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Abstract: Huge volume of data and information is needed with the expanding advancement in the current collection of tools, 
cloud storage, strategic techniques and increasing development of science technology. With the appearance of complete genome 
successions, the biomedical area has encountered an exceptional progression. This genomics has prompted the advancement of 
new high-produced strategies techniques that are huge amounts in measures of information and data, which inferred the 
exponential development of numerous organic and biological data sets. This paper represents different linear and non-linear 
dimensionality reduction techniques and their validity for different kinds of data information datasets and application regions. 
Keywords: High dimensional data, Dimensionality reduction, Linear techniques, Non-linear techniques, feature extraction, 
feature selection, Machine Learning 
 

I. INTRODUCTION 
  In recent years, a tremendous large volume of data has been generated and used in various application areas. Also, the complexity, 

size, heterogeneity, and dimensionality of data information are growing rapidly. A huge amount of data is continuously and 
consistently generated in different formats like text, digital   images, videos, and speech signals. Applications of High Data can be 
found in domains like social media, technology, medicine, web, and business. 
High dimensionality data can result in accuracy, visualization, recognition, classification, and patterns and can cause overfitting. 
This issue can be avoided by adding subsequent data dimensions to each data point in exponential. With the Selection of features 
and extraction of features, i.e. feature transformation various dimensionality reduction can be implemented. By eliminating 
repetitive and unconnected features, extraction of feature transforms and changes initial datasets to the decreased dataset by 
conserving required information from the initial dataset. The selection of features collects the subsets from the data set that is the 
most relevant information data to the problem. Selecting the proper technique for dimensionality reduction can reduce the effort for 
feature analysis.  
Reduction techniques offer a way to reduce input variables before applying them to machine learning models. It can be applied to 
pre-processing stage of data analysis and building models. Many reduction techniques are available with different data types but a 
particular technique may not be suitable for a particular application. 
Paper is organized in a flow of sequence, where it describes different Dimensionality Reduction Techniques based on Linear and 
Non-Linear types of data set. Further datasets like Bioinformatics, Cancer Diagnosis and Prognosis and Character classification are 
tested for dimensionality reduction. Observation for before reduction and after reduction is computed. 
 

II. DIMENSIONALITY REDUCTION TECHNIQUES 
Dimensionality Reduction is a process of transforming and generating the high dimensional representation of datasets into low 
dimension representations. It transforms the original data set having higher dimensions and converts it into new data representing 
lower dimensionality while it preserves the original meanings of the data as much as possible. This data can be easily processed, 
analyzed, and visualized. 
Formally, Dimension Reduction Techniques transforms     the     high        dimensional         data   
X = [x1, x2, …,  xm ] ߳ ܴ×  having the r dimensions and m observations into low dimensional data  Z =  [z1, z2, …,  zm ] 
߳ ܴ×  where k << r  in an ideal case. Reduction techniques implicit, inverse and explicit map to construct it again from lower 
dimensionality data representation. 
 
A.  Linear Dimension Reduction Technique 
Linear Dimension Reduction Techniques (LDRTs) use linear functions to transform higher dimensions into lower dimensions. The 
well-known technique is PCA. We have briefly discussed PCA below.  
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1) Principal Component Analysis: PCA originally introduced by Karl Pearson, is an unsupervised linear mapping based on eigen 
vector. PCA preserves maximum amount of variance in original data by reduction using different strategies. It minimizes the 
dimensionality of feature space and conserves the maximum amount of variance. PCA is computed using different algorithms 
including factor analysis, eigen values, Linear Regression (LR) latent variable analysis.  

