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Abstract: Biases in numerical weather prediction (NWP) outputs remain a persistent challenge, often degrading forecast 

reliability for end users. Recent advances in deep learning have enabled more effective bias correction of NWP forecasts by 

capturing complex nonlinear error patterns that elude traditional statistical methods. This paper provides a comprehensive 

review of deep learning–based bias correction techniques for global NWP. We outline the nature of forecast biases and 

conventional correction approaches, then survey state-of-the-art deep learning methods – including convolutional neural 

networks (CNNs), recurrent networks, and Transformers – applied to improve predictions of temperature, wind, and 

precipitation. The review synthesizes results from 2021–2025 studies, highlighting typical performance gains (e.g. reductions in 

root-mean-square error and improved extreme event skill). Common strengths (such as handling multivariate spatial biases) and 

limitations (such as data requirements and interpretability) are discussed. Looking ahead, we identify key challenges to 

operational deployment and propose future directions to enhance generalization, transparency, and physical consistency. Deep 

learning bias correction is shown to significantly enhance forecast fidelity, offering a promising complement to ongoing model 

improvements in NWP. 
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I.   INTRODUCTION 

Accurate weather forecasts are crucial for public safety, economic planning, and environmental management. Modern numerical 

weather prediction (NWP) models have achieved remarkable skill, yet they continue to exhibit systematic errors or biases due to 

imperfections in model physics, resolution limits, and data assimilation. Biases manifest as consistent forecast deviations (e.g. 

temperature consistently too warm, precipitation underpredicted), which can undermine forecast utility, especially for extreme 

events [11], [20]. Bias correction techniques are therefore employed as post-processing steps to adjust model outputs and improve 

forecast accuracy. Historically, bias correction has relied on statistical methods such as Model Output Statistics (MOS) and Perfect 

Prog, which fit regression adjustments using past observations [12]. While these traditional methods have improved forecasts, they 

assume linear relationships and often struggle with complex, nonlinear bias patterns [1]. 

In the past decade, the rise of data-driven approaches – and deep learning in particular – has opened new opportunities to correct 

NWP biases more effectively [9], [13]. Deep learning models can automatically learn intricate mappings between model forecasts 

and observations, capturing spatial and temporal structures that classical approaches might miss. For example, convolutional neural 

networks (CNNs) have been used to post-process gridded forecasts as an “image-to-image” translation problem, directly correcting 

spatial fields of temperature, humidity, and wind [2],[14]. Recurrent neural networks like LSTMs can leverage temporal sequences 

to adjust forecast trajectories, and Transformer-based architectures enable attention to long-range dependencies and multi-variate 

relationships in ensemble forecasts. Early applications have demonstrated substantial error reductions – in some cases, halving bias 

magnitudes [3] and improved skill for high-impact weather events [4]. 

This paper provides a comprehensive review of deep learning–based bias correction in global NWP. We focus on recent studies 

(2021–2025) that exemplify how various neural network architectures have been applied to enhance forecast fidelity. Section 2 

reviews background concepts: types of forecast bias, traditional vs. deep learning correction, and common performance metrics. 

Section 3 surveys representative deep learning bias correction studies worldwide, grouping them by deterministic vs. probabilistic 

and single- vs. multi-variable outputs. Section 4 synthesizes the typical performance improvements and recurrent 

strengths/weaknesses observed.  
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Section 5 discusses remaining challenges – such as generalization and interpretability – and outlines future priorities for research 

and operations. Finally, Section 6 concludes with key takeaways and recommendations for integrating deep learning bias correction 

into NWP workflows. 
 

II.   BACKGROUND & METHODS 

A. Forecast Biases in NWP 

NWP model biases can be broadly defined as systematic errors in predicted variables relative to truth (observations or analyses). 

