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Abstract: The research presents DeepUrbanMapper, an innovative framework developed for the translation of satellite imagery 
into Google Maps-style renderings utilizing advanced image-to-image translation techniques. It is based on Generative 
Adversarial Networks (GANs), widely known in machine learning for their ability to yield high-quality images. To train it, the 
process involves a carefully curated and labeled dataset that consists of paired satellite and map images, enabling 
DeepUrbanMapper to learn the complex mappings between these two distinct visual domains. The GAN architecture used in 
DeepUrbanMapper is carefully designed and optimized to preserve spatial coherence and improve visual quality of the translated 
image. This helps in producing output maps that are close to the ground truth in both visual and geographical aspects. The 
proposed method includes few novel strategies to stabilize the GAN training and to overcome the notorious mode collapse 
problem and ensure a consistent output. DeepUrbanMapper has been extensively evaluated quantitatively and qualitatively for 
its performance. The evaluation shows that the new framework significantly outperforms the existing methods in terms of visual 
realism of the translated image and its ability to retain detailed features of the input satellite image which opens up many 
possibilities urban planning, car navigation systems, GIS. 
Keywords: Machine Learning, Deep learning, Model Accuracy, Image Processing, Object Identification and Data Processing, 
Generative Adversarial Networks, Generator Model, Discriminator Model.  

 
I. INTRODUCTION  

High-speed urbanization and city growth call for accurate and current mapping to support a myriad of urban planning and navigation 
to disaster management and GIS applications. Traditional map creation and update processes are painstaking, time-consuming, and 
costly, involving heavy reliance on manual digitization and interpretation of satellite imagery. This makes for a dire need for a 
solution that is automated, efficient, and scalable to generate quality maps from satellites. The need for this project arises from several 
key factors. Firstly, the sheer volume and frequency of satellite imagery being captured today demand automated solutions that can 
process and translate this data into useful formats rapidly. As urban landscapes evolve, having the ability to quickly update maps is 
crucial for maintaining accurate representations of these areas. Outdated maps can lead to inefficiencies and errors in navigation, 
planning, and emergency response. Secondly, there is an increasing need for high-resolution and highly detailed maps due to the 
demands of many businesses. Maps are essential for a variety of purposes, including the design and construction of infrastructure by 
city planners, the coordination of relief efforts by disaster response teams, and the optimisation of business operations and customer 
experiences by ride-hailing and delivery platforms, among others. Current systems used to translate satellite images into map formats 
are majorly based on old image processing and machine learning techniques. These are good approaches but have serious 
shortcomings. Most cannot capture the complexity and intricate features within satellite images, translating to maps that are neither 
accurate nor detailed. Other shortcomings of the said approach include challenges in maintaining spatial coherency, thereby causing 
artifacts and inconsistencies in maps created. The lack of adaptability to different urban environments further hampers their 
effectiveness.[1] Currently,  geospatial data is gathered and arranged to create a comprehensive digital image (map) using satellites, 
GPS-equipped drones or UAVs, and a number of trustworthy organisations. The publicly accessible, human-readable maps and the 
real geographic conditions/street views, however, are significantly delayed. One method to lower this delay is to automate the process 
of turning a satellite image into a map that can be read by humans. Generative models can help accomplish this automation.  
The research addresses these challenges by introducing DeepUrbanMapper, a novel framework using Generative Adversarial 
Networks for translation of satellite images to Google Maps style renderings. Given the powerful alternative of GANs that can 
generate high-fidelity images, this effort is then harnessed for this task. The GAN architecture in the DeepUrbanMapper framework is 
trained on a large dataset of labelled pairs of satellite and map images. The GAN learns to map the complex relationships between 
these two domains with high accuracy, which generates highly detailed and visually coherent map images that are very similar to the 
ground truth. DeepUrbanMapper aims to address the shortcomings of current systems by providing several key advantages.  
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The GAN-based approach ensures that spatial details and visual accuracy are preserved, producing maps with superior realism. The 
model's ability to generalize across different urban landscapes enhances its applicability to diverse geographic regions. Furthermore, 
the automated nature of this approach significantly reduces the time and labour required for map generation, offering a scalable 
solution that can keep pace with the rapid changes in urban environments. 
The dataset, which was gathered from Google Earth Engine for satellite photos and Google Maps API for related map images, has 
been made freely accessible by the authors of [2]. The resolution and zoom level of the satellite photos are stated, and they are 
accompanied with human-readable maps. The satellite picture is fed as input to the Conditional Adversarial Network generator, which 
produces a bogus output image. After that, the output picture and the satellite image are matched and supplied as input to the 
discriminator, which further categorises images as authentic or fraudulent. 