Let X ߳ ܴ× be an m × r matrix having m observations and r features. The PCs  zi ߳ ܴcan be computed as a linear weighted 
combination of features. 
Z = XW 
Here,    Z  =   [z1,   z2,   …,    zm  ] ߳ ܴ∗    and   W =  [w1, w2, …, wm ] ߳ ܴ∗ . This transformed data have the smallest 
reconstruction error with maximum variance among all projections. 
PCA variants are designed for different data types, types and structures. The test results showed better LPCA performance 
compared to NN and PCA for speech and image data. upgraded for Robust PCA (RPCA) performance data to improve the 
robustness of the traditional algorithm. Hubert proposed Robust PCA (ROBPCA) based on reduction technique Projection Pursuit 
(PP) using robust scatter matrix data estimation. ROBPCA provided much more accurate and faster results compared to the previous 
PCA. To work with outsiders and non-data objects, Serneels and Verdonck introduced the Expectation Robust PCA and the test 
results show its suitability for the various sizes of data sets. 
The algorithm is based   on the search  of orthogonal data directions which computes  as much variance   of   the    data   as    
possible. The representation error of dimensionality reduction can be calculated by finding m orthonormal directions ݓ_݅ for 
minimizing.    
JPCA  = E {||x - ∑ <

ୀଵ    t(<x , ݉_ݓ> ,…,  <x , ݅_ݓ>) = ߯   .From this objective function, projected of reduced vectors  .{2||݅_ݓ <x  ,݅_ݓ
. This   can  be  much  more   compactly   written   in ߯ = Wtx, where  W is a    ܯ × ݉   matrix whose columns are the orthonormal 
directions ݓ_݅ (or equivalently WtW = I ). The approximation to the original vectors is given by  x^ =  ∑_(݅ = 1)^݉ < ݔ,  ݅_ݓ >
 W߯ . Two dimensions graphical  representation of a PCA transformation shown as (x ߳ R2 ). The = ̂ ݔ ,or what is the same ,݅_ݓ
rotated space shown by vectors  ߯ = Wtx  calculates the variance of the data in the original data space. 
 
 

 
Fig 1. Graphical Representation of  PCA 

 transformation in two dimensions 
 
 
We can rewrite the objective function as  -  
JPCA   =  E {||x - W߯||2} =  E {||x - Wܹ^2||ݔ ݐ} ߙ ||X - Wܹ௧ܺ || _2^ܨ .  
Matrix projection of the input vectors to a lower-dimensional space (߯ = Wtx ) is a technique in dimensionality reduction. Factors 
involved in this projection have a thrilling interpretation as explained below. Assume that we are analyzing scientific articles to a 
specific domain. Each article of word frequencies will be represented by a vector x, i.e., we choose a set of M words representative 
of our scientific area, and we determine how many times each word appears in each article. Each vector x is then orthogonally 
projected to the new subspace defined by vectors _݅ . By considering each vector ݓ_݅ as a dimension M, it can be directed as “topic” 
(topic is characterized M different words by their relative frequencies, two different topics can differ in relative frequencies of 
different M words). The projection of x onto each ݓ_݅ relates an idea of how relatively important is topic ݓ_݅ to represents the 
article x. More essential topics have massive projection values and, consequently, big values in the corresponding aspect of  χ. 
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a) PCA for Curves and Surfaces: PCA helps to reduce data that are in M ‐dimensional space lie in some linear manifold. However, 
there are certain instances of data where it follows some curved type structure (slightly bent line). In this scenario, a straight 
line rounding the curve could not provide a good approximation to the actual data. 

 
Original data space                           Transformed space 

Fig 2. Representing  Curved structure and transformed dataset  
 
Given a bunch of predictions of the input vectors x with value zero average (assuming the original data is not zero‐ average, we can 
basically subtract the average from all elements), we can search for the line passing through the origin i.e. (0,0) and with direction 
(߯)݂ whose equation is) 1_ݓ  = ( ݈݁݊݅)_ܬ that better fits this dataset, i.e., that minimizes ( ߯ 1_ݓ  = lim→ஶ}ܧ  ݔ|| − ݂(߯)||^2   }. 
The infimum of the previous objective function implies that for every perception ݔ_݊  we need to determine the point in the line 
(characterized by parameter ߯_݊) that is nearest to same point. The point ݂(߯_݊) is the orthogonal projection of the perception to the 
line. It can be demonstrated that the solution to this problem is the direction with the huge data variance, as similar arrangement as 
in PCA. A second new dataset can be constructed by a new dataset from the initial principal line by subtracting previously 
computed value  (ݔ_݊^, = ݊_ݔ  −  ݂(߯_݊) ). 
 
