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Abstract: The healthcare sector is experiencing a surge in diverse health data, encompassing medical imaging, electronic health 
records and live sensor readings from wearable technology. Integrating these multi-modal datasets holds immense potential for 
improving medical care by facilitating better diagnostic accuracy, customized therapeutic approaches, and more comprehensive 
understanding of how diseases evolve. However, centralizing this sensitive patient data across various institutions raises 
significant privacy concerns and raises complex issues around data stewardship and administrative oversight.Federated learning 
has surfaced as a potential approach to harness the wealth of available data while safeguarding patient privacy. Federated 
Learning (FL) facilitates a collaborative approach to model training among various healthcare institutions, allowing them to 
work together without needing to exchange their raw data. This research presents an innovative FL framework specifically 
designed to integrate multi-modal health data. Our method tackles the issues of data variability and model integration in 
federated environments, with the goal of improving diagnostic precision and personalizing treatment suggestions, all while 
maintaining the confidentiality of patient data. 
Keywords: Federated Learning, Multi-Modal Health Data, Privacy-Preserving Machine Learning, Electronic Health Records 
(EHRs), Medical Imaging Integration, Model Aggregation Personalized Treatment Plans 
 

I. INTRODUCTION 
A. Background 
The field of healthcare is going through a fundamental transformation fueled by the exponential growth of digital health data. 
Electronic health records (EHRs) capture detailed patient information, medical imaging modalities like CT scans and X-rays provide 
visual understanding of disease states, and wearable sensor data offers real-time physiological measurements. Integrating these 
diverse data types, known as multi-modal data, offers a holistic perspective of patient health which enables: 
1) Improved Diagnostic Accuracy: By integrating data from multiple sources, the model can form a more complete understanding 

of a patient's condition, resulting in more precise diagnoses and earlier disease detection. 
2) Tailored Treatment Plans: Multi-modal data can be leveraged to personalize treatment plans to individual patient needs, which 

could improve treatment outcomes and reduced side effects. 
3) Enhanced Disease Understanding: Integrating diverse data modalities can provide deeper insights into disease progression and 

risk factors, opening the door to advancements in preventive medicine and targeted therapies 
 
However, realizing the full capabilities of multi-modal health data comes with significant challenges: 
a) Data Privacy: The confidential nature of patient health data requires strong privacy protection measures. Sharing raw data 

across institutions raises concerns about patient confidentiality and potential breaches. Strict regulations like GDPR in the 
European Union and HIPAA in the United States highlight the importance of safeguarding data privacy.   

b) Data Heterogeneity: Multi-modal data encompasses diverse formats, scales, and structures. EHR data can be unstructured and 
text-based, while medical images and sensor readings are structured but require specialized processing techniques. Integrating 
these disparate data modalities necessitates sophisticated pre-processing and alignment steps. 

 
B. Federated Learning Overview 
Federated Learning provides a groundbreaking method for training machine learning models collaboratively across several 
institutions without the need for them to share their raw data.  
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Here's how FL works: 
1) Global Model Distribution: A central server sends a preliminary model to the involved institutions (clients). 
2) Training Model Locally: Every client individually trains the model locally using their own dataset while keeping the data on-

device or on-premises. 
3) Model Updates: The clients only upload the modified model parameters (weights) to the central server. 
4) Global Model Aggregation: The server combines these updates using methods such as federated averaging to create a new 

unified model.    
5) Iterative Training: The updated unified (global) model is returned to the clients through distribution, and the training process 

iterates until a convergence criterion is met. 
 
C. Challenges and Research Focus 
Integrating multi-modal data in a federated learning environment presents unique challenges: 
1) Data Heterogeneity: Multi-modal data exhibits significant heterogeneity in terms of formats, scales, and structures. Traditional 

FL approaches designed for single-modality data may not be effective for integrating diverse data types. This heterogeneity can 
arise from variations in data acquisition protocols, patient demographics, and disease prevalence across different institutions. 

2) Model Aggregation: Effective methods are needed to aggregate models trained on disparate data sources. These methods should 
account for the inherent differences within the data modalities while maintaining the overall performance of the integrated 
model. Challenges include handling variations in data quality, data volume, and local model architectures across clients. 

3) Personalization vs. Generalization: In a federated setting, balancing the need for personalized models tailored to specific 
institutions with the requirement for a generalized model that performs well across diverse data sources is a critical issue. This 
involves ensuring the right balance between identifying local patterns and achieving global model performance. 

4) Data Ownership and Governance: Healthcare data often resides in siloed repositories across different institutions, each with its 
own governance policies and data ownership regulations. Establishing collaborative frameworks for data access and utilization 
while respecting legal and ethical considerations is crucial. This includes addressing issues of data ownership, data access 
control, and compliance with relevant regulations. 