Biases may arise from many sources: deficiencies in model physics (e.g. convection schemes causing rainfall underestimation), 

inadequate resolution of terrain, data assimilation imbalances, or sampling issues. Biases often exhibit dependencies on geography, 

season, or weather regime – for instance, a model might consistently over-predict nighttime temperatures (diurnal bias) or under-

predict wind speeds in coastal regions due to unresolved topography. It is useful to distinguish bias (the time-mean or systematic 

error) from random error; bias correction typically targets the predictable, repeatable component of error. In practice, bias correction 

algorithms may adjust either the mean state or conditional distributions of forecasts to better match observations. 
 

B. Traditional Bias Correction vs. Deep Learning 

Conventional bias correction methods in meteorology date back several decades. MOS and related approaches use multivariate 

linear regression or analogy techniques to correct model outputs using a training period of model forecasts and verifying 

observations. These methods are relatively easy to implement and interpret, but their linear assumptions and need for manual feature 

selection limit their ability to capture complex error structures [1]. Other techniques include Kalman filter bias estimators, quantile 

mapping (for precipitation), and ensemble model output statistics (EMOS) for probabilistic forecasts. While effective for small 

biases, these approaches can struggle with highly nonlinear biases (for example, errors that depend on interactions of multiple 

variables or thresholds). 

Deep learning–based correction methods aim to overcome these limitations by leveraging flexible function approximators (neural 

networks) trained on large datasets of past forecasts and observations. A deep neural network can ingest a high-dimensional input 

(e.g. a spatial field of multiple weather variables) and learn an optimal correction without explicit human designed predictors. 

Convolutional Neural Networks (CNNs) are especially suited for gridded data: by treating NWP output maps as images, CNNs can 

correct spatially coherent bias patterns (for example, elevation-dependent temperature bias) via learned filters. CNN-based 

architectures (often U-Net like encoders-decoders) have been used to perform field-wise bias correction, adjusting every grid point 

simultaneously [2]. 

Recurrent Neural Networks (RNNs), including LSTMs and GRUs, incorporate temporal context and can model how biases evolve 

with lead time. These are useful for sequential forecast bias correction (e.g. correcting a time series of hourly forecasts based on 

previous errors). 

Transformers and attention-based models, a newer entrant, can capture long-range dependencies and relationships across multiple 

variables or ensemble members. For instance, self-attention Transformers have been employed to post-process ensemble forecasts 

by calibrating each member’s output while preserving inter-member relationships [5],[15],[21]. 
 

C. Core Evaluation Metrics 

To evaluate bias correction performance, studies typically use standard forecast verification metrics. For deterministic forecasts, 

common metrics include the mean bias (average error), mean absolute error (MAE), and root-mean-square error (RMSE) of the 

corrected forecasts versus observations. A successful bias correction should significantly reduce bias (ideally to near-zero) and often 

also reduce MAE/RMSE. Improved correlation coefficient or skill scores (like the Nash–Sutcliffe efficiency or anomaly correlation) 

indicate better alignment with observed variations [2]. For categorical events (e.g. extreme rainfall exceedances), metrics like 

probability of detection, false alarm ratio, or critical success index are used to gauge improvements in event forecasting. In the 

probabilistic realm, metrics such as the continuous ranked probability score (CRPS) and Brier score measure the quality of post-

processed ensemble distributions [6]. Reliable bias-corrected ensembles should show lower CRPS (indicating forecasts closer to 

observations distribution) and better calibrated probabilities (often visualized via reliability diagrams). Throughout this review, we 

reference improvements in these metrics as evidence of the efficacy of deep learning corrections. We next examine a range of recent 

studies that have applied these methods to real-world NWP bias correction tasks [10], [16], [22]. 
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III.   SURVEY OF DL BIAS CORRECTION STUDIES  

Deep learning methods have been applied to NWP bias correction in diverse settings around the globe. Table 1 summarizes 7 

representative studies (2021–2025) covering different NWP models, variables, and network architectures, along with their key 

outcomes. We then discuss these studies, grouping them into deterministic vs. probabilistic post-processing, and noting whether 

they handle single or multiple output variables. 