2) SVD (Singular value Decomposition): SVD is a dimensionality reduction approach for matrix decomposition that is commonly 

employed when data is sparse. Rows of data are described as sparse when many of the values are 0. Some domains, such as 
recommender systems, have a user's rating for a small number of movies or music in the database and zero ratings for the rest. 
The bag of words model for text documents is another typical example, in which the document has a count or frequency for 
certain words but most words have a 0 value. 

 
Examples of sparse data that can be used to reduce dimensionality using SVD: 
a) Text Classification based on characters 
b) Recommender Systems of platforms 
c) Bag of Words Counts in passages 
d) User-Song Listen Counts in music 
e) User-Movie Ratings for reviews 
f) One Hot Encoding 
g) Customer-Product purchases for shopping 
SVD factorizes the matrix ܻ ߳ ܴ^(݊ × ݇) into  ܷܸܦ^ܶ. Matrix U and V are two orthogonal matrices whose dimensions are ݊ × ݇ 
and ݇ × ݇, respectively.  

 
Fig 3. Matrix dimensions visualize 

 
Matrix D is a ݇ × ݇ diagonal matrix containing singular values of the matrix Y. n is the number of singular values received. The 
ability of SVD to recreate the original matrix Y using the matrices U, V, and D is a key characteristic. SVD is computationally 
challenging, but with random needed sampling, sensitivity to outliers, and nonlinearities in the data, it can be made more efficient. It 
is difficult for visualization of the data through interpretation by the results as deciding factor. 
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3) Latent Semantic Analysis: Latent Semantic Analysis (LSA), an unsupervised dimensionality-reduction technique that modifies 
text data in terms of r latent ( hidden) features, where r is less than m (quantity of terms in data). With the growth of text 
documents, several challenges have arisen as a result of word phrase similarities in many disciplines and their linkage.  A term 
can cause a conflict in both identification of data and the classification of data. For instance ‘Fly’ and ‘fly’, which has the same 
meanings but  are differently used in place of noun and verb. LSA is a vector-based technique for comparing and representing 
text in low-dimensional data. LSA learns a semantic representation of text as well as associated word associations. LSA takes 
݊ × ݇ words from the co-occurrence matrix ܻ ߳ ܴ^(݊ × ݇) as input. The local frequency of a given word I for a given 
document j is represented by each matrix element yij. The co-occurrence counts are then converted to definite weights in order 
to determine and predict information about a document's meaning. Previous dimension factors exist in the transformed matrix 
of weight values, which can be minimized using comparative SVD computation. For instance, LSA defines 
 .SVD(Y,m) where U and V are orthogonal data matrices=[ܶ^ܸܦܷ]

4) Locality Preserving Projections: Locality Preserving Projections (LPP) is an unsupervised dimensional technique that 
structures and builds on neighborhood information of the data set.  It signifies the idea and method of Laplacian of graph and 
calculates transformation matrix which maps the same data points from data sets to subspace.  This representation map formed 
by can be thought of as a linear discrete approximation to a continuous forming map that emerges naturally from the scientific 
manifold's geometry. 

LPP finds and computes w1, w2, … , wm vectors to map high dimensional dataset Y into low dimensional data by 
 .should be equal to one   ݓ ݀݊ܽ  ܶ^ܻܦܻ ܶ^ݓ

=  ݓ_݊݅݉݃ݎܽ −  ݅_ݕ ܶ^ݓ || ݆݅_ߑ   ݆݅_ܣ  2^2_||  ݆_ݕ ܶ^ݓ 

A is connected and can be calculated using  
( ݆݅)_ܣ = −  ݅_ݕ ||)−)ݔ݁   (ߚ/(2^||  ݆_ݕ 

Here β is originated to find eigen value decomposition data where all the average squared distance between all pairs of data can be 
reduced. 

