

12 VI June 2024

https://doi.org/10.22214/ijraset.2024.63128

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue VI June 2024- Available at www.ijraset.com

536 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Design of Web Applications in ASP.NET

Mr. Anand Talekattu, Dr. Rajani Katiyar, Dr. Sahana B.
Dept. of Electronics and Communication, R V College of Engineering Bengaluru, India

Abstract: In the digital era, the development of robust web applications is crucial for providing efficient solutions across various
domains. This paper presents the design and development of two distinct web applications using ASP.NET Core: a resort
booking application and an expense tracker application. The resort booking application utilizes ASP.NET Core Model-View-
Controller (MVC) to manage resort operations, while the expense tracker leverages ASP.NET Web API with Angular for
comprehensive financial management of the user. The applications are designed to be scalable, secure, and user-friendly,
addressing common performance bottlenecks and ensuring optimal performance.
Index Terms: ASP.NET Core, Web Application, Resort Booking System, Expense Tracker, MVC, Web API, Angular

I. INTRODUCTION
The development of web applications has become essential in the modern digital world, providing crucial solutions for various
operational needs. ASP.NET Core is a cross -platform framework used for developing ene-to-end secure and scalable web
applications. Since ASP.NET use the C#, it is faster than other frameworks that use interpreted language like javaScript. This paper
focuses on the design and development of two web applications: a resort booking system using the ASP.NET Core MVC and an
expense tracker using ASP.NET Web API with Angular front-end framework.

II. MOTIVATION AND OBJECTIVE
A. Motivation
Most of the web applications in today’s world face com- putational and performance limitations, such as slow response time and
inefficient data processing, which can hinder user ex- perience and operational efficiency. This paper aims to address these limitations
by using powerful features of ASP.NET core.

B. Objectives
First objective of the project is to develop a web applications that are scalable, provide user authentication and authorization and user
friendly User Interface (UI). Second objective of the project is to automate booking management tasks to reduce manual
intervention and streamline operations for resort staff. Third objective is to develop payment gateway to make the payment in resort
application. Fourth objective of the project is to develop a expense tracker application that can track expenses and incomes of user
with AngularJS.

III. LITERATURE REVIEW
In the dynamic realm of web development, the architecture and tools we choose play a pivotal role in shaping the efficiency,
scalability, and security of our applications. From the classic three-tier architecture to cutting-edge frameworks like Vue.js and
Angular, each component contributes to the overall success of a project. As the demand for user-friendly interfaces and robust
security measures continues to rise, developers are constantly exploring new techniques and methodologies to stay ahead in this
ever-evolving landscape. The three-tier architecture, a fundamental approach in web application development highlighted in [1],
divides applica- tions into distinct layers: presentation, business logic, and data access. This separation enhances scalability,
maintainability, and reduces code coupling. Developers must tailor interfaces between layers based on application needs. As web
applications become more prevalent, so do security risks and management costs. Implementing a Web Application Firewall (WAF)
like ModSecurity with Reverse Proxy, as demonstrated in [2], effectively blocks various threats including XSS and SQL injection.
In [3], a user-friendly WAF framework is proposed, adept at combating common security flaws like XSS, SQLi, and DoS attacks. It
simplifies configuration through intuitive interfaces, offers real-time threat detection, and employs regex to filter out malicious code.
To secure cloud-based web services, [4] suggests using ontology and identity-based encryption. By dis- tributing data among
authorized users, it prevents unauthorized access and maintains confidentiality. [5] compares Vue.js and Angular frameworks for
lightweight web application develop- ment, focusing on a to-do list application. These frameworks leverage emerging technologies
to enhance user experience.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue VI June 2024- Available at www.ijraset.com

537 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Addressing the challenge of finding compatible web APIs, [6] introduces WAR, a recommendation system based on large- scale
API data. It simplifies API discovery and selection, reducing developers’ time and effort. [7] proposes a method to detect SQL
injection and XSS attacks without a firewall, utilizing Suricata NIDS/IPS rules and Nginx Reverse Proxy.In [8], a geological
exploration fund management system is designed using ASP.NET MVC, Ninject, and jQuery, meeting diverse user needs
effectively. [9] evaluates web rendering frameworks—Angular, React, and Vue—based on build size, interaction time, and DOM
manipulation. Vue outperforms others in manipulation time.[10] compares Angular and Svelte frameworks based on application
complexity and target device, emphasizing the importance of selecting the right framework.
Overall, the web development landscape continues to evolve, offering new solutions to old problems. Choosing the right framework
is crucial for developing efficient and secure web applications tailored to specific requirements and business needs.

