) master is a 
representation of the various states and transitions that the master goes through during the execution of transactions on the AHB bus. 
A typical AHB master FSM encompasses the essential phases of initiating transactions, addressing, data transfer, and handling 
responses. Here's an overview of the common states and transitions in an AHB master's FSM:  
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The Idle State where the master is not actively involved in any transactions and initiation of a new transaction triggers a transition to 
the next state. The Address Phase in this phase the master asserts the address and control signals to specify the transaction type (read 
or write) and the target address and successful completion of address setup triggers a transition to the next state. The Data Transfer 
Phase in this phase for write transactions, the master places data onto the HWDATA (write data) signal,  For read transactions, the 
master waits for data to be placed onto the HRDATA (read data) signal by the slave and depending on the transaction type, 
transitions occur when data is written (write transaction) or data is received (read transaction). The response handling phase in this 
phase the master waits for the HREADY signal to indicate that the slave has completed the operation, The master also monitors the 
HRESP (response) signal to determine the status of the transaction (OKAY, ERROR) and once the response is received and 
HREADY is asserted, the master transitions back to the idle state. The error handling phase in this phase if in case of an ERROR 
response, the master may take appropriate actions, such as retrying the transaction or signaling an error condition to higher layers of 
the system and depending on the error-handling strategy, transitions may vary.  
It's important to note that the specific FSM structure may vary based on the AHB master's capabilities, features, and the intricacies 
of the system it is part of. The FSM encapsulates the logical sequence of events and control signals that guide the master's behavior 
during AHB transactions, ensuring proper communication and data transfer between the master and the rest of the AHB system. 

 
Figure.2 The FSM diagram of AHB master 

 
C. The Finite State Machine of AHB Slave and Read Operation 
The state diagram of AHB s l a v e  is shown in Figure. 3. The AHB (Advanced High-performance Bus) protocol read channel is 
a crucial component of the AHB architecture that facilitates the transfer of data from an AHB slave to an AHB master. This channel 
is responsible for carrying out read transactions, where the master requests data from a specific address range within a slave device. 
Here's how the AHB protocol read channel operates: 
1) Transaction Initiation: The AHB master initiates a read transaction by asserting the HTRANS (transfer type) signal with the 

value "10" (Read).  The HADDR (address) signal specifies the memory address from which the data is to be read.  The HSEL 
(slave select) signal indicates the specific slave that will respond to the read request.  

2) Arbitration and Slave Selection: If there are other bus masters contending for access to the bus, the AHB arbiter selects the 
master based on the predefined arbitration algorithm. The selected master is granted control of the bus, and other masters wait 
for their turn.  

3) Address Decoding: The AHB decoder decodes the HADDR signal to determine the specific slave that corresponds to the 
requested address range. The appropriate slave device is selected by asserting the corresponding slave select signal.  

4) Data Transfer and Response: The selected slave responds to the read request by placing the requested data on the HRDATA 
(read data) signal. The HREADY (ready) signal indicates that the data is available for the master to read.  

5) Master Data Acceptance: The AHB master reads the data from the HRDATA signal and processes it. If the master successfully 
reads the data and completes the transaction, it asserts the HREADY signal to acknowledge the successful read.  

6) Response Status: The HRESP (response) signal indicates the status of the read transaction. It can be set to "OKAY" to indicate 
a successful read or "ERROR" to indicate an error condition.  

7) Transaction Completion: Once the read transaction is complete, the bus is released, and other masters can now access the bus. 
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The AHB read channel ensures that read transactions are performed efficiently and accurately while supporting multiple masters and 
slaves in a system-on-chip (SoC) design. It enables the seamless retrieval of data from memory or peripheral devices, contributing to 
the overall high-performance capabilities of the AHB protocol. The Finite State Machine (FSM) of an AHB (Advanced High-
performance Bus) slave represents the different states and transitions that the slave goes through when responding to transactions on 
the AHB bus. The AHB slave FSM typically involves various phases of processing read and write transactions. Here's an outline of 
the common states and transitions in an AHB slave's FSM: The Idle State where the slave is not involved in any transactions and is 
awaiting a valid request and the arrival of a valid HSEL (slave select) signal indicating the slave's address range triggers a transition 
to the next state. 