= ݓ ܶ^ܻܮܻ   ݓ ܶ^ܻܦܻߣ 
where ܮ = − ܦ   .are eigen vectors ݅_ߣ and ܣ 
 
Limitations of LPP is that it cannot be used for 2D image vectors due to the high singularity matrix issue. 2D saves local 
information and detects intrinsic manifold of image. It computed and resulted that 2D-LPP achieved a higher identification and 
recognition rate with better performance than  LPP, 2D-LDA, and 2D-PCA when the identical data is applied for the same number 
of dimensions. 

5) Independent Component Analysis: Independent Component Analysis (ICA) transforms a group of vectors into an independent 
set with maximally data points. Non-Gaussianity is used in ICA to identify independent components. The term "non-
Gaussianity" refers to how far a random variable's distribution is from being Gaussian. Kurtosis and negentropy, for example. 
e.g. kurtosis and negentropy. ICA extracts independent components and objectives from the linear transformations of the 
original data. 

Assume that the data observed   ܺ = ,( 1)_ݔ)   is composed of using linear transformation of data with dimension  ܶ^( ݉_ݔ,⋅⋅⋅,  2_ݔ
m × p matrix T and non-Gaussian component vector  ݏ_݅ = ,( 1)_ݏ)  ,⋅⋅⋅,  2_ݏ  .ܶ^( ݊_ݏ

ܺ_݅  =  ݅_ݏܶ 

ICA searches a linear mapping data W of the source vector ݏ_݅ where each component data of an estimate v is as independent 
variance as possible. 

=  ݅_ݒ  ܹܺ_݅  =     ݅_ݏܹܶ 
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6) Projection Pursuit: Projection Pursuit (PP) is an unsupervised dimension technique mainly used for the analysis of exploratory 
data. It is  a non-parametric technique that finds lower-dimensional projections and explores and analyzes interesting patterns 
for data analysis. By identifying k dimensional data projection  ܺ = ,( 1)_ݔ] )^ܴ ߳ [݇_ݔ,⋅⋅⋅,  2_ݔ × ݇) (݇ <  so that the  ( 
projecting semantic data that maximize the predefined objective data function δ is called the projection pursuit index. It also 
measures the degree of riveting of projected data.   

= ܺ ܶ^ܺ  where  (ܻܺ)ߜ ܺ_ݔܽ݉݃ݎܽ  ܫ 

The problem is divided by optimizations of relatively k problems. For each data optimization, one base of X is computed.  The first 
base of data x1 is found by searching p units of dimensional data of unit length vector.  Projected data then maximizes the one-
dimension computed for the Projection index. To prevent the same projection data direction in successive following data iterations, 
projection aims to discard any information in the same direction from the source data. The process is repeated for all bases of data 
until all k subsequent bases are computed.  
 
B. Non-Linear Dimensionality Reduction Techniques 
A dimension reduction technique is associated and connected with a pair of data that consists of high-dimensional input data 
organized space to a low-dimensional corresponding output data space. A non-linear dimension reduction technique is used when a 
map's relationship is non-linear in nature. Following are some of the techniques. 
 
1) Multidimensional Scaling (MDS): MDS computes and calculates the distance between data points from each pair in the original 

high-dimensional space data and maps it to a lower-dimensional space while it preserves the distances between points as much 
as possible. Multidimensional scaling works better when the value of the input distance matrix is combined into the elements of 
the d dimensional space region such that the relation of pairwise distances is preserved into embedded data space. By 
calculating sum of square errors between the non-similarities data and their corresponding data embedding inter-vector 
distances transformation of data can be achieved by calculating stress function. 

