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Abstract: System security and the protection of sensitive data has become a need of the hour as fast as the development of cyber 
threats. A federated Artificial Intelligence (AI) presents a distributed learning framework that handles these issues through the 
provision of secure collaboration that preserves data privacy. This paper explores how Federated AI can enhance access control 
systems by making them suitable for detecting anomalies, enforcing policies, and adapting to changing threats in real-time. 
Centralized AI models of the traditional sort necessitate data aggregation at a single location, an avenue open to any breach and 
compliance concerns. By training models over the federation of decentralized nodes, Federated AI mitigates these risks by 
allowing data locality. This paper presents a decentralized learning paradigm which implements robust access control 
mechanisms using collective intelligence and simultaneously keeps sensitive information safe. Additionally, the combination of 
Federated AI with Zero Trust principles leads to a dynamic access control system that changes with user behavior and the 
settings external to the user. We discuss key advancements such as the utilization of edge devices for real-time anomaly 
detection, privacy-based techniques such as differential privacy and homomorphic encryption, and the inclusion of generative 
models that simulate and predict attack scenarios. Finally, the paper underscores the advantages and limits of the potential of 
Federated AI in cyber defence. 
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I.      INTRODUCTION 
In today’s more connected and decentralized world, organizations must keep up with annualized double-digit transformations in 
support of various digital initiatives. As cloud computing, remote work, and other distributed technologies gain traction, more 
manufacturers are adopting new operations models based on distributed systems. Despite the advantages of flexibility, scalability 
and low cost, these models introduce key cybersecurity issues. Naturally, these systems depend on strong access control 
mechanisms that only allow users to access the resources and data. [1-4] Unauthorized access is one of the biggest concerns, as it 
could lead to massive leaks, data theft, and the exposure of sensitive information. Increasing complexity in managing access control 
across organizational layers and geographically disparate locations compounds this, while compliance requirements for distributed 
service delivery and multiple forms of authentication continue to expand. With cyber threats becoming more sophisticated, 
traditional technologies focused on access control based on static process policies and centralized systems are inadequate. However, 
existing approaches are not easily scalable to the dynamic qualities of modern distributed environments where user roles, device 
types, and threat vectors constantly change. In this landscape, there needs to be innovative solutions to balance a strong security 
posture and, at the same time, comply with privacy regulations and protect sensitive data. A solution to that is Federated Learning 
(FL), a machine learning technique that enables entities (such as organizations or devices) to jointly train models without accessing 
each other’s raw data. By distributing data processing and handling across several devices, federated learning reduces the risk 
associated with the concentration of data in central places. It offers a safer way to enhance cybersecurity in terms of access control. 
 
A. The Need for Advanced Access Control Systems 
In cybersecurity, access control is a fundamental aspect: who can access which resources and under what conditions. Traditional 
access control models such as Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC) have been used to 
some extent in a controlled environment. Yet, as organizations move toward more decentralized and dynamic systems, these 
traditional methods are becoming less and less adequate. The reasons include: 
1) Complex User Roles: Static role-based systems are ineffective for real-time decision-making in a near real-time, rapid change 

in user roles and responsibilities, whether in a remote or hybrid work environment. 
2) Scalability Issues: When organizations grow, centralized systems start becoming a daunting task to manage access to many 

devices, users, and associated applications. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue XII Dec 2024- Available at www.ijraset.com 
     

 1879 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

3) Privacy Concerns: GDPR and CCPA regulations are very strict with regard to personal data, and it constantly poses a challenge 
to make sure that the personal data is accessed correctly and not tampered with by any party. 
 

B. Federated Learning: A Decentralized Approach 
Federated Learning (FL) is a cutting-edge machine learning method for scaling up and preventing privacy attacks in distributed 
systems. Lastly, in FL, local models are trained by organizations or devices (called remote training parties) based on their own data 
and send results (e.g., model updates or gradients) to a central unit (called the aggregator). By aggregation process, the system can 
construct a consolidated model without sharing raw data among the participants. Its highly decentralized nature reduces risks to 
such centralized storage of the data, as in the case of a data breach or access to sensitive data taken by some unauthorized person. 
Additionally, it also boosts privacy since models can be trained on local data without revealing the data itself. Federated learning 
can also be utilized in the development of intelligent access control systems to support real-time threats by extracting collaborative 
insights and adapting to these threats from different organizations. 
 
