

12 XI November 2024

 https://doi.org/10.22214/ijraset.2024.65559

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2141 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Detection of DDoS Attacks Using XGBoost-Based
Feature Selection and Deep Learning

Arjun R Nair

I. INTRODUCTION

In the rapidly evolving landscape of cybersecurity, network intrusion detection systems (IDS) have become essential tools for
safeguarding information assets against malicious activities. As cyber threats grow in complexity and frequency, particularly
Distributed Denial of Service (DDoS) attacks, there is an increasing need for advanced detection methodologies that can accurately
differentiate be- tween benign and malicious network traffic. Machine learning and deep learning techniques have emerged as powerful
approaches to improve the efficacy of IDS by learning intricate patterns from network data.
The Canadian Institute for Cybersecurity’s Intrusion Detection System 2017 (CICIDS2017) dataset has been established as a
benchmark for evaluating intrusion detection algorithms. This dataset contains a rich mix of benign traffic and the most up-to-date
common attacks, which closely resemble real-world network environments through Packet Capture (PCAP) files. It includes the
results of network traffic analysis using CICFlowMeter, offering labeled flow data based on timestamps, source and destination IP
addresses, ports, protocols, and attack types in the CSV format. A significant aspect of the CICIDS2017 dataset was the generation of
realistic background traffic. Utilizing the B-Profile system proposed by Sharafaldin et al. (2016), the dataset profiles the abstract
behavior of human interactions to generate naturalistic benign traffic. This approach models the behavior of 25 users across various
protocols including HTTP, HTTPS, FTP, SSH, and email, thereby creating a comprehensive and realistic dataset for intrusion
detection research.
Despite the availability of such detailed datasets, accurately detecting anoma- lies and outliers, especially DDoS attacks—remains a
challenge. Factors such as high dimensionality, redundant features, and class imbalance in the data can hinder the performance of
traditional detection methods. Therefore, there is a pressing need to develop advanced models that not only improve detection
accuracy but also optimize computational efficiency and resource utilization.

A. Problem Statement
This research addresses the challenge of detecting anomalies and DDoS attacks within network traffic by improving intrusion detection
accuracy using machine learning algorithms. Specifically, it focuses on enhancing the performance of IDS by leveraging deep
learning techniques to classify network flow samples into benign or malicious categories, considering both binary and multiclass
classifi- cation scenarios.

B. Objectives
The primary objective of this study is to develop a robust intrusion detection model that achieves high accuracy while maintaining
computational efficiency. The specific goals include:
1) Feature Selection: Implement feature selection using the Extreme Gra- dient Boosting (XGBoost) algorithm to identify the most

significant fea- tures, reduce data dimensionality, and optimize memory usage without compromising detection performance.
2) Handling Class Imbalance: Address the issue of class imbalance in- herent in the CICIDS2017 dataset to ensure that minority

classes, such as specific types of attacks, are accurately detected. Techniques such as resampling or cost-sensitive learning may
be employed to mitigate this challenge.

3) Deep Learning Model Development: Leverage Multilayer Percep- tron (MLP) architectures through the Keras framework to
construct deep learning models capable of learning complex patterns in network traffic data. The models will be configured for
both binary classification (distin- guishing between benign and malicious traffic) and multiclass classification (identifying specific
attack types).

4) Performance Optimization: Achieve state-of-the-art results with an accuracy of approximately 99% or higher. This involves
fine-tuning the deep learning models and optimizing hyperparameters to enhance detec- tion capabilities while minimizing
computational overhead.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2142 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

5) Validation and Evaluation: Rigorously evaluate the proposed models using appropriate metrics such as accuracy, precision, recall,
F1-score, and area under the Receiver Operating Characteristic (ROC) curve. Cross- validation and testing on unseen data will
be conducted to ensure the generalizability of the results.

II. LITERATURE REVIEW

Intrusion Detection Systems (IDS) are critical components in modern network security infrastructure, designed to monitor network
traffic and identify poten-tial threats or unauthorized access [2]. Over the years, IDS have evolved from signature-based detection
methods to incorporate advanced machine learning (ML) and deep learning techniques, enabling them to detect novel and sophis-
ticated cyber-attacks [3].