 
Fig 4. MDS Transformation 

 
By computing and calculating distance between data points from the input data Y and store in distance matrix D. MDS is a 
technique for determining the low-dimensional coordinates of each data point in a dataset. The inter-point formation for relative 
distances ݀_݆݅^, of these data points should be always close to ݀_݆݅. MDS can be optimization problem and calculated as. 

(ܼ)ߜ  =  ݉݅݊((݀_(݆݅ ) −  ݀_݆݅′ )^2
୫

୨ୀଵ

  


ୀଵ

 ) 

The stress function, which is formulated by sum-of-squares error, is used to determine adjacency. The most commonly used stress 
functions is calculated as: 

= ݏݏ݁ݎݐܵ   (  
∑ (݀_(݆݅ )−  ݀_݆݅′ )^2)ழ

ቀ∑ ൫ ݀
, ൯ଶழ  ቁ

) 
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2) Isomap: Isomap is a technique that sets and combines different algorithms and uses a non-linear way to reduce dimensions of 
data points while preserving local default structures and geodesic distance. The distance between two elements in a data set that 
are in different manifolds is referred to as geodesic distance. Isomap computationally determines and calculates the geodesic 
distances between manipulated changed data points using a neighborhood graph theory. Each data point is connected with its k 
nearest neighbors similar points, the shortest distance between two points in data indicates a good estimate. It obtains a low-
dimensional representation structure of data points by applying MDS on the resulting matrix. Isomap computes and  identifies 
the nearby data points on the manifold M on the basis of the pairwise relation of Euclidean distance ݕ_ܦ. These neighbors data 
are stored in a weighted data matrix ܩ_ܦ that has the distances between neighbors. Isomap determines and computes the 
pairwise geodesic distance ܯ_ܦ between all pairs of data points on the same manifold M using all possible shortest path 
algorithms. The low dimensional data representation Z of high dimensional data X representation can be calculated using 
classical scaling formulated points on a pairwise geodesic matrix. The data vectors ݖ_݅ are chosen accordingly so that the cost 
function of  E is minimal. 

= ܧ −  ܩ_ܦ)ߪ ||   ܨ_|| (ݖ_ܦ 
 

where function σ transforms distances to inner products defined as 
(ܦ)ߪ  =  2/ܪܵܪ− 

Here, S and H are squared distances matrix and centering matrix, respectively. 
 
3) Locally Linear Embedding: Locally Linear Embedding is an unsupervised dimensionality reduction method that tries to retain 

local data attributes. It computes and reduces n-Dimensions and parallelly it preserves the geometric data points features of the 
original previous non-linear feature structure. Suppose, if we have D-dimensions for data ܺ_1, then we try to to reduce ܺ_1 data 
to ܺ_2 data in a feature space with d-dimensions.  

ܦ ߳  1_ܺ  →  ܺ_2  ߳ ݀ 
LLE predicts and identifies the neighbors of each data point set ݕ_݅ using different algorithms. It calculates and identifies the weight 
data matrix W of data Y from neighbors' subsequent points. It computes to minimize the cost function. 

 ݅_ݕ || − ∑_(݆ = 2^||  ݆_ݕ ݆݅_ݓ ݉^(1


ୀଵ

   

Then low dimensional calculations are made for vector〖 ݖ〗_݅ data so that the cost function is minimized. 

 ݅_ݖ || − ∑_(݆ = 2^||  ݆_ݖ ݆݅_ݓ ݉^(1


ୀଵ

 

4)  Self-Organizing Map: Self-Organizing Map (SOM) unsupervised Non-Linear dimensionality reduction techniques based on 
cognitive learning for analyzing nonlinear projections, complex data sets and multivariate.  Data having mixed type features, 
the dissimilarity of two objects can be calculated on numerical and category-based features separately. The dissimilarity of data 
points can be calculated using the combination of squared Euclidean distance of data center points on numeric features and the 
calculated number of mismatches on categorical data features.  