 
II. LITERATURE REVIEW 

Generative model-based image-to-image translation has, so far, seen much important work. There are two general categories: deep 
learning algorithms and algorithms that are based on machine learning. The former does not serve large datasets well, while the 
latter enhances image-to-image translation. 
The task of automating map generation from satellite imagery is of significant research interest, given its capability to make the 
processes of generating and updating a map easier. [1] focuses on the challenge of automating web interface design using generative 
deep learning models, specifically focusing on the efficacy of GANs for this task. This study brings to the fore the fact that GANs 
generate high-quality web designs from label maps, emphasizing their robustness and the reduction in manual overhead compared 
with conventional machine learning algorithms. 
[2] Also based on GAN extends the utility in creating human-readable maps from satellite imagery to reduce latency between changes 
in the real world and map updates. The study illustrates a GAN-based model that is capable of generating Google Maps-style 
renderings from satellite images. It shows how this model could find applications in ride-sharing, food delivery, and national security. 
The research strongly puts into focus the commercial and humanitarian value of an accurate and updated map, as in the goals of 
automation and efficiency underlined in reference. Based on the concept of the translation from satellite to map images, the research 
work in [3] proposes an improved GAN model with geographic data and semantic regulation to make up for the defects of standard 
GANs. The authors proposed Semantic-regulated Geographic GAN, which captures the integration of GPS coordinates and semantic 
estimation to improve the accuracy and quality of the map generated, especially in regions of complexity and visual ambiguity. This 
work brings out substantial quantitative and qualitative improvements over current methods and hence stands out as a strong approach 
to handle challenging regions with complex road networks and visual obstructions. The integration of semantic information and other 
data sources, as demonstrated in [3], is a significant step towards achieving the goals that were not met in overcoming the obstacles 
[1] and [2] raised in the direction of dependable and effective mapping systems.  
The study [4] compares Pix2Pix and CycleGAN, two popular GAN-based models for image-to-image translation. Using the Frechet 
Inception Distance measure, they assess them for performance against the dataset requirements, training duration, and resource 
utilisation. It comes to the conclusion that for picture translation tasks, Pix2Pix outperforms CycleGAN in terms of efficiency and 
translation quality. The research [5] introduces MapGen-GAN, a novel framework that transforms remote sensing images to maps, 
particularly for scenarios of disaster response. It integrates circularity-consistency and geometrical-consistency constraints to handle 
the absence of paired data in training and diminish semantic distortions. The framework also features BRB-Unet, an enhanced 
generator designed for accurate map translation. The results of the experiments show that MapGen-GAN performs better than other 
state-of-the-art models on datasets of New York City and Washington DC.  
Deep learning has made translating remote sensing pictures into maps easier in the field of remote sensing and cartography by 
removing the need for conventional vectorization techniques. With the advent of GANs, particularly the Pix2Pix model, this process, 
referred to as rs2map translation, has made important advances. However, the inconsistency of spatial resolutions and the high cost of 
computation for cross-domain translation have limited the effectiveness of the existing methods in generating maps at multiple scales. 
A series approach for multi-scale rs2map translation was proposed by [6] to overcome these challenges. This strategy utilizes high-
resolution RSIs in generating large-scale maps, which are then translated into multi-scale maps. This approach performed better 
compared to the parallel strategy and indicated marked improvement in metrics like intersection over union and structural similarity.  
Moreover, GANs have been used so much in applications of image-to-image translation; such scenarios are classified into two 
classes: paired and unpaired. While these pairs form the basis for traditional models like CycleGAN and Pix2Pix, their lack of 
semantic knowledge leads to problems like overfitting and poor generalization. To address these very issues, a semantic map infused 
GAN training methodology is proposed in [7].  
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The proposed approach improved the capability of the model for identifying and translating different object segments by introducing 
semantic mappings during training, which increases the overall quality and coherence of the translated images. Even though this 
strategy requires semantic maps during training, as compared to vanilla training approaches, it outperforms when tested on benchmark 
datasets. 
The processing of satellite images, with applications to super-resolution tasks, has been done in the context of CNNs and GANs in 
order to handle the difficulties posed by air disturbances and ultradistance imaging. The inability of traditional shallow learning 
methods led to the design of deeper networks, including SRCNN and residual networks. However, techniques often suffer from high 
computing costs and noise production. A GAN-based architecture was proposed in [8] for super-resolving satellite photos to get over 
these restrictions. It allows multi-level mappings between low-resolution and high-resolution pictures and enhances the model's 
ability to recover fine features and generate photo-realistic results. It mainly comprises a feature extraction and tuning block and a 
mapping attention unit. Experimental results show that this strategy is better than current methods, especially when the degradation is 
unknown. 
The research [9] compares Pix2Pix and CycleGAN in  general adversarial networks for image-to-image translation. Pix2Pix is more 
efficient than CycleGAN, which requires fewer resources and training time while producing higher-quality images and similarity if 
measured by Frechet Inception Distance for performance evaluation. The authors in research methodology [10] detailed utilizing a 
deep learning technique that employs a modified U-Net in conjunction with a GAN framework from high-resolution satellite photos 
increases the capability for road segmentation. Although it suffers from issues related to the continuous extraction of roads and 
complicated terrain, this approach drastically increases segmentation precision and F1 scores to potentially enhance topological 
accuracy in the future. 
Several research gaps are pointed out after conducting the literature survey. This includes problems in extracting continuous road 
parts from satellite imagery, the inefficiencies in the image-to-image translation task, high resource, and training time requirements, 
and limitations in processing complex and multiscale image  sections. These challenges are prevalent in both traditional techniques 
and some of the modern deep learning approaches, especially in producing smooth and accurate translations. The model, described in 
the research study, is likely to fill these gaps efficiently using conditional GANs, which will translate the satellite photos into maps, 
such as Google Maps.  
The conditional GANs increase the accuracy of image translation, keeping the nuances of the resultant maps and their important 
features, thus making it possible to condition the output for specific properties of input. They can easily deal with complicated 
sceneries and differences in road sections better than traditional approaches. By harnessing the capabilities of GANs to produce 
quality pictures and learn hierarchical features, the model can provide more accurate and resource-efficient solutions. This will finally 
give way to smooth and accurate map translations from satellite data. 