C. The Role of Federated AI in Cybersecurity 
Given the case of security and access control, federated AI is a robust solution to federated learning along with AI techniques. This 
approach enables organizations to: 
1) Enhance Threat Detection: Federated AI pools the insights from an array of different organizations to quickly and reliably 

detect and respond to growing cyber threats. Security is maintained and shared in a secure and decentralized manner while 
improving collective defence capabilities. 

2) Dynamic Policy Enforcement: Once insights from the distributed data sources are known, the access control policies can be 
changed dynamically. With this, the system is more adaptive and can enforce more granular, context-sensitive access decisions. 

3) Ensure Privacy Compliance: Federated AI systems can utilize privacy-preserving techniques, such as differential privacy and 
homomorphic encryption, to ensure user and organizational data is protected in accordance with global data protection 
regulations. 

 
II.      LITERATURE OVERVIEW 

A. Federated Learning for Cybersecurity Applications 
Federated Learning (FL) is a novel approach to cybersecurity, and its solutions are being applied to collaborative model training 
while preserving data privacy. In sensitive industry sectors like healthcare, finance, and (critical) infrastructure, privacy is sacrificed 
at the altar by centralized data sharing, and this is of special interest. FL makes threat detection much more powerful by enabling 
organizations to pool their insights and take advantage of collective intelligence. [5-8] As a case in point, a study illustrated that FL 
allows entities to detect and respond quickly to evolving cyber threats, gaining the benefit of knowledge from distributed datasets 
without revealing individual data records. The data confidentiality and proactive security measures are balanced under this paradigm, 
which makes the road for advanced collaborative intelligence in cybersecurity. 

 
B. Design of Federated Learning Systems 
Much attention has been paid to the development of FL systems for a given cybersecurity need. This paper takes an example of an 
FL-based system to demonstrate its deployment in HRM for security improvement. Collaborative model training is used to improve 
malware detection during the recruitment process by focusing on data privacy compliance with regulations such as GDPR. This 
example demonstrates that FL frameworks can flexibly adapt to domain-specific security challenges. Additionally, the rapid growth 
of FL systems calls for securing the privacy and security aspects while ensuring they fit into organizational goals, a premise that is 
crucial for increased acceptance. 

 
C. Access Control in Distributed Systems 
When integrating FL, access control is still a persistent challenge. Very often, dealing with the various decentralized access rights 
through traditional models is hard to manage. As a granular and dynamic policy enforcement solution, Attribute Based Access 
Control (ABAC) has gained the attention of large enterprises and developers. ABAC is used in FL systems, as it enables flexible 
access management by assigning rights depending upon the user attributes, including roles or behavioral patterns. Federated 
environments, where multiple stakeholders require varying levels of access to shared insights, rely on adaptability of this kind.  
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ABAC integration enriches security and compliance with privacy regulations by solving the two challenges of decentralized access 
control and data confidentiality. 
 
D. Innovative Threat Detection Mechanisms 
Previous applications of FL have expanded into developing innovative mechanisms for threat cybersecurity detections. For example, 
within FL frameworks, there is one notable advance that pertains to attention-based Graph Neural Networks (GNNs). However, 
these GNNs are collaborative analyses of network traffic patterns between organizations and identify anomalies attributed to 
potential intrusions. Preserving data privacy and decentralizing analysis enable this approach to be a more accurate Intrusion 
Detection System (IDS) with high data confidentiality. These are examples of how FL is transforming the real-time threat detection 
space by providing proactive responses to overcome sophisticated cyber-attacks. 
 