Table 1. Recent deep learning bias correction studies in NWP (2021–2025), highlighting data/model used, DL approach, output type, 

and key results. 

TABLE 1 OVERVIEW OF RECENT DEEP LEARNING METHODS FOR BIAS CORRECTION IN NWP 

Study (Year) NWP Data & Domain DL Method Output Type Key Result 

[2] Han et al. 

(2021) 

ECMWF-IFS global model 

forecasts (24–240 h) over N. 

China; variables: 2 m 

temperature, 2 m humidity, 

10 m wind speed & direction 

CNN (U-Net 

variant “CU-net”) 

Deterministic, 

multivariate gridded 

fields 

~15–30% reduction in RMSE and 

MAE vs. baseline method (ANO); 

improved correlation for all lead 

times. 

[1] Pang et 

al. (2025) 

GFS global model 2022 

forecasts over S. China Sea; 

variables: surface wind speed 

& direction 

MultiUNet + 

Diffusion model 

(MU-Diffusion) 

Deterministic, two-

variable field (wind) 

~42% reduction in wind speed error, 

38% in wind direction error 

compared to raw GFS; robust 

improvements even during 

typhoons. 

[4] Hess & 

Boers (2022) 

Global NWP ensemble 

(ECMWF ENS); variable: 

heavy rainfall (24 h 

accumulations) 

CNN (U-Net) with 

weighted loss for 

extremes 

Deterministic, 

single-variable 

(precipitation), 

tailored to extremes 

Improved frequency of heavy rain; 

skill scores for extreme rainfall 

increased by factor of 2–6 

(depending on intensity), with far 

better representation of tail 

distribution. 

[6] Ji et al. 

(2022) 

NCEP GEFS ensemble 

reforecasts (2000–2019) over 

China; variable: daily 

precipitation 

CNN-based 

ensemble post-

processing (vs. 

standard EMOS) 

Probabilistic, single-

variable (precip 

distribution) 

~10–15% CRPS reduction vs. 

EMOS; significantly better Brier 

scores for heavy rain (>50 mm/day) 

events. Note: performance dropped 

if training data < 5 years, 

highlighting data demands. 

[7] Wang et 

al. (2023) 

MERRA-2 reanalysis vs. 

Stage IV radar (Gulf Coast, 

USA); variable: hourly 

precipitation (downscaling 50 

km → 4 km) 

Customized 

CNN (multitask 

learning + 

covariates; 

weighted loss) 

Deterministic, 

single-variable high-

res field (precip) 

Outperformed linear quantile 

mapping at hourly–monthly scales; 

better reproduction of extreme rain 

features with multitask approach. 

[3] Laloyaux 

et al. (2022) 

ECMWF IFS operational 

model (global); variable: 

temperature bias in data 

assimilation (stratosphere) 

3D CNN 

(convolution on 

model state) using 

radio occultation 

data 

Deterministic, bias 

estimation field 

(model error term) 

Detected complex model bias 

patterns; achieved ~50% reduction 

in stratospheric temperature bias vs. 

no correction. Did not yet 

outperform the existing 4D-Var bias 

correction but showed promise. 

[5] Ben 

Bouallegue et 

al. (2023) 

ECMWF ENS (global 50-

member ensemble); 

variables: multiple (e.g. 2 m 

temperature, precip) 

Hierarchical 

Transformer 

(“PoET”) 

operating on 

ensemble members 

Probabilistic, 

multivariate 

ensemble (calibrated 

members) 

~20% improvement in skill (CRPS) 

globally for 2 m temperature, ~2% 

for precipitation; produced more 

reliable ensembles than a member-

by-member linear baseline. 
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A. Deterministic Bias Correction Approaches 

Early applications of deep learning to NWP bias correction have focused on deterministic forecasts, aiming to directly adjust a 

single forecast field. [2] pioneered an image-to-image translation approach for bias correcting global model forecasts on a grid. 