 
III. METHODOLOGY 

The methodology gives more information on how this approach to map generation from satellite images is realized using the 
Pix2Pix Maps dataset. We propose a novel use of a U-Net generator in conjunction with the Conditional GAN architecture, which 
leverages a family of cutting-edge deep learning algorithms for accurate image-to-image translation. Combining generative 
adversarial networks with the accurate localization from the U-Net architecture results in a methodology that ensures a robust 
solution to this difficult task.  
      
A. Dataset Description 
The Pix2Pix dataset was utilized as the primary dataset for this study. However, only a subset of the Pix2Pix dataset, consisting of 
the maps section, was employed in this work.  
The dataset contains 1096 training images and 1098 validation images in the form of JPG images; each pair of images includes an 
input satellite image and a target map as illustrated in Fig. 1. These satellite photos depict a variety of locations and terrains, from 
urban to natural areas, that help the generator learn to generate these images. The target images show different styles of 
geographical views, such as street maps, aerial views, and land-use maps, which serve as ground-truth labels for satellite images. 
This supervised setting therefore enables robust model training and evaluation, since the generated maps will have to have a good 
faithfulness and accuracy level. 
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Fig. 1. Pair of Satellite Image and the target map. 

  
B. Data Loading and Preprocessing 
The first step in our methodology is to prepare our dataset for training our map generation model. A custom data loading function is 
implemented for efficient loading and preprocessing of the data. This uses a module that can recursively look for image files in a 
specified directory path. A trimming parameter is also supported, which limits the number of loaded images. It is useful when one 
would wish to conduct smaller-scale experiments or in the process of debugging. Images are resized to size 256 × 256 pixels and 
further normalized to the range [0, 1]. In addition, utility functions are implemented to visualize input images and their 
corresponding masks for better insights into how the data looks. 
After loading and preprocessing the dataset, it is converted into a TensorFlow Dataset object using a method that creates slices from 
tensors. Further, this dataset is shuffled, batched, and prefetched for optimized data loading in the training phase of the model. The 
batch size selected is 32, balancing computational efficiency and model convergence. 
 
C. Model Architecture 
This section details the architectural design of our model for map generation, which forms the crux of our approach. Our model 
architecture has been carefully laid out to convert input images of a satellite into corresponding map images with high precision and 
detail. We have incorporated the techniques of a conditional GAN architecture and an intricate structure of the U-Net architecture. 
The GANs, first proposed by Goodfellow et al. in 2014, have proven to be a method that generates images indistinguishable from 
real images from random noise. The conditional variant of the GANs uses this capability to condition the output of the generator on 
extra information—say, class labels or input images. This allows accurate image-to-image translation tasks, where the generator 
gains the ability to associate target images in the destination domain with input images from the source domain. Our model 
leverages the discriminative power of a conditional GAN architecture to ensure that generated maps are very close to real map 
images. 
Besides the GAN framework, we use the U-Net architecture that Ronneberger et al. (2015) suggested. U-Net is renowned for its 
capacity to successfully capture contextual information while preserving fine-grained features. The architecture is symmetrical and 
has an encoder-decoder structure utilizing skip connections between the appropriate layers of the encoder and decoder. Skip 
connections are there to pass high-resolution information, which allows the model to keep spatial details during the upsampling 
process. 
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1) U-Net Architecture 
The U-Net architecture was proposed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in their paper titled \"U-Net: 
Convolutional Networks for Biomedical Image Segmentation.\" It is a new approach in semantic segmentation tasks. Motivated by 
the necessity for precise and efficient segmentation of biomedical images, which generally poses a problem with traditional methods 
in terms of a limited number of labeled data and intricate image structures. The basic architecture of U-Net as shown in Fig. 2. 
includes: 
i) Contracting Pathway (Encoder): Motivated by conventional CNNs, the network starts with a convolutional layer followed 

by ReLU activation and then batch normalization. It enables the hierarchical feature extraction with the subsampling 
performed using max-pooling. 

ii) Bottleneck: The bottleneck layer serves as a repository of high-level features that are critical to semantic understanding. 
This is a compressed representation for efficient feature extraction and context aggregation. 

iii) Expanding Pathway (Decoder): The transposed convolutions are used for upsampling, followed by reconstructing the 
segmented image, thus preserving the fine details with the help of skip connections. This is used to concatenate the feature 
maps of the contracting pathway for spatial context during upsampling. 

iv) Output Layer: The segmentation mask is output by the convolutional layer, which is the final layer, which consists of a 
sigmoid or SoftMax activation function for pixel-wise probabilities in order to achieve precise segmentation. 