III.      METHODOLOGY 
The Federated Learning (FL) process, a decentralized machine learning paradigm wherein multiple client devices collaborate to 
train a global model without sharing sensitive data, is illustrated by the diagram. Local model updates, Δw1, are performed by each 
device (labeled with icons representing various devices (e.g., tablet, car, phone, etc.) based on its own data. Then, these updates are 
sent back to the central FL Server, and it aggregates them to form a global model, as shown at the top of the image, using the 
mathematical formula. For k client devices (contribute nk/n to the model) each, local updates are aggregated through the process to 
a single aggregation node. [9] The beauty of this process is that individual devices like smartphones or IoT devices can calculate it 
as part of the model, and the raw data is not revealed. It’s all for privacy and security. The global model is updated with validation 
results, aggregated and thus updated, and sent back to the client devices for additional iterations of training. The Federated Learning 
system consists of an iterative cycle of local updates and global aggregation to collaborate among distributed devices while 
preserving the privacy of sensitive data. 
The implementation of access control in distributed systems is complex, authentication methods are inadequate, and there are 
scalability issues. [10-14] This Complexity of Implementation results from our requirement to design and enforce sophisticated 
access control policies for different user roles and deferential security requirements. In the absence of basic understanding and 
detailed planning, policies may not thwart risks sufficiently, resulting in systems being easy prey for unauthorized access. The 
second key challenge is Inadequate User Authentication. Unfortunately, for various reasons, many systems rely on over- or under-
used authentication mechanisms that pose an increased risk of unauthorized access to critical resources. To handle this, we need 
robust authentication techniques, such as Multi-Factor Authentication (MFA), that extend beyond authentication with credentials. 
Scalability and Flexibility Issues make the deployment of access control fraught in growing organizations and, in this case, the last. 
Traditional models don’t always support as user roles grow and expand, and this often requires access privileges to be changed 
frequently. Security requires that organizations follow the principle of least privilege and ensure that only users need the minimum 
amount of access to resources to do their jobs. Specific objectives that are proposed include forming a Federated Learning (FL) 
integrated framework, which will improve the adaptability and efficiency of access control policies while meeting privacy 
constraints and bolstering threat detection through collaborative intelligence. 

Figure. 1  Federated Learning Architecture 
A. Federated Learning Framework 
A Federated Learning (FL) framework typically comprises two main components: 
1) Aggregator: An administrator-managed model fusion centralized unit. In this case, model updates (gradients) collected from 

remote nodes are aggregated by the aggregator to a single global model without using raw data. 
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2) Remote Training Parties: Independent training of local models on data with each distributed node or system. These are the 
nodes that periodically share their updates with the aggregator, allowing collaborative learning across the whole network. 

FL is built on a cornerstone of Decentralized Data Processing; organizations can train models locally respecting data privacy. FL 
offers freedom from the consequent of sensitive information to ensure placement with privacy promises such as GDPR while 
boosting model precision through collective seeking. Another advantage of FL is Dynamic Policy Enforcement. With insights from 
the distributed data, the access control policies can be dynamically changed to support granular and context-aware decisions. This 
versatility ensures that access permissions stay in lockstep with current-day real-time business requirements, even in highly dynamic 
environments. 

 
B. Security Enhancements 
To ensure the security of a federated learning framework, it is essential to incorporate privacy-preserving techniques and robust 
defence mechanisms: 
1) Privacy-Preserving Techniques: Data protection during the FL process is strongly supported by methods like differential 

privacy and homomorphic encryption. For instance, we use a distributed Paillier cryptographic mechanism such that local 
gradient information is still secure from inference attacks but can still facilitate collaborative training. These techniques provide 
good guarantees of confidentiality so that organizations can participate in federated learning without fear of any sensitive 
information leakage. 

2) Defence Mechanisms against Adversarial Attacks: Poisoning attacks pose vulnerabilities to federated learning systems in that 
malignant actors attempt to alter corrupted data to paralyze model performance. RAB2-DEF is a defence mechanism that 
provides dynamic and explainable protection against such threats. These systems’ defences for those attack scenarios are robust 
without jeopardizing the fairness and precision of the model. Moreover, federated frameworks can sustain high performance 
that is not violated by adversarial conditions by placing resilience at the top of the hierarchy. 