 
Fig 5. Self-Organizing map 

 
A Self Organizing Map consists of a pairwise map of neurons ݊_1,݊_2,⋅⋅⋅,݊_݆,  each relating with a weight vector  ݓ,⋅⋅⋅,2_ݓ,1_ݓ_݆, 
on a p-dimensional map. SOM analyses the distance to the weights of each neuron data corresponding for each ݕ_݅. The neuron 
having the lowest distance to its weight data is chosen for computing and plotted in direction analysis of corresponding ݕ_݅. 

,^ߜ = ݅_ݕ || ) ݊݅݉ − where 1  (2^|| ݇_ݓ  ≤ ݇ ≤ ݆ 
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SOM can be used in real-life applications such as  intrusion detection, recognition of protein folds,  automatic organization of a 
massive collection of documents, market data analysis, development of risk-based prioritization for stagnation, the classification of 
fMRI, discard of the noise from 6D synthetic spectral image view data, and predication speed  for weather climate and crop 
production data. 

 
Fig 6.Representing data in form of a ring, Output map topology is represented by linking each vector to its neighboring blue edge 

 
5) Learning Vector Quantization (LVQ): Learning Vector Quantization is a supervised algorithm used for different pattern 

recognition and statistical data classification. In LVQ, the competitive layer analyses and computes the input vectors later 
classifying them into correct classes using distance calculations. An input data layer, a single LVQ layer, and an output layer 
constitute LVQ. The output layer consists of  nodes that are equal to distinct classes. LVQ specifies the classification using data 
of C classes prototypes. These are chosen as representative of the classification classes. With the help of space ݏ_݅ and their 
respective class labels  ܿ(ݏ_݅) ߳ 1,  they are distinguished by their location in dimension feature. For a given distance ,  ܥ,⋅⋅⋅,2
measure ݀^, ,^݀ with (݅_ݏ)ܿ the data point is assigned to a data class ,(ݕ,ݏ) ,݅_ݏ) (ݕ ≤  ݀^, ݆ for all (ݕ,݆_ݏ) ≠ ݅. Distance 
measured from computing can also be specified using a data matrix. LVQ cannot work well with the complex specific data sets 
having one or many pairwise relationships. 

6) T-Stochastic Neighbor Embedding: T-Stochastic neighbor embedding (t-SNE) is an unsupervised algorithm for dimensionality 
reduction where it focuses on storing similar data points close with proper rearrangement and embedded the sets together in 
lower-dimensional space. It stores the local data structure using  t-distribution to calculate and compute the similarities  
between two data set points.  For data transformation of lower-dimensional, t-SNE mostly depends on conditional probability. 

 
Fig 7. Large Features of data points represented in 2D space 

 
For input data Y, SNE computes the conditional data probabilities _݆݅. The goal and aim of t-SNE is to have k dimensionality map 
that reflects the similarities ݍ_݆݅ between two data points ݖ_݅ and ݖ_݆. 

ܲ|   =   
ݕ||−)ݔ݁) − ݕ  (2^݅_ߪ2 /(2^||  

(∑_(݇ ≠ −  ݅_ݕ||−)ݔ݁ (݅  ( 2^݅_ߪ2 /(2^||  ݇_ݕ 

ݍ   =   
((1 + −  ݅_ݖ|| ((1−)^( 2^||  ݆_ݖ 

(∑_(݇ ≠ ݅)(1 + −  ݅_ݖ||  ( (1−)^( 2^||  ݇_ݖ 
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t-SNE a distribution is the embedding space. 