A. Intrusion Detection Systems and Machine Learning
Traditional IDS rely on predefined signatures or anomaly detection rules, which can be insufficient against zero-day attacks or
sophisticated evasion techniques [4]. Machine learning offers a dynamic and adaptive approach, where models learn patterns from
data to detect anomalies [4]. Studies have demonstrated that ML-based IDS can significantly improve detection rates and reduce
false positives [1].

B. Feature Engineering in IDS
Feature engineering is a pivotal process in developing ML models for IDS. It involves selecting and transforming variables to
improve model performance [5]. In network intrusion detection, features can include various network flow char- acteristics such as
packet sizes, durations, protocols, and statistical measures [1]. Effective feature selection reduces dimensionality, mitigates the
curse of dimensionality, and enhances model interpretability [6]. Techniques like prin- cipal component analysis (PCA) and
autoencoders have been used to extract significant features [7].
Sharafaldin et al. [1] emphasized the importance of comprehensive feature selection and proposed a new approach for generating
reliable datasets, leading to the creation of the CICIDS2017 dataset.

C. CICIDS2017 Dataset in IDS Research
The CICIDS2017 dataset has become a standard benchmark for evaluating IDS models due to its realistic representation of network
traffic and inclusion of contemporary attack types [1]. Several studies have utilized this dataset to assess the effectiveness of
various detection techniques.
For instance, Maciá-Fernández et al. [8] investigated the impact of metadata features on machine-learned IDS models using the
CICIDS2017 dataset. They found that including certain metadata can contaminate the model, leading to overfitting and reduced
generalizability. Their study highlights the necessity of careful feature selection to avoid the inclusion of non-representative data that
could skew model performance.
Other researchers have employed the dataset to explore deep learning ap- proaches. Yin et al. [9] proposed a deep learning
framework using recurrent neural networks (RNN) to achieve high detection rates. Similarly, Ullah and Mahmoud [10] developed a
hybrid model combining convolutional neural net- works (CNN) and long short-term memory (LSTM) networks, demonstrating
improved performance on the CICIDS2017 dataset.

D. Machine Learning Approaches for IDS
Among machine learning algorithms, ensemble methods like Extreme Gradient Boosting (XGBoost) have gained significant attention
for IDS applications [11]. XGBoost is known for its scalability, efficiency, and high predictive accuracy, especially on large and
complex datasets.
XGBoost operates by building an ensemble of weak learners, typically de- cision trees, in a sequential manner where each new tree
focuses on correcting the errors of the previous ones [11]. This approach makes it powerful for classi- fication tasks within IDS,
particularly in anomaly detection where patterns are subtle and complex.
A key advantage of XGBoost is its ability to handle imbalanced datasets, a common issue in IDS where attack instances are rare
compared to normal traffic [12]. Techniques such as weighting the loss function and using appropriate evaluation metrics help in
addressing class imbalance. Furthermore, XGBoost’s parallelization capability ensures it trains faster compared to other gradient
boosting methods.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2143 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Comparisons with other algorithms have been explored in the literature. LightGBM, developed by Microsoft, offers faster training
and lower memory us- age by using histogram-based algorithms and leaf-wise tree growth [13]. It often achieves higher accuracy than
level-wise growth used in many other algorithms, particularly when dealing with large datasets or high-dimensional data [14].
CatBoost, another gradient boosting algorithm, is designed to handle cate- gorical features efficiently and reduce overfitting [15]. It
incorporates techniques to address the prediction shift caused by target leakage, which is beneficial in IDS applications where data
integrity is crucial.
Random Forest, an ensemble method using bagging and feature randomness, constructs multiple decision trees and aggregates their
results, offering robust- ness and ease of interpretation [16]. Although it may not achieve the same level of accuracy as boosted
models, Random Forest is valuable for its robustness to overfitting and its performance on a wide range of datasets [17].
In the context of IDS, the choice between these algorithms depends on spe- cific dataset characteristics and computational constraints.
For instance, Light- GBM might be preferred for very large datasets due to its speed and efficiency [14], while Random Forest may
be suitable for problems where model inter- pretability is a priority.