 
C. Federated AI architecture for Cyber defence: 
Architecture of the Federated AI system for cybersecurity illustrated the synergy between decentralized intelligence and robust 
security systems. It comprises three core components: Each one playing its role in Access Control, Federated AI System, and  

 
Figure 2: Federated AI Architecture for Cyber Defence 
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Security Mechanisms. Through such architecture, accessing controlled data in distributed environments becomes efficient in terms 
of access control, data privacy, and resiliency against adversarial attack threats. User authentication is done in the Access Control 
Module, which also enforces access policies and makes real-time decisions to grant or deny access. It talks to Federated AI systems 
and uses federated model insights to adapt policies on the fly. As a result, this capability improves accuracy and context-awareness 
in decision-making when managing access requests. 
The Federated AI System anchors collaborative learning. Using encrypted updates shared to a centralized aggregator, models are 
trained locally to client devices (e.g., IoT devices, laptops) and then shared back to the aggregator. The aggregator creates these 
updates into a global model in a model repository on the central server. The global model is retrained further, thus continuously 
learning (but localization of the data, protecting user privacy). The Security Mechanisms layer complements this and implements 
encryption, privacy preserving, like differential privacy, and adversarial defences, such as RAB2-DEF. These measures protect 
sensitive data, secure communication, and protect the system against malicious attacks such as data poisoning or evasion attempts. 
This architecture is interconnected with scalable, privacy-preserving and resilient cybersecurity operations. It provides support for 
seamless collaboration among distributed nodes and centralized control and hence meets the ever-varying needs of such 
organizations, making it a vital framework for today’s distributed systems 
 
D. Implementation 
 The work here addresses the question of how one can implement the Federated AI system proposed to improve access control in 
distributed environments.  
We then detail the system design, deployment architecture, dataset preparation, and the metrics used to evaluate the system. A new 
Federated AI system is designed using current state-of-the-art tools and technologies but chosen to take advantage of their specific 
role in constructing a secure and efficient framework. [15-18] The system features important components: an aggregator node, 
remote training nodes, communication protocols, and privacy-preserving techniques. 
The aggregator node encodes model updates by remote training nodes and then aggregates them to a global model. To do this, TFF 
or PySyft tools allow this process while data stays secure. Local model training of decentralized datasets is performed at remote 
training nodes, including edge devices such as Raspberry Pi or laptops, so that sensitive data stays within the local environment. 
Protocols such as gRPC or MQTT are used to allow for secure communication between nodes and the aggregator. In federated 
learning systems, privacy and security are critical. Merging techniques such as Differentia Privacy and Homomorphic Encryption 
enable model training to maintain data confidentiality. Further, we utilize advanced tools such as Graph Neural Networks (GNNs) 
and anomaly detection libraries to facilitate collaborative network anomaly detection. The modular system architecture has been 
designed that integrates well with present cybersecurity tools and access control systems. Its scalability facilitates its ease of growth 
according to the organizational need, and the fact that it is a valid interoperable system means that the system is compatible with 
other devices and operating environments. 
 
E. Deployment Architecture 
The federated AI system deployment architecture describes the step-by-step integration of the system into already existing 
cybersecurity frameworks. It promotes the security of the system and the efficient implementation, with privacy maintained. First is 
installing the aggregator node so that it is a secure server (cloud or on-premises). The aggregator connects to remote training nodes 
that can be very far away over secure communication protocols such as gRPC or MQTT. We then define access control policies 
using Attribute Based Access Control (ABAC) to define rules for what a user role and attributes can have the rights to do. This is 
the stage where federated learning parameters like privacy thresholds or data-sharing constraints are initialized. 
During the training phase, remote nodes train their models on their local datasets independently, and their gradient updates are 
encrypted and sent to the aggregator. Each update that the aggregation is provided generates a global model known by the nodes that 
can be refined back into the nodes. The process promotes locally sensitive data, reducing the probability of data breaches. Finally, 
the global model trained is deployed to the organization’s access control system, making real-time decisions on what to deny access 
to, with updates to the model occurring in real-time to keep up with changes in the ecosystem and protect privacy. The deployment 
architecture is structured into four layers: 
1) End-User Devices: System interaction starts with end-user devices. These devices will have client-side applications and contain 

local data required to train machine-learning models. Examples include the desktop, laptop or mobile device being used by the 
employees or system users. Data is processed decentralized, being able to interact with   remote training nodes. This layer 
provides privacy and reduces data exposure risks by keeping all sensitive information locally. 
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2) Remote Training Nodes: Local training of machine learning models is performed with the help of remote training nodes. These 
nodes utilize the resources from edge devices (like Raspberry Pi, laptops, or on-premises servers) to train models on local 
datasets. The nodes receive a list of training steps for backward propaganda and use the sentences to send encrypted gradient 
updates to the aggregator node. The purpose of this layer is to maintain the decentralization of the raw data, which is part of the 
federated learning process. To allow our nodes to communicate efficiently and securely, we use the secure communication 
protocols gRPC or MQTT. 