It is the skip connections that allow the information to flow across different scales, improving the accuracy of localization. U-Net, 
with its architectural simplicity, flexibility in operating on limited data, and attentiveness to detail, has become the primary choice 
for segmentation tasks in a variety of applications, including cloud image segmentation. The specified loss function, typically cross-
entropy, and the Adam optimizer are used for training the model while monitoring the accuracy metrics over multiple epochs for 
enhanced segmentation capabilities. 
 

 
Fig. 2. Architecture of U-Net Model  

 
Applying U-Net principles in our generator model increases its capacity to perform the duty of image-to-image translation with high 
accuracy, particularly in the domain of map generation from satellite images. In addition, the symmetric encoder-decoder structure 
with skip connections from U-Net allows efficient spatial information preservation at different scales. The encoder path extracts 
feature hierarchically by means of convolutional layers followed by downsampling operations. Decoder path reconstruction of the 
full-resolution output image comes from upsampling layers. Most importantly, skip connections allow combining features from low 
and high levels, hence enable the fine-grained features to be preserved at reconstruction. The integration of U-Net architecture 
makes our generator model perfect in its operation of producing quality maps from satellite images; it captures the intrinsic spatial 
relationships—a fact that makes it excellent for image translation tasks. 
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2) Downsampling and Upsampling 
Firstly, we proceed with a downsampling operation, as implemented by the downsample function, to allow feature extraction and 
dimensionality reduction. The function uses strided convolutions in its convolutional layers to reduce the spatial dimensions of the 
input feature maps while growing the feature space in depth. Optional batch normalization is performed to stabilize and accelerate 
the training process, and the LeakyReLU activation function introduces non-linearity. The downsampling operation is very crucial 
in capturing hierarchical features from the input images and thereby enabling the model to learn meaningful representations for map 
generation. 
 
The downsampling operation can be defined as follows: 
a) Convolutional Layer: Applies a 2D convolution operation with specified filters and kernel size, with strides set to 2 to reduce 

spatial dimensions by half. The padding is set to 'same' to ensure the output has the same dimensions as the input. The 
convolution operation is given by: 

,ݍ,]ܻ [ݎ =     [ା,ା,].ௐ[,,,]ା[]
షభ

సబ

ೢషభ

సబ

షభ

సబ
 

 
where X is the input feature map, Y is the output feature map, W is the filter kernel, b is the bias term, C is the number of input 
channels, h and w are the height and width of the filter, and r indexes over the number of filters. 
 
b) Batch Normalization: Normalizes the output produced by the convolutional layer, improving training stability and performance. 

The batch normalization operation is given by: 

ො()ݔ =
()ݔ − ()ߤ

ඥߪ()మ + ߳
 

where ݔො() is the normalized value, ݔ() is the input value, ߤ() and ߪ()మ  are the mean and variance of the batch for the i-th feature, 
and ϵ is a small constant for numerical stability. 
 
c) LeakyReLU Activation: Introduces non-linearity with a small slope for negative inputs, preventing the dead neuron problem. 

The LeakyReLU activation function is defined as: 

(ݔ)ܷܮܴ݁ݕ݇ܽ݁ܮ = ൜ ,ݔ ݔ ݂݅ > 0
.ߙ ,ݔ  ݁ݏ݅ݓݎℎ݁ݐ

where α is a small positive slope coefficient, typically set to a small value such as 0.01. This function introduces a small gradient for 
negative input values, allowing a small, non-zero gradient flow during backpropagation and addressing the vanishing gradient 
problem. 
 
After downsampling, where we decrease spatial dimensions of the input and capture essential features at different levels of 
abstraction, comes the next step: reconstruction of the image details using upsampling layers. Upsampling layers play a pivotal role 
in bringing back the spatial details lost in the process of downsampling. They use the incorporation of batch normalization, optional 
dropout, transpose convolutional layers, and ReLU activation functions to increase the spatial dimensions while fine-tuning the 
feature maps. The upsampling function is defined as follows: 
d) Transpose Convolutional Layer: This layer performs an inverse convolution operation, which increases the spatial dimensions 

of the input feature maps. The transpose convolution operation is mathematically given by: 

