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Abstract: In Nigeria, biogas is a viable renewable energy source. This study's goal was to filter raw biogas of acidic gases CO2 

and H2S before connecting it to the natural gas netting standard. The biogas acidic gas treatment plant was designed and 

numerically modelled using Aspen HYSYS 8.6. The simulation's primary goal is to find the optimal operating pressure that can 

make Nigerian biogas as pure as natural gas. The biogas treatment was carried out in a 20 stage PSA with a tray diameter of 1.7 

m and a CO2 content of 0.25, H2S content of 0.0004, temperature of 30 C, pressure of 1.1 bar, flow rate of 13 m
3
/h, and DEA 

concentration of 0.3. A PSA operating pressure of 5 bars is necessary to achieve 95% pure methane biogas. 
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I. INTRODUCTION 

In reality, transforming agricultural, industrial, and sewage waste to biogas [1] may help Nigeria solve its energy crisis. The CO2 

and H2S in sour Nigerian biogas must be eliminated before pumping it into the natural gas netting to fulfill the standards of these 

nettings [2–5]. Biogas sweetening removes CO2 and H2S from treated biogas to protect pipelines and engines from corrosion and 

increase calorific value [6–9]. Most biogas research in Nigeria focuses on producing biogas from local resources and utilizing it to 

generate thermal energy [10–14], but few researchers focus on biogas capacity enrichment. Numerical simulation aids in the design 

of sweetening cycles and size of equipment, particularly the absorber [15–17]. The Aspen HYSYS 8.6 simulation software is one of 

the most accurate and critical programs used in gas treatment process design [18–21]. 

Using the Aspen HYSYS 8.6 modeling tool, this paper determined the optimal PSA operating pressure to ensure methane purity in 

Nigerian biogas. 

The investigation of employing simulation programs in the purification process of acid gases has been done [22–26]. No precise 

technique was provided to establish the optimal PSA operating pressure to extract pure methane from biogas. Thus, the current 

research intended to improve Nigerian biogas netting capacity. 2. 

Fig. 1 depicts a typical full acid gas removal cycle (sweetening cycle) used for natural gas upgrading and purification [27]. 

The absorber column was chosen from the Aspen HYSYS model pallet (Fig. 2), which has an internal architecture of 20 stages, 

each level consisting of one tray. The DEA-containing acid gas fluid package is chosen [29]. 

The feed Nigerian biogas enters the absorber at 30°C, 1.1 bar pressure, and a flow rate of 13 m3/h from the absorber column's 

bottom. The lean amine (DEA) enters at 30 C, 20 bars, and 5.45 104 m3/h. DEA can concurrently absorb CO2 and H2S from 

Nigerian biogas. The sweet feed gas escapes at the top of the column, while the rich amine exits at the bottom of the absorber. The 

rich amine then travels through the expansion valve to reach 43 C and 1.4 bars before entering the separator. Rich amine leaves the 

separator under the same circumstances to enter an L/R heat exchanger. Lean amine is heated using the L/R heat exchanger. The 

hot, rich amine departs the exchanger and enters a regeneration column to absorb CO2 from it to lean it for reuse, while the lean 

amine enters a make-up tank at 74 C and 1.04 bar (0.027 bar above atmospheric pressure) and exits it at 74 C and 1.04 bar (0.027 

bar above atmospheric pressure). Then it's pushed to 74.5 C and 1.1 bars, then cooled to 30 C using a continuous pressure technique. 

1.1 bar lean amine recycler exit [30]. 

II. RESULTS AND DISCUSSION 

The simulation process was done to optimize PSA working pressure using Aspen HYSYS. The removal cycle's temperature, 

pressure, and inlet gas flow rates were all calculated numerically to maximize methane purification from Nigerian biogas. 
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A. Impact of Nigerian PSA working pressure on CO2 concentration of biogas 

As shown in Fig. 3, the relationship between PSA working pressure and CO2 percent in Nigerian biogas is inverse. The CO2 

percentage is 0.0084 when the absorber PSA operating pressure is 5 bar. If the PSA operating pressure is beyond 5 bar, there is 

negligible (non-economic) influence on CO2 levels. To keep the lowest starting cost for absorber construction, the PSA operating 

pressure does not need to exceed 5 bar. 