They developed CU-net, a U-Net–based CNN, to post-process 1–10-day forecasts from the ECMWF global model over North 

China, correcting four variables (temperature, humidity, wind speed, wind direction) simultaneously. By training on 14 years of 

ECMWF forecasts and co-located reanalysis truth, the CNN learned multivariate spatial error patterns. It achieved consistently 

lower RMSE, bias, and MAE than a traditional anomaly correction (ANO) method, for all lead times. Notably, CU-net improved 

even notoriously difficult aspects like 10 m wind direction forecasts, which the statistical method struggled with. This demonstrated 

that CNNs can capture nonlinear cross-variable relationships (e.g. how errors in wind speed/direction correlate) better than linear 

methods. 

Similarly, [1] addressed biases in global model wind forecasts using an innovative dual-model framework. They introduced MU-

Diffusion, combining a MultiUNet (for structural spatial bias features) with a diffusion probabilistic model (for fine-scale 

adjustments) . Applied to 2022 Global Forecast System (GFS) winds over the South China Sea, this approach corrected both wind 

speed and direction fields together. MU-Diffusion achieved large error reductions – on the order of 40% improvement in wind speed 

MAE and 38% in direction accuracy relative to the raw GFS output. It outperformed both a pure CNN and pure diffusion model, 

indicating that merging deterministic CNN corrections with generative refinement can yield robust bias removal. The authors also 

reported that during typhoon conditions (extreme winds), the framework maintained excellent performance, suggesting the model 

generalized well to unseen high-impact scenarios. 

Deep learning has also shown promise for bias correcting specific phenomena. [4] focused on extreme rainfall prediction – a long-

standing weak spot for NWP models due to nonlinear physics and tail distributions. They trained a CNN post-processor (based on 

U-Net) to correct 24-hour precipitation forecasts from a global ensemble, with a special loss function that up-weighted heavy rain 

events. This allowed the network to better learn the sparse, heavy-tail errors. The corrected forecasts had a dramatically improved 

frequency distribution of rainfall, nearly matching observed climatology. For the most extreme events, forecast skill (e.g. the 

probability of detection and equitable threat score) jumped by factors of 2 to 6 compared to the raw model. In essence, their bias 

correction not only reduced mean errors but also addressed the underdispersion and bias in the tails, yielding more trustworthy 

extreme rainfall forecasts. This highlights how deep learning can be tailored (via custom loss terms) to address specific bias 

characteristics like skewed distributions [17], [23]. 

In the deterministic realm, most studies to date focus on single-model, single-region implementations, often correcting one forecast 

variable or a set of related variables. The examples above illustrate that CNN-based frameworks are effective for spatial bias 

correction across lead times, and that specialized designs (e.g. multi-component networks, weighted losses) can target challenging 

bias aspects. These models generally output a deterministic corrected field (or set of fields), which can be directly compared to 

observations. Evaluation typically shows substantial reductions in bias and RMSE, and improvements in correlation or skill scores, 

relative to both the raw NWP output and traditional correction benchmarks [2]. However, deterministic bias correction alone does 

not quantify residual uncertainty – hence a parallel line of work applies deep learning to probabilistic and ensemble forecast 

calibration, as discussed next. 
 

B. Probabilistic and Multivariate Post-processing 

Beyond single deterministic forecasts, deep learning is increasingly used to post-process ensemble forecasts and produce calibrated 

probabilistic outputs. Ensemble NWP systems provide a range of possible outcomes, but they too suffer from bias and lack of 

reliability (for example, under-dispersed ensembles that miss the true variability). Traditional ensemble post-processing methods 

like Ensemble MOS or Bayesian Model Averaging adjust the ensemble distribution as a whole. In contrast, some recent deep 

learning approaches attempt to calibrate each ensemble member or the joint distribution directly. 

