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Abstract: with the rising demand for efficient cloud computing and resource management, precise workload prediction has 
become vital. This paper explores altered methods used for workload predicting, from traditional methods to recent machine 
learning methods. We train models such as XGBoost, LightGBM, CatBoost, LSTM, and GRU, along with an ensemble method, 
to know their efficiency in practical cloud environments. The study uses the Alibaba Cluster 2017 dataset, focusing on batch 
(offline) workloads for well prediction precision. Numerous pre-processing methods, with outlier detection, normalization, and 
sequence creation, are applied to increase model performance. We associate the results of distinct models and ensemble methods 
using performance parameters like Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results show that 
whereas deep learning models seizure sequential patterns, ensemble techniques deliver improved complete stability and 
correctness. This research shows the importance of merging multiple models to improve workload predicting and increase cloud 
resource consumption. 
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I. INTRODUCTION 
Workload prediction in cloud computing environments is vital for effective resource management, reducing latency, and enhancing 
energy consumption. As workloads become more complex, modern estimation approaches struggle to uphold precision. This study 
defines use of recent AI/ML methods for workload prediction, aiming on their practical applications in cloud setups[1], [2]. We 
work on both individual models (XGBoost, LightGBM, CatBoost, LSTM, and GRU) and an ensemble method that mixes these 
methods to increase forecast accuracy[3], [4], [5]. 
 

II. LITERATURE SURVEY ON WORKLOAD PREDICTION 
Modern approaches, such as statistical modelling (ARIMA and time-series forecasting) and rule-based heuristics, have been 
extensively used for workload forecast. Though, these methods frequently struggle in dynamic situations with highly changing 
workloads[6]. 
 
A. AI and ML-based Workload Prediction Methods 
Supervised learning models, like Random Forest, XGBoost, CatBoost, LightGBM, and deep learning-based neural networks, have 
presented ability in predicting workload configurations with upper accuracy. Another group is unsupervised learning models, where 
clustering methods like K-Means and DBSCAN assistance to identify workload trends lacking of labelled records. Recurrent Neural 
Networks (RNNs) and Gated Recurrent Units (GRUs) are effective in treatment sequential workload information by taking long-
term dependencies[7]. Reinforcement learning-based methods, like adaptive workload management using Q-learning and deep 
reinforcement learning (Meta-RHDC), improve scheduling and dynamic load harmonizing. Hybrid models, which association 
machine learning techniques through optimization algorithms (e.g., Lyrebird Falcon Optimization), increase resource utilization and 
system performance[8], [9]. 
In recent years, ensemble approaches, which mix models like XGBoost, LightGBM, CatBoost, LSTM, and GRU, have improved 
forecast strength and precision in cloud environments. AI-driven resource allocation policies incorporate predictive models with 
actual scaling mechanisms, sanctioning cloud platforms to dynamically correct workloads and improve cost efficiency[10]. 
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B. Challenges and Future Directions 
AI models must evolve dynamically to adapt to real-time workload fluctuations. Furthermore, dataset preprocessing—such as 
handling missing values and standardizing features—remains a critical challenge. For better resource utilization and energy 
efficiency, carbon-aware scheduling techniques should be integrated to support sustainable cloud computing. 
In today's cloud landscape, the need for AI-driven workload prediction has grown, requiring scalability across heterogeneous cloud 
environments. Additionally, benchmarking individual models (XGBoost, LightGBM, CatBoost, LSTM, and GRU) against their 
ensemble counterparts is essential for evaluating performance improvements.AI and ML approaches for workload prediction in 
cloud environments 
Deep learning models play a crucial role in workload prediction. Long Short-Term Memory (LSTM) networks are nominal in 
capturing time-based dependencies, while Gated Recurrent Units (GRUs), a modified of LSTM, offer better computational 
efficiency for workload predicting. Convolutional Neural Networks (CNNs) are beneficial for identifying workload patterns in 
multidimensional data. Transformer models are developing as powerful tools for actual workload forecasting, providing improved 
scalability and forecasted accuracy. 
Gradient boosting algorithms are widely used for workload prediction. XGBoost is a highly efficient gradient boosting method, 
particularly suited for structured workload prediction. LightGBM is enhanced for speed and competence, making it actual for 
handling extensive workload data. CatBoost bests in managing unconditional features, dropping the need for broad physical pre-
processing. Reinforcement Learning methods can be use similar to Q-Learning-Based Scheduling: Increases decision-making for 
vibrant cloud workload scaling and Reinforcement Learning for Dynamic Load Harmonizing: Enhances system consistency and 
cuts congestion in cloud surroundings. 
Hybrid AI methods can be used to improve workload forecast and optimization. Mixing neural networks with optimization 
algorithms, like Lyrebird Falcon Optimization, recovers predictive accuracy. AI-enhanced auto-scaling policies help reduce cost 
ineffectiveness while refining overall cloud workload performance. Moreover, an ensemble model that combines XGBoost, 
LightGBM, CatBoost, LSTM, and GRU improves workload prediction correctness and adaptability compared to individual models. 