B. Impact of Nigerian PSA working pressure on H2S concentration of biogas 

In Fig. 4, the relationship between PSA working pressure and H2S percent in Nigerian biogas is reversed. At 1.1 bar pressure, H2S 

may be entirely eliminated from Nigerian biogas. Thus, the 5 bar pressure required to clear CO2 from Nigerian biogas cleans both 

CO2 and H2S concurrently. 

C. PSA Working Pressure on Nigerian biogas end Product Pure Methane 

Fig. 5 demonstrates the impact of PSA operating pressure on final biogas methane purity. The methane purity tends to be 95% at the 

absorber PSA operating pressure of 5 bar, which is sought by most NG nettings. More than 5 bar PSA operating pressure has a 

greater influence on methane purity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Cycle of acid gas removal (sweetening cycle) [28]. 

 

Fig 2. absorbing column [29]. 
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Fig 3.  Impact of Nigerian PSA working pressure on CO2 concentration of biogas. 

Table 1.  Feed Nigerian biogas mole fraction [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from the preceding graphs that the optimal PSA operating pressure for achieving 95% methane purity from Nigerian 

biogas is 5 bar. If the pressure is too low, the biogas treatment cycle might yield less pure methane. 

The partial volume of a given gas in a combination is the volume of one element of the combination, according to Amagat's law 

of cumulative volume [31]. Tables 2 shows the partial pressures of acidic gases. 

 
 

The term (Px/Ptot) is directly proportional to Vx, therefore if (Px/Ptot) is tiny, then Vx is little as well. This means that increasing 

total pressure may enhance methane purity according to Amagat's law of additive volume.. 

Component Mole fraction Volume 

fraction 

Methane (CH4) 0.7466 0.7468 

Carbon dioxide (CO2) 0.2523 0.2523 

Hydrogen sulfide (H2S) 0.0005 0.0005 

Water vapor (H2O) 0.0005 0.0002 

Hydrogen (H2) 0.0002 0.0002 

Nitrogen (N2) 0.0003 0.0003 

Oxygen (O2) 0.0003 0.0003 
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Fig 4. Impact of Nigerian PSA working pressure on H2S concentration of biogas. 

 
Fig 5. PSA working pressure on Nigerian biogas end product Pure Methane. 

 

Table 2. CO2 and H2S partial pressure in Nigerian biogas. 

Acidic component Partial 

pressure 

CO2 partial pressure 0.2774 bar 

H2S partial pressure 4.455  104 bar 
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Table 3. Sweetening Nigerian biogas composition. 

Component Mole fraction Volume 

fraction 

Methane (CH4) 0.9557 0.9785 

Carbon dioxide (CO2) 0.0085 0.0087 

Hydrogen sulfide (H2S) 0 0 

Water vapor (H2O) 0.0353 0.0122 

Hydrogen (H2) 0.0002 0.0002 

Nitrogen (N2) 0.0003 0.0003 

Oxygen (O2) 0.0004 0.0004 
 

 

The ideal PSA operating pressure for cleaning acidic gases in Nigerian biogas is 5 bars. Table 3 shows the final sweetening gas 

composition derived from Nigerian biogas. 

III. CONCLUSION 

The optimal PSA operating pressure was determined by numerical simulation utilizing Aspen HYSYS simulation software. CO2 

0.25, H2S 0.0004; 30 C; 1.1 bar pressure; and 13 m3/h flow rate were fed to the PSA. Simultaneous CO2 and H2S removal using 

DEA amine solvents. The simulation revealed that a DEA concentration of 0.3 and 20 steps PSA with a tray diameter of 1.7 m were 

optimal for biogas treatment. The best PSA operating pressure for obtaining 95% pure methane from Nigerian biogas is discovered 

to be 5 bar. 

A. Nomenclature 

Cond   condenser 

DEA  diethanolamine 

L/R  Lean/Reach 

NG  natural gas 

PSA  Pressure Swing Absorber total 

ptot    pressure of the gas mixture 

px   partial pressure of an individual gas component (X) in the mixture 

RCY  recycler 

REB  reboiler 

VLV  valve 

Vtot  total volume of the gas mixture 

Vx  partial volume of an individual gas component (X) in the mixture 
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