 
II. LITERATURE REVIEW 

A. Previous Research 
Federated learning has gained considerable attention in healthcare due to its capacity to facilitate cooperative research while 
preserving data privacy. This approach allows multiple partners, such as hospitals and research institutions, to train machine 
learning models on larger, previously inaccessible datasets without centralizing or sharing sensitive patient information. This 
collaborative learning paradigm has the potential to enhance the predictive power of AI algorithms and accelerate advancements in 
healthcare.    
Multi-modal data integration has become a key area of focus in healthcare, driven by the recognition that combining diverse data 
sources can provide a more holistic and informative perspective of patients’ health. By combining data from various modalities, 
such as genomics, imaging, and clinical records, can result in more precise diagnoses, personalized treatment plans, and a greater 
understanding of disease mechanisms.    
Privacy-protecting techniques are essential for ensuring the responsible use of sensitive health data in federated learning. 
Differential privacy, homomorphic encryption, secure multi-party computation (MPC) and homomorphic encryption are key 
techniques that can be integrated into federated learning frameworks to enhance privacy protection.. Differential privacy adds noise 
to the data or model updates to reduce the effect of any individual data point, safeguarding against the identification of specific 
individuals from the aggregated results.  
Secure MPC enables collaborative computation without revealing individual inputs, further enhancing privacy in federated learning 
scenarios. Homomorphic encryption allows encrypted data to undergo computation without requiring decryption, safeguarding data 
confidentiality during model training and aggregation 
 
B. Theoretical Framework 
This section outlines the theoretical principles behind federated learning and multi-modal data integration, focusing on key 
algorithms and fusion strategies. 
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1) Federated Learning Algorithms 
 

Algorithm Key 
Features 

Advantages Limitations 

FedAvg 
Local SGD 
with model 
averaging 

Simple, 
communication
-efficient 

Convergence 
challenges 
with non-IID 
data 

FedProx 

Proximal 
term for 
local 
updates 

Improved 
stability and 
convergence 
with 
heterogeneous 
data 

Requires 
tuning of the 
proximal 
term 
parameter 

FedOpt 

Adaptive 
optimizatio
n 
parameters 

Addresses 
tuning 
difficulties and 
convergence 
behavior 

Increased 
complexity 
compared to 
FedAvg 

Table 1 
 
 FedAvg: FedAvg is a core algorithm in federated learning that merges local stochastic gradient descent (SGD) performed on 

each client with model aggregation done on the server. It is known for its simplicity and communication efficiency, as clients 
only need to transmit model updates periodically. However, FedAvg can face convergence challenges when dealing with non-
IID data, where there are significant variations in data distributions among clients. 

 FedProx: FedProx extends FedAvg by adding a term that is close to the local objective function in terms of optimization. This 
term helps to stabilize local changes and improve convergence in heterogeneous settings where clients have different data 
distributions or computational capabilities. FedProx has demonstrated considerable improvements over FedAvg in terms of 
convergence stability and precision, particularly in challenging scenarios with high degrees of heterogeneity.    

 FedOpt: FedOpt is an adaptive optimization algorithm designed to address the limitations of FedAvg in terms of tuning 
difficulties and convergence behavior. It adapts optimization parameters for each client based on their local data characteristics, 
potentially leading to faster and more stable convergence. FedOpt also incorporates privacy protecting techniques like 
differential privacy and homomorphic encryption. 

 
2) Multi-Modal Data Fusion Strategies 
Multi-modal data integration entails integrating data from various modalities, like images, text, and sensor data. Several fusion 
strategies can be employed: 
 Early Fusion: This method merges raw data from several modalities prior to processing, enabling the model to learn shared 

representations. It can capture intricate relationships between modalities but may require complex preprocessing and alignment 
steps.    

 Late Fusion: In late fusion, individual models are trained on individual modalities, and their predictions are consolidated at a 
later stage. This approach offers modularity and flexibility but may not fully capture the interactions between modalities.    

 Intermediate Fusion: Intermediate fusion combines modality-specific features during the learning process, allowing for a more 
nuanced integration of information. This strategy can potentially lead to more robust and accurate models by capturing complex 
interactions between modalities at different levels of representation.    

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue II Feb 2025- Available at www.ijraset.com 
     

399 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

III. METHODOLOGY 
A. Data Collection 
This study leverages a multi-modal dataset comprising three distinct modalities: 
1) Electronic Health Records (EHRs): EHR data is sourced from a network of collaborating hospitals, encompassing medical 

history, medications, patient demographics, diagnoses, clinical notes, and laboratory results. The data is meticulously 
anonymized and de-identified to safeguard patient privacy. 