A notable study by [5] introduced PoET (Post-processing Ensembles with Transformers), which represents a new paradigm for 

ensemble bias correction. PoET uses a hierarchical Transformer network to process all members of a global ensemble forecast 

simultaneously. Importantly, it operates member-by-member: rather than predicting a parametric distribution, it outputs a corrected 

set of members that retain the size and structure of the original ensemble. This approach is ensemble-size agnostic and preserves 

spatial correlations between variables. When tested on the ECMWF medium-range ensemble, PoET delivered up to 20% 

improvement in skill (CRPS) for 2 m temperature globally, and around 2% for precipitation, compared to raw ensemble output.  
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These gains, while modest for precipitation, indicate a significant reduction of bias and dispersion error for temperature (a variable 

with more Gaussian error characteristics). PoET outperformed simpler neural network baselines and improved the ensemble spread–

skill relationship, yielding more reliable probabilistic forecasts. By leveraging the Transformer’s ability to capture cross-member 

and cross-variable relationships, this method represented one of the first successful multivariate, member-level bias corrections in an 

operational-scale ensemble [18], [24]. 

Other studies have focused on single-variable ensemble calibration with deep learning. [6], for example, developed a CNN-based 

post-processor for daily precipitation ensembles over China. They trained the CNN to output a bias-corrected probability 

distribution of rainfall by learning from 20 years of reforecast data. Compared against a conventional censored-shifted gamma 

EMOS approach, the deep learning model achieved significantly lower CRPS and Brier scores (better probabilistic accuracy), 

especially for heavy rainfall days. The CNN’s advantage was most pronounced for the extreme upper tails ( >50 mm/day), where 

EMOS struggled with bias. However, the authors noted the CNN required a large training sample – performance dropped markedly 

when only two years of training data were used– underscoring the data-intensive nature of deep learning. This result emphasizes that 

while deep networks can encapsulate complex error corrections, they may need decades of past forecasts to avoid overfitting and 

reliably model rare events. 

Deep learning has also been explored for bias correcting model fields in the context of data assimilation. While slightly outside pure 

“post-processing,” it is worth noting [3], who used a 3D CNN to estimate systematic model biases within the forecast model itself. 

By training on differences between short-range forecast trajectories and satellite temperature retrievals, their network learned to 

predict the bias correction term that a weak-constraint data assimilation would apply. In ECMWF’s system, this deep learning 

approach could explain a large fraction of the stratospheric temperature bias, reducing it by up to 50% in preliminary tests. Although 

it did not yet surpass the complex variational bias correction scheme in operations, it demonstrated the feasibility of neural nets 

learning model error dynamics. This points to future convergence of bias correction and model development, where AI might assist 

in diagnosing and correcting biases within the NWP models, not just in post-processing [19],[25]. 

In summary, probabilistic bias correction with deep learning is an emerging area. Approaches like CNNs and Transformers have 

shown the ability to improve ensemble forecast reliability, either by directly adjusting distribution parameters or by calibrating 

members. These methods tackle multivariate outputs (multiple ensemble members, and even multiple weather variables in the case 

of PoET) and can account for complex error covariances that traditional univariate bias corrections ignore. The trade-off is greater 

complexity and the need for large training datasets to sample the joint distribution of forecasts and observations. Nonetheless, the 

results to date are encouraging: neural post-processors have matched or exceeded the skill of standard ensemble calibration methods 

in several cases, marking an important step toward fully data-driven probabilistic weather prediction. 

 

IV.   PERFORMANCE SYNTHESIS 

Across the diverse studies reviewed, deep learning–based bias correction has consistently demonstrated quantitative improvements 

in forecast accuracy. A synthesis of results shows typical error reductions on the order of 10–40% in terms of MAE or RMSE for 

the corrected forecasts versus the original model output. For example, CNN bias correction of temperature, humidity, and wind 

fields yielded roughly 15–30% RMSE improvement over a baseline statistical method in one study [2]. In another case, a deep 

learning model achieved over 40% error reduction for surface winds compared to the raw global model forecasts [1]. Such gains are 

substantial, considering that traditional bias corrections might only eke out single-digit percent improvements in some situations. 