IV. METHODOLOGY

In project the MVC architecture is foll0wed to build two applications: a rsort booking application which automate the booking
system by eliminating the human intervention and another is the expense tracker application which is used to track our income and
expenses to have set an limit to users daily expenditute.

A. MVC Pattern
Models, Views, and Controllers are the three primary com- ponent groups that an application is divided into using the MVC pattern.
By following this approach, user requests are sent to a Controller which inresponse send it to the Model to carry out user actions
and obtain query responses. The Controller then ask the View to send the corresponding user interface that the user sees. The model
is required by both the controller and the view. However, the model is independent of both the view and the controller. One of the
main advantages of the split is that the model can be developed and tested without regard to the visual display because of this
separation.
It is easier to code, debug, and test something (a model, view, or controller) that has a single job, hence this division of labor aids
in the application’s complexity scaling. Updates, tests, and debugging of code with dependencies across two or more of these three
domains are more challenging. For instance, compared to business logic, user interface logic is typically more dynamic. When
presentation code and business logic are integrated into one object, each time the user interface is altered, the business logic object
needs to be updated. This frequently results in problems and necessitates retesting business logic following even the smallest user
interface modification By keeping each component focused on a single responsibility, the code becomes more modular and easier to
manage. Developers can work on the UI without worrying about business logic, and vice versa. Issues can be isolated to a specific
layer, making it easier to locate and fix bugs. Each component can be tested independently. For instance, user can write unit tests for
the business logic in the Model without involving the UI. When the presentation code and business logic are separated, changes in
one do not necessitate changes in the other. This reduces the likelihood of introducing bugs when updating the application. The
requset flow is shown in figure 1.

Fig. 1. MVC pattern and data request flow

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue VI June 2024- Available at www.ijraset.com

538 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

B. Database Design
The databases for the resort booking and expense tracker application are built in MS SQL server. Figures 4 show the databse
diagram for the both databases.

Fig. 2. Resort Booking Application Database

In both applications, the code first approach is used to create a database, entities(tables), and foreign key relationships. Entity
Framework introduced the Code First approach with Entity Framework 4.1. The principal application of Code- First is in Domain
Driven Design. Instead of designing the database first and then generating the classes that correspond with the database design,
developers using the Code-First technique concentrate on the domain of the application and begin creating classes for domain
entities.

Fig. 3. Expense Tracking Application Database

C. User authentication and authorization
Administrators utilize two essential information security procedures, authorization, and authentication, to safeguard systems and
data. Authorization establishes the user or service’s access privileges, whereas authentication confirms the identity of the latter.
Authentication is carried out by the register and login process. Authorization is implemented by restricting access to different
controllers and actions in source files. In the resort application, there are two roles, one is the admin role and another one is the
customer role. Admin can see the dashboard where the data is displayed in graphical format. The admin can add, delete, and
update the villa, villa number, and amenities. Admin can see all the bookings and confirm the booking. The customer can only
see the available villa and book it. Then he can see the bookings he/she made. In expense tracker there is route guards that are
used for restricting the user access to certain pages like navigating to dashboard before login. And user authentication is done using
the login and register method where the data can be validated by using FormsModule in angular.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue VI June 2024- Available at www.ijraset.com

539 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

When a user register his name, email, password need to be entered which are validated before storing in database by angular forms
module validators. If the entered data are valid then the user is registered and navigated to login page where user has to enter email
id and password that he given when registering. If credentials are correct then the user is navigated to dashboard page where
expenses and incomes specific to him are displayed

D. Partial page update through partial views
In ASP.NET unlike react the whole page is reloaded whenever the any data in the page is changed. In other frontend frameworks
the part of the page which got updated is rerendered which saves time. So to implement partial page update in ASP.NET MVC
framework, partial views are used. In Resort booking application the home page contain the inputs for check in date and number
nights the user or customer want to book the villa. Then there is button provided to check the available villa at that date and
duration. At this point the whole page is reloaded to get the available villa and display them. But it is not necessary to reload
the other components other than the component that display available villa. So prevent reloading of whole page the component that
display the available villas is wrapped in an partial view. Then the partial view is called in the home page. Now whenever the user
change the check in date and duration of stay and click the search button, only the component that display the available villas is re-
rendered

E. API Development
The expense tracker application is developed using the ASP.NET web API. The API endpoints are tested using the postman API
testing tool. The API provide flexibility to manipulate data in the client side or the front-end side. The API call is made from the
angular service for fetching data. The API calls are handled by the HttpClient module. This service is available as an injectable
class, with methods to perform HTTP requests. Each request method has multiple signatures, and the return type varies based on the
signature that is called (mainly the values of observe and response type). Figure 4.3 shows the API endpoints. The API endpoints
are developed for accessing the expenses and its categories, incomes and its categories, and for login. Each domain has get, post
,put and delete end points.