,]ܻ ,ݍ [ݎ =     ൣඋ ௌൗ ඏା,උ ௌൗ ඏା,൧.௪[,,,]ା[]
షభ
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where X is the input feature map, Y is the output feature map, W is the filter kernel, b is the bias term, C is the number of input 
channels, h and w are the height and width of the filter, and r indexes over the number of filters. 
e) Batch Normalization: Similar to the one mentioned and explained in downsampling. 
f) Dropout: This layer is optionally included to assist prevent overfitting by randomly setting a portion of the input units to 0 

during training. The dropout rate used in our study is 0.5. 
g) ReLU Activation: This layer introduces non-linearity to the model, defined by the function: 

(ݔ)ܷܮܴ݁ = max(0,  (ݔ
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3) Generator Model 
Moving forward to the generator model, it lays the very foundation for our image-to-image translation framework, specifically 
engineered to produce quality map images given satellite images. It borrows deeply from the architecture of the U-Net and is 
divided into downsampling and upsampling paths, both of which are designed to capture subtle features without losing spatial 
information.  
The downsampling path takes a set of convolutional layers followed by downsampling operations, effectively extracting higher-
level features from the input satellite images. Next, the upsampling path very carefully restores spatial dimensions while 
incorporating fine details from the downsampling path via skip connections. These connections enable information from different 
abstraction levels to smoothly flow across the network, achieving faithful reconstruction of map images. More importantly, the 
architecture is engineered carefully to balance feature extraction and spatial fidelity so as to generate realistic and informative map 
images. Advanced techniques, such as batch normalization and dropout, further enhance the model stability and generalization 
performance, consequently improving the quality of generated outputs. 
 
The generator architecture is as follows: 
a) Input Layer: The model takes a satellite image of size 256×256×3 as input. 
b) Downsampling Path: This path includes a few convolutional layers followed by downsampling. This way, it learns to capture 

higher-level characteristics of the input image, decreasing the spatial dimensions. 
 The first layer comprises the convolutional operation using 64 filters with a kernel size of 4. Subsequent layers repeat 

the process with changed filter sizes to capture more abstract features. 
 The final layer of the downsampling path utilizes a convolutional operation with 980 filters and a kernel size of 4, 

encapsulating high-level abstractions derived from the input image. 
 

c) Upsampling Path: The upsampling path is a mirror of the downsampling path and is designed to regain the spatial dimensions 
of the image while keeping the features. This, too consists of a sequence of convolutional layers followed by upsampling 
operations. 

 Every layer in the upsampling path is related to a particular layer in the downsampling path; hence, spatial details are 
preserved with the help of skip connections. 

d) Skip Connections: These connections are an integral part of the U-Net architecture. They connect layers in the downsampling 
path directly to corresponding layers in the upsampling path, thus allowing the fine-grained details from the input to flow to the 
output. 

e) Output Layer: The final layer in the generator uses a transpose convolutional operation to produce an output of the similar 
dimensions as the input image. The activation function used is tanh, ensuring the output pixel values belong in the range of  
[−1,1]. 

 
Skip connections provide the generator model with indispensable conduits for the easy amalgamation of intricate details, mitigating 
information loss through upsampling. Through direct links between corresponding layers of downsampling and upsampling paths, 
the latter bypasses the vanishing gradient predicament of the deeper neural networks to ensure a more effective backflow of 
gradients through the training process. Mathematically expressed as 
 
 

௧(,)݅݇ܵ =  ܺ + ܻ 
 
where ܻ represents output of a given layer, ܺ  is an input and   skip connections combine low-level characteristics from the input 
image with high-level abstractions from the downsampling path. Such an amalgamation empowers the generator to capture fine-
grained nuances and intricate spatial relationships, hence reconstructions more faithful and more realistic with respect to map 
images from satellite data. 
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Fig. 3. Representation of Generator Model 
4) Discriminator Model 
The discriminator model’s role is to discriminate between real and generated, in other words, fake images. It is a major component 
of the Conditional GAN architecture; it acts as a feedback module, helping the generator in enhancing the quality of generated 
images. The inputs to our model are a pair of images—that is, the real satellite image and its corresponding target map image, or the 
real satellite image and the generated map image—whose output is a probability indicating whether the pair of inputs fed is real or 
fake. 
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The discriminator model is developed in the following manner: 
a) Initialization: 

 The initialization of the weights for convolutional layers is done with a random normal initializer that has a 0.02 
standard deviation and a mean of 0. 

b) Input Layers: 
 The discriminator model takes two inputs: inp (the input image, e.g., a satellite image) and tar (the target image, e.g., a 

map image). 
 Both the input and target images are of shape (256, 256, 3), which is an RGB image with dimensions 256x256. 

c) Concatenation: 
 Along the channel axis, the input and target images are concatenated to form a single input tensor of shape (256, 256, 

6). This concatenated tensor is a pair of images that the discriminator will decide upon. 
d) Downsampling Layers: 

 The model applies a series of downsampling operations using the downsample function. This function performs the 
following operations: 

 Convolution: 2D convolution with the number of filters and the kernel size specified. Strides are (2, 2) to 
perform downsampling, and padding=same to keep the spatial dimensions. 

 Batch Normalization: The convolutional layer output is normalized to have mean equal to zero and unit 
variance to speed up and stabilize training (applied if batch_norm is True). 