Particularly noteworthy are the improvements in bias (mean error) itself – many DL approaches effectively eliminate the systematic 

component of error by construction, bringing average forecast bias to near zero for the training region. This was seen in the 

precipitation downscaling work of Wang et al. (2023), where the customized CNN removed systematic rainfall underestimation at 

multiple timescales better than a quantile mapping technique [7]. 

Beyond aggregate error metrics, deep learning methods often enhance extreme event prediction and correlation structure. By 

learning from spatial patterns, CNN-based corrections tend to increase the correlation coefficient between forecasts and 

observations [2], indicating a better match in the distribution of features (for instance, better placement of rain bands or wind 

maxima). For heavy-tailed variables like precipitation, specialized DL models (with weighted loss or distributional outputs) have 

dramatically improved the representation of extremes. [4] showed that their network-corrected forecasts captured the frequency of 

the most intense rainfall events far more accurately than the raw ensemble, which translated into multiple-fold increases in skill 

scores for those events. Likewise, the probabilistic CNN of Ji et al. (2022) provided sharper and more reliable probability forecasts 

for extreme rain thresholds than conventional methods [6].  
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These results suggest that deep learning can correct not just the mean bias, but also higher moments and distribution tails, 

addressing both calibration and discrimination aspects of forecast quality. 

The strengths of deep learning bias correction observed across studies include: (i) ability to handle multivariate inputs/outputs, 

learning the interplay of variables (e.g. adjusting winds and temperature consistently); (ii) capturing nonlinear, state-dependent 

errors, such as larger corrections under certain conditions (e.g. convective regimes) and smaller when the model error is regime-

dependent; (iii) providing spatially coherent corrections, since CNNs optimize over entire fields, reducing the risk of noisy, 

pointwise adjustments; (iv) in probabilistic contexts, maintaining or improving ensemble spread, as seen with the Transformer 

approach that actually improved the spread–skill ratio[5] rather than simply narrowing distributions. Importantly, many DL models 

continue to show positive impact across all forecast lead times, sometimes even increasing in relative benefit at longer leads where 

the raw model error grows [2]. 

However, some weaknesses and limitations have been noted. Deep learning models are data-hungry – they require large reforecast 

or hindcast datasets for training, ideally spanning many years to capture various weather scenarios [13]. When training data are 

limited, the performance can degrade significantly [6], or the model may overfit to specific bias patterns that don’t generalize. 

Another issue is potential over-correction: if not carefully constrained, a neural network might introduce its own artifacts (for 

example, overshooting a correction and introducing bias of opposite sign). This ties into the need for validation on independent 

periods – many studies evaluated models on held-out years and found robust improvement, but operational deployment will test 

whether these methods hold up under truly unseen conditions (e.g. a future model upgrade or climate trend). Additionally, while 

bias is reduced, it’s possible that variance or ensemble diversity could be reduced inadvertently if the model becomes too 

“confident”; thus, some designs explicitly preserve ensemble member differences [5] or add stochasticity (e.g. diffusion models) to 

avoid collapse to the mean. 

In terms of raw numbers, a bias-corrected forecast typically achieves RMSE reductions of 5–20% for common variables like 2 m 

temperature (with larger percentage gains in more bias-prone variables like humidity or wind direction). Correlation improvements 

on the order of 0.05–0.15 (in absolute correlation coefficient) have been reported [2]. For precipitation, because the metric (e.g. 

CRPS or skill score) is sensitive, improvements of a few percent are already meaningful; the reviewed studies showed CRPS 

reductions ~10% for daily precip ensembles [6] and improved extreme event Brier scores by even larger margins. Meanwhile, mean 

bias for variables like temperature or pressure can be brought down from, say, 1–2 K error to under 0.5 K after correction. Notably, 

wind forecasts – often challenging due to vector nature – saw directional error reductions of ~38% [1] with a dedicated DL 

framework, which is a remarkable correction of a notoriously tricky bias. 