Fig. 4. API end points for Expense tracker

V. RESULTS
The resort booking application will show the increased security through user authentication and authorization. And the clean
architecture followed to build the project has the scalability and deployment friendly nature which makes this first priority to large
applications. The expense tracker ap- plication has the API development which are used when UI is more important than the
scalability and speed. It can be used in light weight applications. It also has feature to add banking statement through which
income and expense are separated and added to corresponding table. While Angular is

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue VI June 2024- Available at www.ijraset.com

540 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig. 5. Time taken per request by ASP.NET and NodeJS

lightweight and ideal for developing single-page applications, it is slower than C# due to JavaScript’s interpreted nature compared
to C#’s compiled nature. However, the application’s design mitigates this by offloading heavy data processing to the ASP.NET
backend, ensuring a responsive and smooth user experience. The ASP.NET is 11 time faster compared to the NodeJS. Also the
.NET version 8 is 18% faster compared to the version 7. The expense tracker UI is designed to provide a seamless and intuitive
user experience. It combines robust backend processing with a user-friendly frontend, en- abling users to efficiently track and
manage their finances. The application’s features, including user authentication, data visualization, and API integration, ensure that
it meets the diverse needs of its users while maintaining high standards of performance and security. Comparison of time taken
per request by ASP.NET and NOdeJS taken per request is analysed by sending 20000 request to MS SQL server. The NodeJS
took total 10206.34 ms and the ASP.NET took 3959 ms. It shows the high performance of the ASP.NET core applications and its
efficiency in building web API and handling the client request. The comparative analysis of the ASP.NET and NodeJS is shown in
figure 5.

REFERENCES

[1] H. Xing, “Research on. net intelligent platform based on three layer structure,” in 2023 8th International Conference on Intelligent Comput- ing and Signal
Processing (ICSP), IEEE, 2023, pp. 684–688

[2] R. A. Muzaki, O. C. Briliyant, M. A. Hasditama, and H. Ritchi, “Im- proving security of web-based application using modsecurity and reverse proxy in web
application firewall,” in 2020 International Workshop on Big Data and Information Security (IWBIS), IEEE, 2020, pp. 85–90.

[3] F. Omar, D. Ahmed, O. ElNakib, et al., “Towards a user-friendly web application firewall,” in 2023 Eleventh International Conference on Intelligent
Computing and Information Systems (ICICIS), IEEE, 2023, pp. 483–488

[4] S. Chavan and S. Tamane, “Enhancement in cloud security for web application attacks,” in 2020 International Conference on Smart Inno- vations in Design,
Environment, Management, Planning and Computing (ICSIDEMPC), IEEE, 2020, pp. 91–95.

[5] O. C. Novac, D. E. Madar, C. M. Novac, G. Bujdos, M. Oproescu, and T. Gal, “Comparative study of some applications made in the angular and vue. js
frameworks,” in 2021 16th International Conference on Engineering of Modern Electric Systems (EMES), IEEE, 2021, pp. 1–4

[6] L. Qi, Q. He, F. Chen, X. Zhang, W. Dou, and Q. Ni, “Data-driven web apis recommendation for building web applications,” IEEE transactions on big data,
vol. 8, no. 3, pp. 685–698, 2020.

[7] P. Tanakas, A. Ilias, and N. Polemi, “A novel system for detecting and preventing sql injection and cross-site-script,” in 2021 International Con- ference on
Electrical, Computer and Energy Technologies (ICECET),

[8] IEEE, 2021, pp. 1–6
[9] P. Luan and G. Li, “Design and implementation of capital management information system for central financial fund project based on mvc pattern,” EAI, Jun.

2023. doi: 10.4108/eai.2-12-2022.2328752.
[10] R. N. Diniz-Junior, C. C. L. Figueiredo, G. D. S. Russo, et al., “Evaluating the performance of web rendering technologies based on javascript: Angular, react,

and vue,” in 2022 XVLIII Latin American Computer Conference (CLEI), IEEE, 2022, pp. 1–9
[11] T.-D. Tripon, G. A. Gabor, and E. V. Moisi, “Angular and svelte frame- works: A comparative analysis,” in 2021 16th International Conference on Engineering

of Modern Electric Systems (EMES), IEEE, 2021, pp. 1–4
[12] T. F. Iskandar, M. Lubis, T. F. Kusumasari, and A. R. Lubis, “Compar- ison between client-side and server-side rendering in the web develop- ment,” in IOP

Conference Series: Materials Science and Engineering,
[13] IOP Publishing, vol. 801, 2020,p. 012 136
[14] K. Peguero and X. Cheng, “Csrf protection in javascript frameworks and the security of javascript applications,” High-Confidence Computing, vol. 1, no. 2, p.