E. Feature Interpretation and Explainability
Understanding model decisions is crucial in IDS to ensure trust and compliance. Techniques such as Shapley values provide insights
into feature contributions to predictions [18]. Shapley values offer a unified approach to interpreting model outputs, helping analysts
understand the importance of each feature in the detection process [19].
Moreover, tools like Pandas Profiling (now known as ydata-profiling) facili- tate exploratory data analysis by generating
comprehensive reports on dataset features [20]. Such tools help in identifying data quality issues, understanding feature
distributions, and uncovering patterns that may influence model perfor- mance.
Quantile functions are also used in statistical analysis to understand the distribution of features, which is valuable in preprocessing and
normalizing data for ML models [21]. By analyzing quantiles, researchers can detect outliers and better prepare data for training
robust IDS models.

F. Summary
The integration of advanced machine learning techniques in IDS has shown sig- nificant promise in enhancing detection capabilities.
The CICIDS2017 dataset serves as a robust benchmark for evaluating these methods. XGBoost, among other algorithms, has
demonstrated high accuracy and efficiency in handling the complexities of intrusion detection. However, the choice of algorithm
should be tailored to the specific characteristics of the dataset and the requirements of the deployment environment. Feature
engineering and model interpretability remain critical components in developing effective IDS solutions.

III. METHODOLOGY
A. Dataset Description
The Canadian Institute for Cybersecurity’s Intrusion Detection System 2017 (CICIDS2017) dataset is utilized in this research as the
primary source of network traffic data for intrusion detection analysis. This dataset is renowned for its comprehensive and realistic
representation of modern network traffic pat- terns, including both benign activities and a variety of malicious attacks [1].
The CICIDS2017 dataset was created with the goal of resembling true real- world data, incorporating Packet Capture (PCAP) files
that capture network traffic over a period of five consecutive days. The data collection commenced at 9 a.m. on Monday, July 3, 2017,
and concluded at 5 p.m. on Friday, July 7, 2017, covering both normal and attack traffic periods.
Key features of the dataset include:
1) Benign Traffic: The dataset includes naturalistic benign background traffic. To generate realistic background traffic, the B-

Profile system pro- posed by Sharafaldin et al. [1] was employed. This system profiles the abstract behavior of human
interactions, simulating the activity of 25 users based on protocols such as HTTP, HTTPS, FTP, SSH, and email.

2) Attack Representations: The dataset encompasses the most up-to-date common attacks, executed during specific periods to
emulate real-world scenarios. The attacks included are:

 Brute Force FTP: Unauthorized access attempts targeting FTP services.
 Brute Force SSH: Repeated login attempts to breach SSH security.
 DoS (Denial of Service): Attacks aiming to render network re- sources unavailable to legitimate users.
 Heartbleed: Exploitation of the Heartbleed vulnerability in OpenSSL.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2144 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 Web Attacks: Including SQL injection, cross-site scripting, and other web-based attacks.
 Infiltration: Unauthorized access and compromise of network sys- tems.
 Botnet: Activities related to botnet communication and coordina- tion.
 DDoS (Distributed Denial of Service): Coordinated attacks from multiple sources to overwhelm network resources.
3) Data Format: The dataset includes labeled flow-based features extracted using CICFlowMeter, providing detailed information such

as timestamps, source and destination IP addresses, ports, protocols, and attack labels. The data is stored in CSV files, facilitating
ease of use for machine learning applications.

The inclusion of both benign and malicious activities, along with comprehen- sive feature representation, makes the CICIDS2017 dataset
suitable for develop- ing and evaluating intrusion detection models under realistic network conditions.

B. Data Preprocessing
Effective data preprocessing is essential to ensure the quality and reliability of the machine learning models developed for intrusion
detection. The following steps were undertaken to prepare the dataset for analysis:
1) Data Consolidation:
 The dataset, originally divided into multiple CSV files represent- ing different days and attack types, was consolidated into a

single DataFrame for uniform processing.

2) Handling Null Values:
 The dataset was checked for the presence of null values using the isnull() function.
 Null Value Detection:

 Null Value Removal:
 All records with null values were removed to prevent inconsis- tencies in model training.