 Activation: Uses the LeakyReLU activation function to introduce non-linearity. 
 The sequence of downsampling layers is as follows: 

 First layer: 64 filters, kernel size 4, no batch normalization. 
 Second layer: 128 filters, kernel size 4. 
 Third layer: 128 filters, kernel size 4. 
 Fourth layer: 256 filters, kernel size 4. 

e) Intermediate Convolution Layer: 
 Next, an intermediate convolutional layer with 512 filters and a kernel size of 4 is applied by the network. This 

convolutional layer has a stride of 1, which is followed by batch normalisation and an activation function called 
LeakyReLU. 

 This convolutional layer applies zero padding both before and after it, to keep the spatial dimensions. 
f) Output Layer: 

 The discriminator network has an output layer that is a convolutional layer with 1 filter and kernel size 4. The output 
of this layer is a feature map with 1 channel, where each entry represents the probability of the corresponding patch in 
the input being real or fake. 

g) Model Compilation: 
 The discriminator model is compiled using the Keras Model class, with the concatenated input and target images as 

inputs, and the output probability map as the output. 
By constructing the discriminator in this way, the network gains the ability to discriminate between created and actual images, and 
during training, gives the generator feedback. The input and target images are concatenated so that the discriminator can evaluate 
how well they agree with each other. In this way, the generator is not only asked to produce a plausible map given a satellite image, 
but also to produce a map that the discriminator thinks came from the real distribution. This step provides insightful observations 
about the model's functionality and helps gauge its reliability in real-world cloud segmentation scenarios. The system architecture is 
presented in Fig. 4 below. 

 
Fig. 4 System Architecture 
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Fig. 5. Representation of Discriminator Model 

 
 

5) Loss Functions and Optimizations 
The training of our GAN involves the definition of the appropriate loss functions for the generator and discriminator, respectively, 
and choice of suitable optimization algorithms. In the following section, we outline the implementation of the loss functions and 
optimization. 
 
Loss Functions 
a)  Binary Cross-Entropy Loss: 

The binary cross-entropy loss can be seen to measure the quality of the discriminator in terms of distinguishing real from 
generated images, and the quality of the generator in terms of being able to successfully 'fool' the discriminator. 
Mathematically, binary cross-entropy loss for a single sample is defined as: 
 

               
 

Here, y is the true label, and  is the predicted label. 
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b) Generator Loss: 
The generator loss is composed of two parts: 
i.) Adversarial Loss: This motivates the generator model to produce images that the discriminator classifies as real. It is 
computed as: 
 

ேீܮ =  −
1
ܰ
 log(ܦ(ܩ(ݖ))
ே

ୀଵ

 

where ܩ is the generator, ܦ is the discriminator, and ݖ is the input noise vector. 
ii.) L1 Loss (Mean Absolute Error): This guarantees that, in terms of pixel values, the created photos are similar to the target 
images. It is computed as: 
 

ଵܮ =  
1
ܰ
‖ݕ − ଵ‖(ݔ)ܩ

ே

ୀଵ

 

 
iii.) Total Generator Loss: The combined amount of the adversarial loss and the L1 loss is the overall generator loss scaled by a 
factor ߣ: 
 

ீܮ = ேீܮ  +  λܮଵ 
 
where ߣ is a weighting factor (typically set to 100). 
 

c) Discriminator Loss 
The discriminator loss is also composed of two parts: 

i.) Real Loss: This part of the loss evaluates the discriminator's ability to correctly identify real photos. It is computed using the 
binary cross-entropy loss between a tensor of ones and the discriminator's output for real images. It is computed as: 
 

ܮ =  
1
ܰ
 log(ܦ(ݕ)
ே

ୀଵ

) 

 
ii.) Generated Loss: This part of the loss measures how well the discriminator can classify generated images as fake. It is 
computed using the binary cross-entropy loss between a tensor of zeros and the discriminator's output for generated images. It is 
computed as: 
 

ܮ =  
1
ܰ
 log(1− ((ݖ)ܩ)ܦ
ே

ୀଵ

 

 
 
iii.) Total Discriminator Loss: The total loss of the discriminator is the sum of the generated loss and the real loss: 
 

௧்ܮ = ܮ  +  ܮ 
 
In these equations: 
 ܦ(ݕ) is the discriminator's estimation for the original image ݕ. 
 ܩ)ܦ(ݖ) is the discriminator's estimation for the generated image ܩ(ݖ). 
 N is the number of samples. 
 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue XI Nov 2024- Available at www.ijraset.com 
     

 
1886 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

d) Optimization 
Both the generator and the discriminator are optimized using the Adam optimizer. This algorithm is chosen for its adaptive learning 
rate and momentum properties, which help in faster convergence and stable training. The learning rate α is set to 2 × 10ିସ , and the 
first moment decay rate (ߚଵ) is set to 0.5 
 
The update rules for the parameters ߠ of the generator and discriminator are as follows: 
 