100 035, 2021.
[15] F. F. Fadlalla and H. T. Elshoush, “Input validation vulnerabilities in web applications: Systematic review, classification, and analysis of the current state-of-

the-art,” IEEE Access, vol. 11, pp. 40 128–40 161, 2023.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue VI June 2024- Available at www.ijraset.com

541 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

[16] V. Veeraiah, N. B. Rajaboina, G. N. Rao, S. Ahamad, A. Gupta, and C.
[17] S. Suri, “Securing online web application for iot management,” in 2022 2nd International Conference on Advance Computing and Innovative Technologies in

Engineering (ICACITE), IEEE, 2022, pp. 1499–1504.
[18] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and R.
A. Khan, “A knowledge-based integrated system of hesitant fuzzy set, ahp and topsis for evaluating security-durability of web applications,” IEEE Access, vol. 8,

pp. 48 87048 885, 2020.
[19] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and
[20] R. A. Khan, “An integrated approach of fuzzy logic, ahp and topsis for estimating usable-security of web applications,” IEEE Access, vol. 8, pp. 50 944–50

957, 2020.
[21] M. Alenezi, A. Agrawal, R. Kumar, and R. A. Khan, “Evaluating performance of web application security through a fuzzy based hybrid multi-criteria decision

making approach: Design tactics perspective,” IEEE Access, vol. 8, pp. 25 54325 556, 2020.
[22] P. Kalariya, M. Jethva, and Y. Alginahi, “Ml assisted web application firewall,” in 2024 12th International Symposium on Digital Forensics and Security

(ISDFS), IEEE, 2024, pp. 1–6.
[23] I. Ahmad, E. Suwarni, R. I. Borman, F. Rossi, Y. Jusman, et al., “Imple- mentation of restful api web services architecture takeaway application development,”

in 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), IEEE, 2021, pp. 132–13
[24] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer frontend bottleneck,” in 2020 ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), IEEE, 2020, pp. 65–78.
[25] P. Pant, A. S. Rajawat, S. Goyal, et al., “Authentication and authorization in modern web apps for data security using nodejs and role of dark web,” Procedia

Computer Science, vol. 215, pp. 781–790, 2022.
[26] R. F. Olanrewaju, B. U. I. Khan, M. A. Morshidi, F. Anwar, and M. L.
[27] M. Kiah, “A frictionless and secure user authentication in web-based premium applications,” IEEE Access, vol. 9, pp. 129 24129 255, 2021.
[28] J. V. Chandra, N. Challa, and S. K. Pasupuletti, “Authentication and authorization mechanism for cloud security,” International Journal of Engineering and

Advanced Technology, vol. 8, no. 6, pp. 2072–2078, 2019. UG Major Project Report Department of ECE, 2023-24 45.
[29] S. A. Sabab, S. S. Islam, M. J. Rana, and M. Hossain, “Eexpense: A smart approach to track everyday expense,” in 2018 4th International Conference on

Electrical Engineering and Information & Communica- tion Technology (iCEEiCT), IEEE, 2018, pp. 136–141.
[30] E. Johri, P. Desai, P. Soni, H. Jain, and N. Sanganeria, “Expense man- agement system,” in 2023 4th IEEE Global Conference for Advancement in Technology

(GCAT), IEEE, 2023, pp. 1–6.
[31] N. Upadhaya, A. Pant, S Karthikeyan, and A. L. S, “Web automation using selenium in java,” in International Research Journal of Engineering and

Technology,IRJET, vol. 07, May 2020, pp. 6011–6014. UG Major Project Report Department of ECE, 2023-24 53
[32] S. B, A. P. R, C. M. M. Kumar, S. B, G. B, and A. Deshpande, “Implementation of hybrid load balancing algorithm in web servers,” in International Journal

of Advanced Science and Technology, IJAST, vol. 29, Feb. 2020, pp. 2234–2241.
[33] P. Biswagar SiddarthaBhaumik, “Detection and classification of mali- cious websites,” in International Research Journal of Modernization in Engineering

Technology and Science, IRJMET, vol. 03, May 2021, pp. 1–6.
[34] A. Dinkar and P. Biswagar, “Analysis of data oriented web application systems,” in Journal of University of Shanghai for Science and Technol- ogy, vol. 23,

May 2021, pp. 636–649. doi: 10.51201/JUSST/21/05199.
[35] N. G. ANUSHA LS, “Inventory management website for maintenance of the corporate computer equipment’s,” in International Research Journal of

Modernization in Engineering Technology and Science, IRJMET, vol. 03, May 2021, pp. 1–4.