 
Figure 3: Deployment Architecture for Federated AI System 

 
3) Aggregator Node: In federated learning, the aggregator node is the central coordination unit. The remote training nodes provide 

encrypted updates, which are then aggregated into a global model. Through this process, individual datasets are protected in 
privacy, yet this process enables collaborative intelligence. Then, the aggregator shares the global model to the nodes for more 
iteration. The aggregator node is hosted either on a secure cloud or on-premises servers; it ensures scalability, secure data 
handling and real-time coordination. 

4) Access Control System: Finally, the access control system implements dynamic access control policies informed by federated 
learning insights. Components of such a system include a policy engine that evaluates user roles and attributes and an access 
control interface that uses policies in real-time. This layer integrates the outcomes of the federated model, providing granular 
resource access control and compliance with the organizational policies and regulatory frameworks. 
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F. Dataset and Preprocessing 
According to researchers, the quality and preparation of datasets also determine the success of the Federated AI system. The 
framework is trained and evaluated with a combination of real-world and simulated datasets. For network intrusion detection, we 
use the UNSW-NB15 dataset from the University of New South Wales, and for detecting anomalies in network traffic, we employ 
the CICIDS2017 dataset from the Canadian Institute for Cybersecurity. Second, custom datasets collected from participating 
organizations offer access to and view behavioral patterns. A highly comprehensive preprocessing of the datasets is performed to 
ensure they are suitable for training. Data cleaning is about removing duplicates, incomplete entries or outliers. The dataset is 
normalized based on numerical features, and categorical features are provided as encoded values to ensure consistency. Automated 
tools, like FeatureTools, extract relevant features, such as user roles, resource access logs, and network traffic patterns. The datasets 
are then split into smaller subsets distributed across local nodes following realistic, decentralized data distributions. During 
preprocessing, preprocessing of gradients using Paillier Cryptosystem ensures data privacy and secure collaboration does not expose 
sensitive data. 

 
G. Evaluation Metrics and Monitoring 
The Federated AI system is evaluated using a set of metrics aimed at performance, privacy, and resource utilization. Some metrics 
to model accuracy measure how the system can make the correct access control decisions. Potential misclassification in anomaly 
detection is identified by calculating false positive and negative rates. Metrics such as privacy loss (ε) in differential privacy and 
compliance with data protection requirements are quantified for privacy. Communication overhead is also measured to resolve the 
amount of network bandwidth required during the process of training. Monitoring is done continuously as it’s important to maintain 
system reliability. Anomalies are weathered, alerts are generated, and detailed logs are maintained for audit purposes. The benefit of 
this structured approach is that the system stays secure, adaptable, and efficient in scaling access control in distributed environments. 
 

IV.      RESULTS AND DISCUSSION 
In this section, we experimentally evaluate Federated AI, focusing on the experimental design metrics and the results obtained. 
[19,20] Thus, it seeks to evaluate the system as a means for validating that the system maintains secure, scalable, and privacy-
preserving access control in these distributed environments. Several critical metrics for the Federated AI framework’s performance 
were assessed. The correctness of predictions by the federated model on enforcing access controls was evaluated by model accuracy. 
False Positive Rate (FPR) was the percent of legitimate actions that were mistakenly marked as unauthorized, and False Negative 
Rate (FNR) was measured as the percent of unauthorized actions that could not be identified as invalid.  The system used Privacy 
Loss (ε), a quantification of data confidentiality based on differential privacy techniques, to secure robust privacy guarantees. We 
evaluated latency, the time required to update models and enforce policies, a key thing for real-time access control systems. We 
analyzed the communication overhead metric in federated training, showing how the framework controlled bandwidth usage. 
Finally, scalability was evaluated to investigate how well the system performed as the number of nodes participating increased. 
Together, these metrics served as one complete assessment of the system’s effectiveness. 
 