݉௧ = ଵ ݉௧ିଵߚ + (1 − ௧ܮଵ )∇ఏߚ  
 

௧ݒ = ௧ିଵݒ ଶߚ + (1−  ଶ(௧ܮఏ∇)( ଶߚ
 

ෝ݉௧ =  
݉௧

1− ଵ௧ߚ
 

 

ො௧ݒ =  
௧ݒ

1 − ଶ௧ߚ
 

 

௧ାଵߠ = ௧ߠ  − ߙ 
ෝ݉௧

ඥݒො௧+ ∈
 

 
In the given equations: 
 The value ݉௧ is the mean or first moment of the gradients of the loss function  ܮ௧  concerning the model's parameters θ  at a 

given time t. 
 ݒ௧ represents the second moment (the uncentered variance) regard to the model's parameters ߠ at time t, of the gradients of the 

loss function ܮ௧ . 
 ߚଵ  and ߚଶ  are constants that govern the moment estimates' exponential decay rates. They typically have values close to 1. 
 ∇ఏܮ௧ represents the gradient of the loss function ܮ௧  with respect to the parameters θ of the model at time t. 
  and ݒො௧are estimates of the first and second moments, respectively, that have been corrected for bias. 
 ߙ is the learning rate, which controls the step size in the parameter update. 
 ∈ is a small constant (typically a very small value) added to the denominator for numerical stability. 
 
These equations describe the Adam optimization algorithm, which is commonly used for training neural networks. It adapts the 
learning rates for each parameter based on their first and second moments of the gradients, allowing for more effective and efficient 
optimization. 
 
6) Model Training 
Finally, the training process for the model involves arranging the iterative updates to the parameters through a custom fitting 
function and the model's predictions using a visualization function. The fitting function iterates over 100 epochs, where a single 
epoch involves processing batches of the training dataset. Inside this loop, a training step function is called, which is responsible for 
executing one training iteration. It uses TensorFlow's Autograph feature, which allows the decorator to make the code more 
computation-efficient.  
During a training step, input images and their corresponding target masks change their data type for compatibility with the 
operations to be performed. It computes gradients in the context of gradient tapes, allowing the operations to be traced for both the 
generator and discriminator models. Then, the generator's output is evaluated by the discriminator to compute adversarial loss, GAN 
loss and the mean absolute error, L1 loss of the generated output compared to the target image for generator loss computation.  
Simultaneously, the discriminator evaluates its loss, distinguishing between real and generated images that contribute to the overall 
optimization. The gradients of generator and discriminator losses are computed with respect to their trainable variables, making it 
possible to update the parameters. Finally, these gradients are applied through an optimization algorithm to iteratively refine the 
model's performance in successive epochs. 
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IV.  RESULTS AND DISCUSSIONS 

This section deals with the results by examination, using a wide range of evaluation parameters. The translation from the satellite 
images into representations like that of Google Maps achieves great potential in enhancing remote sensing and geographic 
information systems. In order to assess the model's effectiveness, we used a variety of measures, such as MAE (Mean Absolute 
Error), PSNR (Peak Signal-to-Noise Ratio), and SSIM (Structural Similarity Index Measure), among many others. A strong base is 
provided by these criteria for the visual integrity evaluation, noise reduction, and overall correctness of the developed maps. The 
following sections examine in greater detail the findings for these tests and allow for comment on model efficacy and possible areas 
for further development.  

 

 

 

 

 
Fig. 6.  Results 

 
A. SSIM 
Structural Similarity Index Measure. Using a range of established characteristics of the human visual system, more conventional, 
objective methods for assessing the quality of a perceived image have tried to quantify errors' visibility—the variations between a 
distorted and a reference image. Assuming that structural information can be extracted from a scene by human vision, we present a 
different supplementary paradigm for evaluating quality that is based on how structural information decreases.  
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Most image quality evaluation methods focus on the difference between a reference and a sample picture by measuring errors. 
Popular measures are differences in values of each corresponding pixel between reference and sample pictures, for example, Mean 
Squared Error. The visual perception system in humans is quite good at recognizing structural details from a scene, which allows it to 
distinguish between details taken from an example scene and a source. Because of this, a measure that mimics this behaviour will 
work better on tasks requiring the ability to distinguish between a reference picture and a sample. Three essential elements are 
extracted from a picture via the Structural Similarity Index (SSIM) metric: Structure, Contrast, and Luminance. These three qualities 
serve as the foundation for the comparison of the two images.  
SSIM is calculated through contrasting locally distributed patterns of normalised brightness and contrast pixel intensities. The formula 
for SSIM between two windows ݔ and ݕ of common size ܰ×ܰ is: 

SSIM (ݕ ,ݔ) = ((1ܥ+ݕߤݔߤ2)(2ܥ+ݕݔߪ2))/((1ܥ+2ݕߤ+2ݔߤ)(2ܥ+2ݕߪ +2ݔߪ)) 
Where: 

 ݔߤ and ݕߤ are the average pixel values of windows ݔ and ݕ. 
 2ݔߪ and 2ݕߪ are the variances of ݔ and ݕ. 
 ݕݔߪ is the covariance of ݔ and ݕ. 
 1ܥ and 2ܥ are small constants to stabilize the division with a weak denominator. 