 
Figure. 3. The FSM diagram of AHB slave 

 
The Address Decode State where the slave decodes the incoming HADDR (address) signal to determine if the transaction is meant 
for this slave's address range. and upon successful address decoding, the FSM transitions to the appropriate state based on the 
transaction type (read or write). The read data preparation (Read State) for read transactions, the slave prepares the data to be sent 
back to the AHB master by placing it onto the HRDATA (read data) signal and transition to the Response Phase. In the write data 
acceptance (Write State) for write transactions, the slave processes the incoming data from the HWDATA (write data) signal and 
performs the appropriate write operation and transition to the response phase.  
In the response phase the slave asserts the HREADY (ready) signal to indicate that it has completed processing the request, 
depending on the outcome of the transaction, the slave sets the HRESP (response) signal to "OKAY" or "ERROR." and once the 
response is asserted and HREADY is acknowledged, the slave transitions back to the Idle State. The error handling phase if the 
transaction encountered an error (e.g., invalid address), the slave may set the HRESP signal to "ERROR" and take appropriate 
actions and after handling the error, the slave transitions back to the Idle State. The specifics of the FSM can vary based on the 
features of the AHB slave and the complexity of the system. The FSM outlines the sequence of events and control signals guiding 
the slave's response to AHB transactions, ensuring proper communication and data transfer between the slave and the rest of the 
AHB system. 
 

III. SIMULATION RESULTS 
This section presents results of register read and write transactions through AHB protocol. The simulation is carried out with the 
Xilinx Vivado tool [8]. The Synthesis result of the designwrite transaction is shown in Figure.4. To verify read and write transaction 
one directed scenario is covered where read and write is done in the register with the particular value. In the ideal state if the hready 
is 1’b0 and the hres is OKAY than it will goes to the the check mode state. In the check mode if the hresetn, hsel and hwrite all three  
are 1, it checks for the haddr it should be less than 256 than the next state will be addr decoder. Else next state will ideal state and 
the hres will be ERROR. The next state is addr decoder in this state the htrans is checked with NON_SEQ and SEQ. If the htrans is 
NON_SEQ than next addr is haddr and it also check the hwrite value. If hwrite is high than next state is write otherwise next state is 
read. If the htrans is SEQ than the next addr is retaddr this also checks with the hwrite value. If the hwrite is high than the data is 
written if not the data will be read. 
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Figure.4 The Write transaction of AHB protocol 

 
In the ideal state if the hready is 1’b0 and the hres is OKAY than it will goes to the the check mode state. In the check mode if the 
hresetn and hsel are high hwrite is low, it checks for the haddr it should be less than 256 than the next state will be addr decoder. 
Else next state will ideal state and the hres will be ERROR. The Figure .5 shows the the read transaction of the AHB protocol. The 
next state is addr decoder in this state the htrans is checked with NON_SEQ and SEQ. If the htrans is NON_SEQ than next addr is 
haddr and it also check the hwrite value. If hwrite is high than next state is write otherwise next state is read. If the htrans is SEQ 
than the next addr is retaddr this also checks with the hwrite value. If the hwrite is high than the data is written if not the data will be 
read. 

 
Figure.5 The Read transaction of AHB protocol 

 
IV. CONCLUSIONS 

The AHB protocol is verified by performing write and read transactions from the registers which can be ob- served from the 
simulation results. In essence, this paper's exploration of data transactions using the AHB protocol underscores its significance in 
modern SoC designs. By providing valuable insights into design principles, efficiency, and practical implementation, this research 
equips engineers, architects, and designers with the knowledge needed to harness the AHB protocol's capabilities for optimizing 
data communication. The findings presented here contribute to the advancement of efficient data transaction management, 
promising a positive impact on the performance and functionality of advanced digital systems. All simulation is done with the 
Xilinx Vivado 2020.2 tool. The power consumed by the design is the dynamic power 381.491W and Static power is 1.674W.  
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