A. Experimental Setup 
An experimental setup was developed to allow an emulation of a realistic deployment scenario for the Federated AI framework. 
Hardware included a powerful aggregator node running on an AWS EC2 instance with 16 vCPUs, 64GB RAM, and 1TB SSD 
storage. Raspberry Pi 4 devices with 4GB RAM and 128GB storage were used to simulate the remote training nodes. Giving 
TensorFlow Federated and PySyft as inputs and having Python as our core language of choice, we developed the framework. Secure 
protocols such as gRPC, HTTPS, etc were used to communicate nodes with each other. 

Table 1: Hardware and Software Configuration 
Component Specification 

Aggregator Node AWS EC2 Instance (16 vCPUs, 64GB RAM, 1TB 
SSD) 

Remote Training Nodes Raspberry Pi 4 (4GB RAM, 128GB storage) 
Development Framework TensorFlow Federated, PySyft 
Programming Languages Python 
Communication Protocols gRPC, HTTPS 
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The experimental process was split into several phases. Using baseline testing, the concepts of a centralized machine learning model 
in terms of accuracy, latency, and privacy. The framework was tested using access control simulation, which simulated dynamic 
policy enforcement for legitimate and unauthorized access.  
To evaluate resilience, adversarial techniques such as data poisoning and model evasion were used in attack simulations. Then 
scalability testing was performed, with the number of training nodes increasing incrementally to test system performance under 
varying loads. The experiments were similar to practical scenarios because they used partitioned real-world datasets such as UNSW-
NB15 to mimic a distributed environment. 
 
B. Results and Analysis 
The results demonstrate that the Federated AI framework achieved competitive accuracy with centrally trained models. For example, 
centralized AI had an accuracy of 96.5 percent versus 95.2 per cent with federated AI without privacy measures. Differential 
privacy was incorporated so that the accuracy dropped slightly to 93.7%, showing that there is a trade-off between accuracy and 
privacy. Nevertheless, the improvement in data confidentiality made the trade-off acceptable. 
 

Table 2: Accuracy vs. Privacy Trade-Off 
Model Type Accuracy (%) Privacy Loss (ε) 

Centralized AI 96.5 High 
Federated AI (No Privacy) 95.2 Medium 

Federated AI (Differential Privacy) 93.7 Low 

 
1) Communication Overhead: 
Bandwidth consumption was measured for different numbers of training nodes. Communication overhead was found to increase 
linearly with the number of nodes. For instance, the consumption of bandwidth was 120MB with 10 nodes, and it increased to 
1200MB for 100 nodes. Latency increased from 20ms for 10 nodes and 85ms for 100 nodes. The results of these findings showed 
that the framework could manage network resources in a scalable, efficient manner. 
 
2) Attack Resilience: 
The system was shown to be highly resilient against adversarial attacks. The accuracy drops for random data poisoning attacks for 
the RAB2-DEF defence mechanism when dropped without it was 15%, and with RAB2-DEF, it was 5%. Similarly, with defence 
mechanism, the accuracy drop decreased from 25% to 8% for the targeted label-flipping attacks. This demonstrated how robust 
security institutions should be developed to counter adversarial threats. 

Figure 4: Graphical Representation of Accuracy vs. Privacy Trade-Off  
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Table 2: Bandwidth Consumption vs. Number of Nodes 
Number of Nodes Bandwidth Consumption (MB) Latency (ms) 

10 120 20 
50 600 45 
100 1200 85 

 

Figure 5: Graphical Representation of Accuracy Drop under Adversarial Attacks 
 
3) Scalability Analysis 
Its scalability was tested by running a different number of nodes. Training time also increased from 15 minutes when the number of 
nodes was 10 to 120 minutes when the nodes were 100. Despite that, model accuracy was very stable (decreasing only from 95% to 
93%). It showed that the system was able to scale with minimal performance degradation. 
 