3) Handling Duplicate Entries:
 Duplicate records can bias the model by over-representing certain instances.
 Duplicate Detection:

 Duplicate Removal:
 All duplicate rows were removed to ensure each record is unique.

 Index Resetting:
 After removal operations, the DataFrame indices were reset for consistency.

4) Data Type Inspection:
 Identification of categorical and numerical features was performed.

null_counts = df_data . isnull (). sum () total_nulls =
null_counts . sum ()
print (f"{ total_nulls } null entries have been found in the dataset \

n")

duplicate_count = df_data . duplicated (). sum () print (f"{
duplicate_count } duplicate entries have

been found in the dataset \ n")

df_data . reset_index (drop =True , inplace = True)

df_data . drop_duplicates (inplace = True)

df_data . dropna (inplace = True)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2145 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 The primary categorical column identified was the ’Label’ column, indicating the class of each record.

5) Feature and Target Separation:
 Features (X): All columns except ’Label’ were considered as fea- tures.

 Target (y): The ’Label’ column was extracted as the target variable.

C. Transformation into Binary and MultiClass Classifi- cation
The nature of intrusion detection problems can vary based on the specific ob- jectives. In this research, the problem was approached
from both binary and multiclass classification perspectives.

1) Justification for Transforming the Problem Binary Classification
 Objective: To distinguish between normal (benign) and abnormal (ma- licious) network traffic.
 Rationale:
 Simplifies the classification task, enabling the model to focus on de- tecting any form of intrusion.
 Suitable for scenarios where the primary concern is to flag potential threats for further investigation.
 Helps to address the general imbalance between normal and malicious traffic.
Multiclass Classification
 Objective: To identify and categorize specific types of network attacks.
 Rationale:
 Provides granular insights into the nature of the detected intrusions.
 Enables tailored response strategies for different attack types.
 Addresses the complex class imbalance across multiple attack cate- gories.
 Useful for comprehensive intrusion detection systems that prioritize detailed threat analysis.

2) Implementation of Classification Configurations Binary Classification Configuration
 Label Binarization:
 The ’Label’ column was transformed to represent two classes:
∗ 0 for ’Benign’ traffic.
∗ 1 for all types of attacks.
 Code Implementation:

 Class Distribution Analysis:
 Understanding the ratio of benign to malicious traffic is crucial due to class imbalance concerns.
 Minimum Baseline Accuracy:
A naive model predicting the majority class would achieve an accuracy equal to the proportion of the dominant class (e.g., if benign
traffic is 84.92%, the baseline accuracy is 84.92%).

categorical_columns = df_data . select_dtypes (include
=[’ object ’]). columns . tolist ()

print (" Categorical columns :", categorical_columns , ’
\ n’)

y = df_data [’ Label ’]. copy ()

X = df_data . drop (’ Label ’, axis =1)

Binarize labels : Map ’ Benign ’ to 0 and all other attack labels to 1
y_b = y. map ({ ’ Benign ’: 0}) . f illna (1)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2146 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The model must outperform this baseline to be considered effec- tive.
Multiclass Classification Configuration
 Label Encoding:
 All unique attack types, along with ’Benign’, were encoded into in- teger labels using Label Encoding.
 Code Implementation:

 Class Distribution Analysis:
 The distribution of each class was examined to identify minority classes.
 Class Imbalance Consideration:
∗ Some attack types constitute a very small fraction of the dataset.
∗ Special techniques (e.g., resampling, class weighting) may be nec- essary to ensure these classes are adequately represented during
model training.

3) Addressing Class Imbalance
 Techniques Employed:
 Resampling Methods:
∗ Oversampling minority classes or undersampling majority classes to balance the dataset.

Figure 1: Class Imbalance between binary and multiclass configuration

 Algorithmic Approaches:
∗ Using models that incorporate class weights (e.g., XGBoost) to penalize misclassification of minority classes more heavily.
 Evaluation Metrics:
∗ Relying on metrics beyond accuracy, such as precision, recall, F1-score, and area under the ROC curve, to assess model per-
formance on imbalanced data.

4) Benefits of Dual Approach
 Comprehensive Evaluation:
 Assessing model performance across different levels of classification complexity.
 Extracting insights on feature importance and model generalization capabilities.
 Practical Applicability:
 Catering to different operational needs, from simple intrusion detec- tion to detailed attack classification.
 Enhancing the adaptability of the IDS in various network security scenarios.