 
III.   METHODOLOGY 

In this paper, we use three models for workload predicting. The first approach includes powerful machine learning models, with 
LightGBM, XGBoost, and CatBoost. The second emphases on deep learning models, exactly Long Short-Term Memory (LSTM) 
and Gated Recurrent Unit (GRU). Lastly, we employ an ensemble-based analytical modeling method that mixes multiple traditional 
machine learning models (LightGBM, XGBoost, and CatBoost) to improve prediction accuracy. 
 
A. Machine Learning Models 
We assess and visualize the performance of three dominant machine learning models—LightGBM, XGBoost, and CatBoost—for 
forecasting num_instances (the number of instances in the cloud dataset). These models are precisely used for regression tasks. The 
dataset is divided into 80% training and 20% testing sets. We use random_state=42 to ensure reproducibility. The machine learning 
models are then modified and trained as follows: 
Each model is trained on X_train and y_train, and forecasts are made on y_test using the trained models. Error metrics, with Root 
Mean Squared Error (RMSE) and Mean Absolute Error (MAE), are calculated using Equation 1 and Equation 2. Lesser RMSE and 
MAE values specify improved model performance. 

 

--- (1)         --- (2) 
 

B. Deep Learning Models 
We use the application of deep learning models, precisely Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), for 
time-series workload forecast. The results show that both LSTM and GRU successfully capture sequential patterns in cluster 
workload instances. Though, GRU somewhat disappoints compared to LSTM, showing higher Root Mean Squared Error (RMSE) 
and Mean Absolute Error (MAE)[5]. Further adjustment of hyper parameters or employing ensemble methods could improve 
predictive performance. 
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 Features (X): All columns except num_instances. 
 Target (y): The num_instances column (dependent variable). 
 Normalization: MinMaxScaler scales all numerical values between [0,1]  
 Splits dataset into: 80% Training (X_train, y_train).20% Testing (X_test, y_test).  

 
1) LSTM Model Architecture 
 LSTM layer: 64 neurons, ReLU activation. 
 Dense layer: 32 neurons, ReLU activation. 
 Output layer: 1 neuron (predicts num_instances). 

 
2) Training Parameters 
 Epochs: 20 
 Batch size: 64 
 Validation split: 10% of training data used for validation. 
 Optimizer: Adam (efficient weight optimization). 
 Loss function: Mean Squared Error (MSE). 

 
C. Ensemble Approaches 
This paper evaluates an ensemble-based predictive modeling approach for workload forecasting. The ensemble integrates multiple 
traditional machine learning models (LightGBM, XGBoost, and CatBoost) with deep learning models (LSTM and GRU) to leverage 
their complementary strengths. The proposed approach enhances predictive accuracy by reducing model-specific biases and 
improving generalization. Performance metrics, such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), 
indicate that the ensemble method outperforms individual models in terms of stability and accuracy. 

 
1) Deep Learning Models: LSTM, GRU (from TensorFlow/Keras). 
LSTM Model Architecture 
 Layer: 64 neurons, relu activation. 
 Output Layer: Single neuron for prediction. 
 Training Parameters: 
 Epochs: 20 
 Batch size: 64 
 Loss function: MSE 

 
GRU Model Architecture 
 activation=relu 
 optimizer=adam 
 epochs=20  
 batch_size=64 

 
2) Machine Learning Models: LightGBM, XGBoost, CatBoost (gradient boosting models). 
 lgb_model = lgb.LGBMRegressor(random_state=42).fit(X_train, y_train) 
 xgb_model = xgb.XGBRegressor(random_state=42).fit(X_train, y_train) 
 cat_model = CatBoostRegressor(random_state=42, verbose=False).fit(X_train, y_train) 
Train-Test Split: 80% data used for training, 20% for testing. 