The SSIM score of 0.6829 is indicative of a model that performs well in generating images with a good degree of similarity to the 
ground truth. While it demonstrates that the model is capturing important structural elements effectively, it also highlights that further 
tuning and improvements could enhance the level of how well-made the resulting photos are, potentially pushing the SSIM score 
closer to 1.  

 
B. Peak Signal-to-Noise Ratio (PSNR) 
PSNR is one measurement to determine how well the reconstructed pictures compare with the original pictures. Generally, it will be 
used to determine how well picture compression and reconstruction methods work. PSNR increases as the level of detail in the 
recreated image is better.  PSNR is defined as: 
PSNR = 20⋅log10(MAX_I / √ܧܵܯ)   
Where: 

 MAX_I denotes the maximum pixel value of the image (for 8-bit images, this value is 255). 
 MSE (Mean Squared Error) is the average of the squared differences between corresponding pixels of the two images. 

The PSNR score of 31.3 dB suggests that the predicted images are of good quality and closely resemble the expected images. The use 
of PSNR as a metric provides a quantitative way to evaluate the performance of the GAN in generating high-quality images. 
Generally, a PSNR value above 30 dB is considered to indicate high-quality reconstruction. 

 
C. Modified Inception Score (MIS) with KL Divergence 
One popular statistic for measuring the quality and diversity of images generated by generative models is the Inception Score. Here, 
the version that has been changed uses the Kullback-Leibler divergence as a measure of how close conditional and marginal 
distributions are to each other. The marginal distribution would be the distribution of the class labels in actual photographs, or the 
probability over the appearance of certain classes in the real image collection. It models the class label distribution given the produced 
images, which is a conditional probability distribution that defines the probability of different classes given the prediction of the 
generative model.  The value of 0.87783302 for this metric is a relatively high score, indicating that the generated images are of good 
quality and have a class distribution that is quite similar to the real images. In the context of the valid range of 0 to 1, where 1 
represents perfect similarity, a score of 0.877 suggests that the generative model is performing well, producing images that closely 
match the real distribution. 
 
D. Image Sharpness Difference 
A relative metric known as image sharpness is used to describe how clear an image is. Sharpness may also be used as a metric to 
assess the visual quality of images generated by generative models in comparison to actual photographs. The image's Laplacian 
variance can be used to measure sharpness. The picture gets clearer the greater the variance. Sharpness difference  represents the 
absolute difference in average sharpness between produced and actual pictures. A small sharpness difference indicates that the 
generative model is producing high-quality photos because the produced image clarity is about the same as the actual images.   
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A sharpness difference of 65.96148021536467  mean that the images generated and the real images have a slight difference. A 
difference in sharpness of about 66 means that the generated images are distinct from the real images but not different. The value is 
not close to zero, so the clarity and details of the produced images deviate a little from the original images. Not quite high, though, 
meaning the generative model does a great job, and there is room for improvement.   
 
E. FID (Fréchet distance) 
It is a metric for comparing the similarity of two image datasets. It is most frequently used to assess the quality of Generative 
Adversarial Network sample data since it has been demonstrated to correlate favorably with human judgement of visual quality. The 
location and arrangement of the points along curves are taken into consideration while calculating the Fréchet distance, a metric 
used in mathematics to compare curves. The value of 111.054 is a decent score for FID. 
 

V. CONCLUSION  
In this study, a GAN-based model is developed that can convert satellite images into a map-like representation; it is an architecture 
based on the Pix2Pix framework. The approach included the intense training process with a carefully curated dataset of paired satellite 
and map images. Also, the model consists of  elaborately designed generator and discriminator to optimize performance by providing 
state-of-the-art upsampling and downsampling layers with skip connections for preserving spatial information.  
The model demonstrated an average SSIM score of 0.6829, an average PSNR of 31.30 dB, which indicates that the generated maps 
are of high similarity to real map images in terms of structural similarity and fidelity. Besides, the difference in sharpness, 65.96, 
calculated, brings to light the competence of the model in maintaining image clarity; however, there is scope for further enhancement.  
One can use larger and more varied datasets to make the model more generalizable and improved in performance. It could achieve 
better results in sharpness and detail preservation by using the other architectures of GANs, such as StyleGAN and CycleGAN. With 
further tuning of hyperparameters and integration of post-processing techniques, such as sharpening, it is possible to lower the 
sharpness difference and improve the visual quality of the generated images. Such tailoring with respect to specific applications, such 
as urban planning and environmental monitoring, by the integration of domain-specific constraints and features, should be able to 
improve its practical utility. 
In conclusion, this research presents a significant step into the automation of generating map-like images from satellite data, hence 
providing a foundation for future advancements in this area. The model proposed here, with a bit more refinement and adaptation, has 
the potential to become very useful in various geospatial applications. 
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