In conclusion of this synthesis, deep learning–based bias correction consistently enhances deterministic forecast accuracy and 

probabilistic forecast reliability, often surpassing traditional correction benchmarks. The typical improvement ranges summarized 

above provide a benchmark for what one can expect when deploying these modern post-processing techniques. While results vary 

by region and variable, the trend is clear: properly trained neural networks can extract more signal from past errors to boost forecast 

fidelity in ways that linear methods cannot, especially for complex and extreme weather phenomena. 

 

V.   CHALLENGES & FUTURE DIRECTIONS 

Despite their successes, deep learning bias correction methods face several challenges before they can be universally adopted in 

operational forecasting. In this section, we discuss key issues and propose future directions, highlighting three short-term priorities 

for advancing the field. 
 

A. Generalization and Robustness 

One primary challenge is ensuring that a bias correction model trained on historical data remains valid under evolving conditions. 

NWP models themselves are moving targets – operational centers frequently upgrade model physics, resolution, or data assimilation 

techniques. A neural network calibrated to biases of an older model version may become less effective or even detrimental when the 

NWP model changes. To address this, transfer learning and continual learning approaches are promising. [3] demonstrated that 

transfer learning can help adapt a CNN bias estimator to a new model with limited additional data. Future work should focus on 

developing bias correction models that can be rapidly retrained or updated as new forecast data come in, possibly even in an online 

mode. Another aspect of generalization is applying bias correction to regimes or regions not well represented in training. Extreme 

events or rare meteorological patterns are, by definition, scarce in the training record. Prioritizing methods that are robust to 

extrapolation – for example, by incorporating physical knowledge or constraints – is a key short-term priority.  
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Physics-informed neural networks or hybrid models could ensure that corrections do not violate known physical relationships (like 

mass conservation or energy balances) when operating outside the training envelope. 
 

B. Interpretability and Trust 

A hurdle in operational uptake of deep learning is the “black box” nature of neural nets. Forecasters and model developers may 

be hesitant to trust a correction that cannot be easily explained. There is a need for techniques that shed light on why the model is 

making certain corrections. Future research should explore explainable AI (XAI) tools applied to bias correction – for instance, 

attribution methods that highlight which input features (areas, pressure levels, etc.) contributed most to a given correction. This 

could reveal, say, that a CNN corrects temperature in a valley primarily based on the model’s bias in wind direction suggesting a 

stagnation event, offering a physical interpretation. Interpretable model designs (e.g. attention mechanisms in Transformers) could 

also be leveraged, since attention weights might be visualized to understand spatial error teleconnections. Building trust through 

validation is another priority: thorough testing on independent cases (including extreme out-of-sample events) and transparent 

reporting of failure cases will be important. Some biases might only appear under special conditions (e.g. unusual aerosol loading 

affecting radiation); knowing the limits of a DL correction model helps forecasters decide when to rely on it. In the near term, a 

practical step is to implement bias correction models in parallel with existing systems and gather feedback from forecasters on their 

performance and oddities – a form of human-in-the-loop validation that can guide model refinement. 
 

C. Operational Deployment and Maintenance 

Even if a deep learning bias corrector performs well, integrating it into the NWP operational pipeline presents engineering and 

logistical challenges. These models must run reliably in real-time, often under tight computational constraints. Fortunately, many 