           
3) Combines all models’ predictions using a simple weighted average 
 ensemble_pred = (lstm_pred.flatten() + gru_pred.flatten() + lgb_pred + xgb_pred + cat_pred) / 5 ---(3) 
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IV.  IMPLEMENTATION AND RESULTS 
A. Dataset  
The Alibaba Cluster 2017 [6] trace dataset provides a comprehensive view of real-world cloud workloads, making it a valuable 
resource for cloud computing research. Collected over an 8-day period from a production cluster, it represents the operational data 
of more than 4,000 machines with different configurations[11]. This large-scale cloud cluster trace is particularly useful for 
investigating cloud resource management, scheduling algorithms, and cluster optimization. The dataset contains two major types of 
workloads: offline and online workloads. All online jobs arrive at the start time, so for prediction, we focus on the offline workload 
file (batch workload). As shown in Table 1, the batch_task file contains eight columns and includes 80,554 requests. The task 
creation time and end time are used to calculate task duration, while key features such as instances, CPU requested, memory 
requested, and job ID are considered for analysis.  

TABLE IBATCH_TASK.CSV 
task_create_time task_end_time job_id task_id no_of_instance status req_cpu req_memory 

21669 21695 44 249 1 Terminated 50 0.004074 
24775 24927 61 441 93 Running 50 0.007977636 
6036 6046 4 7 393 Waiting   

… …. … … … … … … 
 

B. Pre-processing 
For outlier detection, it is essential to ensure that extreme values do not distort predictions. The following methods are used for this 
purpose: Boxplots, Z-score, and the Interquartile Range (IQR) method. For normalization and scaling, the selected columns are 
standardized to maintain a mean of 0 and a standard deviation of 1. If additional data is added later, the same scaling must be 
applied to maintain consistency. For sequence creation, which is required for sequential models such as LSTM and GRU, the data is 
converted into a sequential format by creating sequences or using a sliding window approach. For the train-test split, the dataset is 
clearly divided into training and testing sets, typically following an 80%-20% ratio, ensuring a proper evaluation of model 
performance.  
C. Result 

  
Fig. 1 Actual Vs Predicted Instances LightGBM, 

XGBosst, CatBoost Model 
Fig.2 Actual Vs Predicted Instances LSTM and GRU 

Model 

 
 

Fig. 3 Actual Vs Predicted Instances LSTM and GRU 
Model 

Fig. 4 Actual Vs Predicted Instances for All Models 
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Figure 1 illustrates the output of Actual vs. Predicted Instances for LightGBM, XGBoost, and CatBoost. Figure 2 presents the 
Actual vs. Predicted Instances for the LSTM and GRU deep learning models. Figure 3 depicts the Actual vs. Predicted Instances for 
the ensemble method, highlighting its performance compared to individual models. Figure 4 provides a comprehensive visualization 
of Actual vs. Predicted Instances across all models, including LightGBM, XGBoost, CatBoost, LSTM, GRU, and the Ensemble 
model. This assessment helps assess how carefully each model's forecasts bring into line with the real values. 

 
Fig. 5   Model Evaluation RMSE and MAE Comparison 

 
Table II offerings a numerical summary of the performance of all models, providing key assessment metrics. Figure 5 visualizes this 
assessment through a bar chart, showing the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) through diverse 
models. This graphical image assistances in measuring the comparative performance and accuracy of each model. 

 
 

TABLE III 
PERFORMANCE SUMMARY (LOWER RMSE & MAE IS BETTER) 

Model RMSE MAE  Performance 
LightGBM 0.7128 0.3359 ✅ Good 
XGBoost 0.6942 0.3241 ⭐  Best 
CatBoost 0.6961 0.3296 ✅ Good 

LSTM 0.8451 0.4217 ❌ High Error 
GRU 0.8548 0.4939 ❌ High Error 

Ensemble 0.7309 0.3662 ✅ Better than LSTM/GRU 
 

V. CONCLUSIONS 
This study discovers the development in workload prediction using AI and machine learning methods, importance their real time 
applications in cloud surroundings. Compared to old-style methods, deep learning, reinforcement learning, and hybrid AI models 
demonstrate substantial growths in accuracy and efficiency. The use of progressive models like GRU, CatBoost, LightGBM, and 
XGBoost—together separately and within an ensemble—reveals the potential for improved workload predicting and cloud resource 
management. 
Future research should emphasis on additional benchmarking these models, improving their compliance to real-time workload 
variations, and mixing energy-efficient policies. Moreover, emerging scalable AI-driven workload prediction structures will be 
crucial for enhancing modern cloud infrastructures and improving complete cloud system performance. 
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