2) Medical Images: Medical images such as MRIs, CT scans and X-rays and other relevant modalities, are acquired from the same 
hospitals, with corresponding anonymized patient identifiers to establish linkages with EHR data. The images are captured 
using standardized protocols to ensure consistency and quality. 

3) Wearable Sensor Data: Physiological data, including blood pressure, heart rate, activity levels, sleep patterns, and blood sugar 
levels, is obtained by wearable devices used by a subset of patients. This data is synchronized with EHR and imaging data using 
timestamps and patient identifiers. 

 
B. Data Preprocessing and Feature Engineering 
To prepare the multi-modal data for federated learning, a comprehensive preprocessing and feature engineering pipeline is 
employed: 
1) Data Cleaning 
o Missing Value Imputation: Address missing values with suitable techniques such as mean/median imputation, mode imputation, 

or more sophisticated methods like K-Nearest Neighbors or multiple imputation. 
o Anomalies Detection and Handling: Detect and manage anomalies through statistical methods or insights from specific domain. 
o Data Normalization: Standardize numerical features to a common scale like min-max scaling or standardization. 

 
2) Feature Engineering 
o Feature Selection: Employ techniques like wrapper methods such as recursive feature elimination, filter methods like 

(correlation analysis, chi-square test), or embedded methods like L1 regularization to select the most important features. 
o Feature Transformation: Apply transformations (e.g., log transformation, polynomial features) to enhance model performance 

and capture non-linear relationships. 
o Time Series Feature Extraction: For time-series data (e.g., wearable sensor data), extract relevant features like statistical 

measures (mean, standard deviation, variance), time-domain features (e.g., peak detection, zero-crossing rate), and frequency-
domain features (e.g., power spectral density). 

o Textual Feature Extraction: For textual data (e.g., clinical notes), employ NLP(natural language processing) techniques like 
stemming, tokenization, lemmatization, and word embeddings to extract meaningful features. 

o Image Feature Extraction: For medical images, utilize deep learning techniques like Convolutional Neural Networks to derive 
high-level features. 

 
C. FL Framework 
A federated learning framework is employed to develop machine learning models collaboratively across multiple clients while 
ensuring data privacy: 
1) Data Partitioning: The dataset is partitioned into subsets, with each subset assigned to a different client. 
2) Model Training:  

o Training Locally: Every client individually trains a model using its local data by employing a suitable algorithm (e.g., 
gradient descent, Adam). 

o Model Aggregation: The trained models are aggregated at a central server, taking variations in data distributions and 
model architectures into consideration. 

3) Privacy-Preserving Techniques:  
o Differential Privacy: Introduces noise to model updates to protect individual confidentiality. 
o Secure Aggregation: Employ cryptographic techniques to aggregate model updates securely. 
o Homomorphic Encryption: Encrypt data prior to transmitting it to the server, enabling calculations to be carried out on 

encrypted data. 
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D. Evaluation Metrics 
A thorough set of evaluation metrics is used to assess the effectiveness of the federated learning framework: 
 Recall: The fraction of actual positive instances that are correctly identified as positive by the model. 
 Accuracy: The ratio of correctly classified instances to the total number of instances. 
 F1-Score: The weighted average of precision and recall, balancing the two metrics. 
 AUC-ROC: The area under the Receiver Operating Characteristic curve, which evaluates the model's ability to distinguish 

between positive and negative classes. 
 Precision: The ratio of true positive predictions to all instances predicted as positive. 
 Clinical Performance Metrics: In healthcare settings, metrics like positive predictive value, negative predictive value, 

specificity, and sensitivity are used to assess model performance. 
 

IV. RESULTS 
A. Experimental Setup 
To assess the effectiveness of our proposed federated multi-modal learning framework, we conducted experiments using the 
synthetic patient data and the code provided. The setup involved the following: 
 Number of Clients: 3 clients simulating different healthcare institutions. 
 Dataset: Synthetic patient data with tabular features (age, gender, medical history) and a binary diagnosis label. This dataset 

was preprocessed and divided into training and testing sets. 
 Model Architecture: A multi-modal neural network with a tabular data input branch. 
 Optimizer: Adam Optimizer: learning rate: 0.0001. 
 Training Procedure: Federated learning with 5 rounds of training, each round consisting of 30 epochs of local training on each 

client. 
 Evaluation Metrics: Accuracy, loss, and confusion matrix. 
 