CNN or Transformer post-processing models are fast once trained (in fact, some are much faster than running an NWP model itself), 

but careful optimization is needed – for example, converting models to efficient inference engines or quantizing weights to speed up 

computation [14]. The maintenance of training datasets is another practical concern. Bias correction models may need periodic 

retraining as more data are collected; setting up automated pipelines to retrieve new forecast-observation pairs, retrain the network, 

and validate it is a non-trivial task. Collaboration between AI experts and meteorological agencies will be essential to streamline this 

process. In addition, bias correction should ideally be integrated with the forecast production workflow in a seamless manner. A 

short-term priority is developing standardized interfaces (APIs) and modular systems so that a neural bias corrector can ingest NWP 

model outputs and produce corrected forecasts with minimal manual intervention. This also involves designing fail-safes: if the ML 

model fails or is highly uncertain (perhaps detected via an anomaly in input features), the system might revert to a baseline 

correction or issue a flag. 
 

D. Data and Coverage Gaps 

We note that current deep learning bias correction studies have been concentrated on certain regions (e.g. Europe, China, North 

America) and variables (surface weather elements, precipitation). There is a need to expand these techniques to understudied 

regions (such as data-sparse areas in the developing world or polar regions) and to other forecast variables (like upper-air fields, 

oceanic variables from coupled models, etc.) [12]. Each new application may pose unique problems – for instance, correcting biases 

in tropical cyclone intensity forecasts might require networks that handle vortex-structured input; bias correcting an ocean wave 

model might need combining atmospheric and oceanic inputs. Future research should explore these frontiers, possibly leveraging 

transfer learning from existing models to new domains. Moreover, the synergy between downscaling and bias correction (often done 

together for high-resolution forecasting) should be further examined – joint models that both downscale and correct bias (as in [7]) 

could be more efficient than doing each separately. 

In summary, the roadmap for deep learning bias correction involves making models more generalizable, interpretable, and 

operationally viable. The three short-term priorities we identify are: (1) Developing adaptive learning techniques to keep bias 

corrections in sync with evolving NWP models and climate trends; (2) Improving interpretability and user trust through explainable 

AI and comprehensive validation; and (3) Creating robust pipelines and standards for deploying these models in real-time 

forecasting, including automated retraining and fail-safe mechanisms. Addressing these will accelerate the transition of deep 

learning bias correction from research prototypes to indispensable components of everyday weather forecasting. 

 

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IV Apr 2025- Available at www.ijraset.com 

     

 
407 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

VI.   CONCLUSIONS 

Bias correction is a critical step in bridging the gap between numerical model output and end-user needs for accurate weather 

forecasts. This review has highlighted how deep learning has emerged as a powerful tool to perform bias correction in NWP, 

offering significant improvements over traditional methods. Between 2021 and 2025, numerous studies worldwide have 

demonstrated that neural networks – from CNNs to Transformers – can learn complex error patterns in global weather models and 

substantially enhance forecast fidelity. They have achieved notable successes, such as large reductions in temperature and wind 

errors, improved precipitation frequency distributions, and better calibrated forecast probabilities for extreme events. Deep learning 

models excel at capturing nonlinear relationships and multi-variable dependencies, enabling them to correct biases that were 

previously intractable. 

However, realizing the full potential of deep learning bias correction requires careful attention to challenges of data, generalization, 

and integration into operations. It is not a silver bullet replacement for improving NWP models; rather, it should be viewed as a 

complementary approach that can rapidly adjust and improve outputs, even as underlying models continue to evolve. The best 

outcomes may well arise from a hybrid strategy: using physical insight to guide the design of machine learning models, and using 

machine learning insights to inform model development. 

In conclusion, deep learning–based bias correction has proven its value in enhancing global NWP forecasts and is poised to become 

a standard component of the forecasting toolkit. By continuing to refine these techniques – ensuring they are robust, interpretable, 

and easily deployable – the meteorological community can deliver more accurate and reliable forecasts. This translates to better 

decision support for weather-sensitive activities and greater confidence in warnings of hazardous events. The advancements 

reviewed in this paper mark significant progress toward forecast fidelity, and ongoing interdisciplinary efforts will determine how 

seamlessly these AI-driven improvements can be woven into the future of numerical weather prediction. 
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