D. Conclusion on Transformation
Transforming the intrusion detection problem into both binary and multiclass classification tasks allows for a robust evaluation of
machine learning models.

from sklearn . preprocessing import Label Encoder label_encoder =
Label Encoder ()
y_encoded = label_encoder . f it_transform (y) y_m = pd.
Series (y_encoded)

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2147 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

It addresses different practical needs in network security, from the quick detection of any intrusion to the precise identification of
attack types. By meticulously preprocessing the data and thoughtfully configuring the classification tasks, the research sets a solid
foundation for developing effective and efficient intrusion detection models.

E. Feature Engineering
Feature selection is a crucial step in developing efficient and effective machine learning models, especially in high-dimensional data
scenarios common in intru- sion detection systems. In this research, we performed feature selection using the Extreme Gradient
Boosting (XGBoost) algorithm. XGBoost is a tree- based ensemble learning algorithm that inherently performs feature selection
during its training process. This embedded method helps in selecting the most informative features while reducing the
dimensionality of the input space.

1) Introduction to Feature Selection with XGBoost
XGBoost is widely used for classification and regression tasks due to its scala- bility and speed [11]. One of its key advantages is
the ability to automatically compute feature importance scores during model training. These scores indicate the contribution of each
feature to the predictive performance of the model.
Explanation of Feature Importance Calculation In decision tree-based algorithms like XGBoost, feature importance scores are derived
from the impact of features on reducing impurity in decision trees. One common measure of impurity used in classification tasks is
the Gini impurity.
Gini Impurity
Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it were randomly
labeled according to the distribution of labels in the subset. For a binary classification problem with classes 0 and 1, the Gini impurity
G for a node with N samples is calculated as:

1
2
i

i=0
where pi is the probability of class i in the node.

Feature Importance Calculation
During the construction of decision trees, at each node, possible splits on each feature are evaluated, and the split that maximally
reduces the Gini impurity is selected. The feature importance score is then calculated based on the total reduction in impurity
achieved by splitting on that feature across all trees in the ensemble.
Features that contribute more to reducing the impurity (i.e., lead to greater reduction in Gini impurity when used for splitting nodes)
are considered more important by the algorithm. These important features can be used for further analysis or as input to other
machine learning models, such as neural networks.
Relationship Between Gini Index and Feature Importance In XG- Boost, the Gini index serves as the default metric for assessing
impurity when constructing decision trees. For a node with class probabilities p1 and p2 (where p1 + p2 = 1), the Gini index is
calculated as:

GI = 1 − (p2 + p2). (2)

Lower values of the Gini index indicate a higher degree of class separation, signifying improved model performance. During tree
construction, the algo- rithm selects splits that maximally reduce the Gini index. Feature importance is determined by the total
reduction in the Gini index achieved by splits involv- ing that feature across all nodes of all trees in the ensemble.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2148 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

2) Implementation of Feature Selection
The feature selection process was implemented using the following code.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2149 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The function above calculates the feature importances using an XGBoost classifier trained on the provided training data. It can
optionally print out the feature names alongside their importance scores for inspection.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2150 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

This function selects features whose importance scores exceed a specified threshold.

3) Feature Selection Under Binary and Multiclass Configurations
We performed feature selection separately under binary and multiclass configu- rations.
Binary Configuration We defined the classifier parameters and executed the feature selection process:

Multiclass Configuration Similarly, for the multiclass classification task:

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2151 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

4) Visualization of Feature Importances
We plotted the feature importances for both configurations to visualize the significance of each feature.

5) Analysis of Unique Features
We identified features that were unique to each configuration:

6) Creation of New Features
While the primary focus was on selecting existing features based on their impor- tance scores, we also explored the creation of new
features that could potentially enhance model performance. This involved combining existing features or com- puting statistical
measures that may capture underlying patterns in the data.