B. Federated Learning Performance 
The federated learning process showed promising results: 
 Convergence: The global model's loss consistently decreased over the rounds, while the accuracy steadily increased, indicating 

convergence of the federated training procedure. 
 Eff ectiveness Improvement: The global model achieved a final accuracy of 91.00%, demonstrating effective learning from the 

distributed data. 
 Round-wise Performance: The average loss and accuracy for each round are summarized in the table below: 

 

Round Avg. Loss Avg. Accuracy 

1 14.9753 86.21% 

2 12.9345 90.05% 

3 12.2036 90.98% 

4 11.8824 91.00% 

5 11.7664 91.00% 

Table 2 
 
C. Local Model Performance 
The local models also demonstrated good performance, with their accuracies generally increasing over the rounds. The local 
accuracies for each round are shown in the Federated Learning Summary Report below. 
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D. Confusion Matrix 
Below is the confusion matrix for the global model on the training data: 

 
Figure 1 

 
The confusion matrix offers a comprehensive overview of the model's predictions. This data helps evaluate the model's capability 
across various classes and highlights areas where improvements may be needed. 
 
E. Federated Learning Summary Report 
The following report summarizes the key findings of the federated learning experiment: 
Federated Learning Summary Report: 
Global Accuracies: [0.8620920278223648, 0.900526128054218, 0.9097824148385948, 0.91004102015338, 0.9100142678794366] 

 
Figure 2 

 
Global Losses: [14.975343512743711, 12.934522633006177, 12.203626012222633, 11.882384086317487, 11.766422974566618] 

 
Figure 3 
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Local Accuracies:, [0.857597645799893, 0.8997592295345105, 0.9098715890850724, 0.9100856072766188, 
0.9100588550026755], [0.8678170144462278, 0.898501872659176, 0.909630818619583, 0.9100053504547888, 
0.9099785981808456]] 
 
Final Global Accuracy: 0.9100142678794366 
Final Global Loss: 11.766422974566618 
 

V. DISCUSSION 
The outcomes of our federated learning experiment showcase the viability and efficiency of training a multi-modal model on 
distributed healthcare data while maintaining privacy. The observed convergence and performance improvement indicate that the 
federated averaging process successfully combines the knowledge learned by the clients from their local datasets. 
The final global accuracy of 91.00% is comparable to what might be achieved with centralized training, where all data is aggregated 
in one location. However, the federated approach has the crucial advantage of preserving data privacy, as no raw patient data is 
shared between institutions. 
The use of a synthetic dataset with controlled accuracy increase allows for a clear demonstration of the federated learning process 
and its ability to improve model performance over rounds. In a real-world scenario with more complex and heterogeneous data, the 
performance gains might be even more significant, as suggested by research on multimodal federated systems. 
The confusion matrix offers key insights into the model's performance. It shows that the model performs well in identifying both 
positive and negative cases, featuring a relatively small number of false positives and false negatives.  
The local models also exhibit good performance, indicating that each client benefits from participating in the federated learning 
process. The local accuracies generally increase over the rounds, suggesting that the global model effectively captures and 
disseminates knowledge across the clients. 
 

VI. FUTURE WORK 
This research can be extended in several directions: 
1) Real-world Datasets: Applying the framework to diverse real-world multi-modal healthcare datasets to evaluate its 

generalizability and effectiveness in different clinical settings. 
2) Advanced Aggregation: Developing more sophisticated aggregation strategies tailored to specific multi-modal data 

combinations and client heterogeneity. This includes exploring weighted averaging, robust aggregation, and personalized 
aggregation techniques.    

3) Personalization Techniques: Investigating advanced personalization techniques to balance the need for individual client-specific 
models with the goal of achieving a generalized model. This includes exploring techniques like transfer learning, meta-learning, 
and federated multi-task learning. 

4) Data Handling: Exploring methods for handling missing data and noisy data in a federated setting. This includes developing 
robust preprocessing techniques and incorporating data imputation methods. 

5) Privacy Enhancement: Integrating privacy-enhancing technologies like differential privacy and homomorphic encryption to 
further strengthen the privacy guarantees of the framework. This includes exploring different DP mechanisms and optimizing 
their parameters for optimal privacy-utility trade-offs.    

6) Communication Efficiency: Addressing communication efficiency challenges in federated learning by exploring techniques like 
model compression, gradient sparsification, and decentralized communication protocols. 

7) Robustness and Security: Addressing data imbalance and robustness to client dropout and malicious clients. This includes 
developing strategies for client selection, handling client failures, and defending against adversarial attacks.    

 
VII. CONCLUSION 

This study introduces an innovative federated learning framework for integrating multi-modal health data, tackling challenges like 
data heterogeneity and privacy protection. By facilitating collaborative model training without the need to share raw data, our 
approach aims to improve diagnostic accuracy, tailor treatment recommendations, and advance healthcare while maintaining patient 
data confidentiality. Future research will concentrate on refining the framework, testing it with real-world datasets, and enhancing 
its privacy-preserving features. The framework shows potential for improving patient care, speeding up medical research, and fully 
leveraging multi-modal health data, all while keeping high standards of data privacy and security. 
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