Table 3: Accuracy Drop Under Adversarial Attacks 
Attack Type Accuracy Drop (%) (Without 

RAB2-DEF) 
Accuracy Drop (%) (With RAB2-

DEF) 
Random Poisoning 15 5 

Targeted Label Flipping 25 8 
 

Table 4: Training Time vs. Number of Nodes 
Number of Nodes Training Time (Minutes) Model Accuracy (%) 

10 15 95 
50 50 94 
100 120 93 

 
4) The privacy and performance trade-off 
Differential privacy was used to show the effectiveness of privacy preserving techniques in experiments. We achieved an accuracy 
of 95.2% with privacy measures, but privacy loss was high. When combined with differential privacy with a ε value of 1.0, the 
accuracy slightly decreased to 93.7% while privacy loss was greatly reduced. It showed how the system reached equilibrium in 
terms of privacy and performance. 
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Table 5: Privacy and Performance Trade-Off 
Technique Accuracy (%) Privacy Loss (ε) 

No Privacy Measures 95.2 High 
Differential privacy (ε=1.0) 93.7 Low 

 
In this section, the experimental results are critically evaluated, with merits and demerits of the Federated AI framework for 
distributed access control systems, and future directions for improvement of the Federated AI framework for use in distributed 
access control systems are suggested. 
 

V.      KEY FINDINGS 
The federation AI framework’s experimental evaluation showed that it helps to ensure better access control in distributed systems. 
The framework leveraged federated learning to dynamically respond to enforce access policies with competitive accuracy levels 
akin to centralized AI systems. It had a significant advantage in preserving data privacy, a concern about data protection and 
compliance with relevant regulations, e.g., GDPR. A notable output was the robustness of the system to adversarial attacks. RAB2-
DEF advanced mechanisms helped the framework remain resilient to hostile environments as they continue to ensure the integrity of 
access control policies. At the same time, the framework could scale efficiently as the number of incoming nodes increased, but 
communication overhead grew linearly. Despite this expected growth, future techniques like compression or asynchronous updates 
can be used to optimize this in large deployments. 
 

VI.      LIMITATIONS 
The framework, however, has some weaknesses which need to be rectified. A key limitation has to do with the accuracy vs privacy 
trade-off. By effectively protecting sensitive information, differential privacy slightly decreased a model’s accuracy. For some 
applications that demand high precision, these factors may be balanced carefully, with privacy options decided on a need-to-need 
basis. The computational constraints of the edge devices, for example, the IoT node, result in another limitation. The federated 
learning process is often carried out on these devices that are missing the required processing power for more complex model 
training, resulting in inconsistent contributions to the learning process. Such imbalance can make the overall model performance 
degenerate and thus often needs to integrate lightweight training algorithms hardware optimizations. In addition, policy enforcement 
latency remains a concern as it is needed for much of the decision making to be made in a timely manner. When delays are possible 
due to updates, synchronization over time takes, and delays may impact the system’s responsiveness. In addition, while the 
framework can tolerate certain adversarial attacks, existing adversarial attacks that target aggregation or communication protocols 
remain ongoing challenges that require additional development of robust defences. 
 

VII.      CONCLUSION 
In this work, we extend access control in distributed systems using a Federated AI framework built on federated learning. The 
framework can support the collaborative model training mechanism across organizations, which ensures data privacy based on 
privacy regulations such as GDPR. With experimental evaluation, the framework showed significant improvements in access 
control through dynamic context-aware decision-making, robust privacy preservation and robustness to adversarial attacks. 
Furthermore, its ability to scale effectively across distributed environments makes it ideal for use widely. That proves Federated AI 
is a transformative approach to collaboration, privacy-preserving technologies and enhanced security measures. By addressing 
current issues of distributed access control, the framework lays the groundwork for developing secure, efficient, scalable solutions 
that are fundamentally important in creating a framework for secure future facilities in various organizational settings. 
 

VIII.      FUTURE WORK 
Despite the framework’s good performance, there are many areas to improve. Still, advanced privacy techniques, including Secure 
Multi-Party Computation (SMPC) and federated distillation, can be considered to achieve a better trade-off between privacy 
preservation and model accuracy. Finally, communication protocols can also be optimized through model compression and 
asynchronous updates to lower latency and communications overhead, making the system even more efficient for large-scale 
deployments. Future research must also adapt the framework to resource-constrained environments such as IoT devices using 
lightweight models and edge-optimized algorithms.  
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Additional proof of its versatility would come from expanding its applicability to real-time systems, emerging domains such as 
smart cities, and advanced threat detection scenarios. Secondly, integrating robustness under adversarial settings and designing 
governance protocols will be important to make Federated AI reliable, ethical in use, and adopted in the long term by many 
industries. 
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