ݐ)_ܧ −  ݈݃  ݆݅_  (ܧܰܵ
݆݅_
 ݆݅_ݍ

୨

    

where, 

ܲ   =  
+  (݅|݆)_) ((݆|݅)_ 

2݉   

 

III. EXPERIMENTAL RESULTS 
Generally, large data of real-world data are non-linear in nature. Spam data, three-dimensional data like Insurance Benchmark and 
cancer datasets are chosen for analysis. Here cancer dataset abstracts around 57 attributes and 26 instances, Spam contains around 
4600 records for 57 attributes and Insurance dataset abstracts around 85 attributes with 750 total records for analysis. For all these 
high dimensional data computing and analyzing is very difficult and all these variables does not affect classification result. So, by 
removing irrelevant data we can reduce dimensionality data. 
By removing attributes from the high dimensionality data takes less execution time, the accuracy may affect the loss of data for 
classification. For this project, dimensionality reduction is performed and performance is measured for Elapsed time and accuracy 
with the help of matlab.   
 
A. Result of SVM Classification 
High dimensional data has been used on SVM classification in this paper. Elapsed Time and Accuracy for value classification are 
noted and results are displayed using the table. 
 

Dataset  Accuracy  Elapsed Time (in 
sec) 

Bioinformatics 40.4667  1.6658 

Cancer 
Diagnosis and 

Prognosis  

77.9231 1.2544 

Character 
classification 

 36.5217 0.3643  

Table 1. Result of SVM Classification  
 
To Show effectiveness Linear Discriminant Analysis is mainly processed for the dimensionality reduction. From analysis 86, 58 and 
60 variable data are computed and then transformed into 32, 39 and 33 on bioinformatics, cancer diagnosis and character 
classification datasets respectively. In the next step, with the help of Principal Component Analysis thessse high dimensional data 
sets are processed which produces better data results than the LDA reduction method by giving 25, 8 and 14 respectively. Then ICA 
technique is performed on the high dimensional data which produces the results data 16, 8, and 5 bioinformatics, cancer diagnosis 
and character classification datasets respectively which is better compared to PCA and LDA dimensionality reduction techniques 
and the dimensions of low dimensional data are shown in the table. 
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Table 2. Dimensions of low dimensional data  
 
These lower-dimensional data from the above techniques are then again processed on the SVM classification and the corresponding 
Performance of the SVM classification is computed and calculated. From calculations, it proves and explains that for lower-
dimensional data  the performance of SVM is better and best computed than that of the higher-dimensional for SVM and the result 
is shown in the table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Performance Analysis 
 

Dataset  No of 
variables 
in HDD 

Linear 
components 

Principal 
Components 

Independent 
Components 

Bioinformatics 86  32 16 16 

Cancer Diagnosis and 
Prognosis  

58 39 16 8 

Character classification  60 33 4 5 

Datasets  PCA  

 Dimension  Accuracy Time 

Bioinformatics (86) 16  49.76 1.22s 

Cancer Diagnosis and Prognosis  
(58) 

16  60.43 0.08s 

Character classification (60) 4  71.09 1.15s 

Datasets  LDA  

 Dimension  Accuracy Time 

Bioinformatics (86) 25  53 1.53s 

Cancer Diagnosis and 
Prognosis  (58) 

8  39.46 0.01s 

Character classification 
(60) 

14  74.82 4.05s 

Datasets  ICA  

 Dimension  Accuracy Time 

Bioinformatics (86) 16  59.23  1.64 

Cancer Diagnosis and Prognosis  (58) 8 70.23  0.008 

Character classification (60) 5 73.13 1.22 
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IV. CONCLUSION 
In this paper, we present the different techniques to reduce the dimensionality of the original data points. As more and more data is 
generated, need for dimensionality reduction techniques also increased to reduce uncertainty in the decision-making of the data. For 
less computation power linear techniques are used which uses linear transformation. Time and cost are high for Non-linear 
techniques and have been correctly implemented in many different complex computations like audio, video and biomedical data.  
From the survey of datasets from above results,  it comes to know that, for handling data of linear dimensional Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) are the best techniques. For handling non-linear dimensionality reduction 
Support Vector Machine (SVM), Independent Component Analysis (ICA) and Multi-Dimensional Scaling (MDS) are the best 
reduction techniques.  
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