Figure 2: Feature Importance Plots for Binary and Multiclass Configurations

Features unique to binary configuration
unique_in_b = set (feature_names_b) - set (feature_names_m)

Features unique to multiclass configuration
unique_in_m = set (feature_names_m) - set (feature_names_b)

Define f igure and subplots
fig , axs = plt . subplots (1 , 2 , figsize =(16 , 8))

Binary configuration
feature_names_b = [tup [0] for tup in feature_tuples_b] signif icance_scores_b
= [tup [1] for tup in feature_tuples_b] axs [0]. barh (feature_names_b ,
signif icance_scores_b , color =’

skyblue ’) axs [0]. set_xlabel
(’ Feature Importance ’) axs [0]. set_ylabel (’ Features ’)
axs [0]. set_title (" Feature Importance under Binary Classification ")
axs [0]. invert_yaxis ()

Multiclass configuration
feature_names_m = [tup [0] for tup in feature_tuples_m]
signif icance_scores_m = [tup [1] for tup in feature_tuples_m] axs [1]. barh (
feature_names_m , signif icance_scores_m , color =’

red ’)
axs [1]. set_xlabel (’ Feature Importance ’) axs [1].
set_ylabel (’ Features ’) axs [1]. set_tit le (" Feature
Importance under Multiclass

Classif ication ") axs [1].
invert_yaxis ()

Adjust layout and display plt .
t ight_layout () plt . show ()

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2152 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The intended impact of creating new features was to provide the model with additional information that could improve its ability to
distinguish between benign and malicious traffic, as well as between different types of attacks in the multiclass configuration.

F. Conclusion on Feature Engineering
Feature selection using XGBoost allowed us to identify and retain the most infor- mative features, effectively reducing the
dimensionality of the dataset without compromising model performance. The reduction in dimensionality leads to lower
computational costs and potentially improves the generalization of the model. The differences in selected features between the
binary and multiclass configurations highlight the importance of context when performing feature se- lection.

G. Outlier Analysis
Note that outlier analysis is performed only for the Binary Configuration. We avoided this procedure for the multiclass setup to
save time, as we expect analogous results. Since there is no outlier-handling procedure in the multiclass setting, this analysis serves to
enhance our understanding of the problem.

1) Definition of Outlier
An outlier in statistics is a data point that deviates significantly from the over- all pattern of the remaining data. Mathematically, there
isn’t a universally accepted definition, but two common approaches are often used:
Z-scores We can define an outlier based on its Z-score, which measures how many standard deviations a data point is away from
the mean:

Where:
• x is the data point in question,
• µ is the population mean (often estimated by the sample mean), and
• σ is the population standard deviation (often estimated by the sample standard deviation).

We can then define a threshold for Z-scores (e.g., ±3 standard deviations). Data points exceeding this threshold in absolute value
can be considered outliers.
Interquartile Range (IQR) This approach utilizes the quartiles of the data distribution:

• Q1 (First quartile): represents the 25th percentile (value below which 25% of the data lies).
• Q3 (Third quartile): represents the 75th percentile (value below which 75% of the data lies).

We calculate the Interquartile Range (IQR):
IQR = Q3 − Q1 (4)
The lower and upper bounds are defined as:
Lower bound = Q1 − 1.5 × IQR Upper bound = Q3 + 1.5 × IQR

(5)

Outliers can be defined as data points falling outside these bounds. Data points below the lower bound or exceeding the upper
bound can be considered potential outliers.
Since the IQR method is robust against skewed distributions, while Z-scores are better for normally distributed data, the IQR
approach will be adopted in this analysis.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2153 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

2) Implementation of Outlier Detection

We implemented the outlier detection using the IQR method on our dataset. The following code demonstrates how outliers are
detected:

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2154 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

3) Outlier Boxplot Visualization
To visualize the distribution of features and the presence of outliers, we used boxplots. The following function generates boxplots
for the specified features:

Interpretation of Boxplots The boxplot elements provide insights into the distribution of data along the y-axis:
 Whiskers: Extend from the first quartile (Q1) to the third quartile (Q3), indicating the range where most data points lie (within 1.5

times the IQR).
 Box: Represents the Interquartile Range (IQR), emphasizing the central 50% of the data distribution.
 Median: Depicted as a horizontal line within the box, indicates the value that separates the lower and upper halves of the data.
 Outliers: Individual data points plotted beyond the whiskers, may signify values significantly deviating from the primary

distribution.

Figure 3: Boxplots of Features for Outlier Analysis

def visual ize_boxplots (df , features , figsize =(15 , 28)): """
Visualizes boxplots for the specified features using a grid layout .
Args :

df (pandas . Data Frame): The dataframe containing the features .
features (list): A list of feature names to visualize .
figsize (tuple , optional): The size of the figure .

Defaults to (15 , 28) .
"""
n_features = len (features) # Example : 20 features
rows = int (np. ceil (n_features / 3)) # Calculate number of

rows for a 3 - column grid
fig , axes = plt . subplots (rows , 3 , figsize = figsize)

Flatten the axes array for easy iteration axes_flat = axes . ravel
()

for i, feature in enumerate (features): axes_flat [i]. boxplot (
df[feature]) axes_flat [i]. set_title (f"{ feature } Boxplot ")
axes_flat [i]. set_ylabel (" Value ")

plt . t ight_layout () plt . show
()

Visualize boxplots
visual ize_boxplots (X_final_b , X_final_b . columns . tolist ())

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue XI Nov 2024- Available at www.ijraset.com

2155 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

4) Conclusion
Our statistical analysis identified a significant number of outliers, about 25% of the data. To address these outliers, efficient data
scaling techniques will be preferred over traditional methods like winsorization, in order to minimize potential information loss.
While other outlier detection methods like Isolation Forest and Local Outlier Factor exist, their high computational costs make them
impractical for the large size of the current dataset.

REFERENCES
[1] Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generat- ing a new intrusion detection dataset and intrusion traffic characterization. In Proceedings

of the 4th International Conference on Information Systems Security and Privacy (ICISSP) (pp. 108–116).
[2] Scarfone, K., & Mell, P. (2007). Guide to Intrusion Detection and Preven- tion Systems (IDPS). NIST Special Publication, 800(2007), 94.
[3] Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of Network and Computer Appli- cations, 60, 19–

31.
[4] Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. In 2010 IEEE Symposium on Security and

Privacy (pp. 305–316). IEEE.
[5] Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD Thesis, University of Waikato.
[6] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.
[7] Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., & Huang, Y. (2018). HAST-IDS: Learning hierarchical spatial-temporal features using deep neu- ral networks

to improve intrusion detection. IEEE Access, 6, 1792–1806.
[8] Maciá-Fernández, G., Garc ı́a-Teodoro, P., & Mirsky, Y. (2022). Establish- ing the Contaminating Effect of Metadata Feature Inclusion in Machine- Learned

Network Intrusion Detection Models. In Engineering Secure Soft- ware and Systems (pp. 21–37). Springer. Retrieved from https://link.
springer.com/chapter/10.1007/978-3-031-09484-2_2

[9] Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954– 21961.
[10] Ullah, I., & Mahmoud, Q. H. (2020). A hybrid model for anomaly-based intrusion detection in software-defined networks. Journal of Network and Computer

Applications, 157, 102563.
[11] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting sys- tem. In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 785–794).
[12] Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378.
[13] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. In Advances in

Neural Information Processing Systems, 30.
[14] Wang, C., Pang, Y., Li, Y., & Yuan, F. (2020). LightGBM: A novel en- semble boosting model for accurate soccer result prediction based on book- maker odds.

Entropy, 22(4), 437.
[15] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: Unbiased boosting with categorical features. In Advances in Neural

Information Processing Systems, 31.
[16] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
[17] Liaw, A., & Wiener, M. (2002). Classification and regression by random- Forest. R News, 2(3), 18–22.
[18] Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems, 30.
[19] Molnar, C. (2020). Interpretable Machine Learning. Retrieved from https://christophm.github.io/interpretable-ml-book/shapley.html
[20] DataCamp. (2023). Pandas Profiling (ydata-profiling) in Python: A Guide for Beginners. Retrieved from https://www.datacamp.com/tutorial/ pandas-profiling-

ydata-profiling-in-python-guide
[21] Ross, K. D. (2021). Quantile functions. In Probability and Statistics (pp. 111–119). Open Educational Resource. Retrieved from https://bookdown.

org/kevin_davisross/probsim-book/quantile-functions.html

