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Abstract: Compared to previous IoT principles, NB-IoT provides end customers with a higher quality of service (QoS) in an era 
where everything is connected to the internet. The Third-Generation Partnership Project (3GPP) for Low-Power Wide-Area 
Networks (LPWAN) introduced the narrowband Internet of Things (NB-IoT), a new cellular radio access technology based on 
Long-Term Evolution (LTE). The main objectives of NB-IoT are to enable low-power, low-cost, and low-data-rate 
communication and to support massive machine-type communication (mMTC). One of the more difficult tasks in uplink 
transmission is resource allocation. While numerous suggestions have been made for efficient resource distribution, a 
comprehensive and successful solution has not yet been provided. In this article, we attempt to suggest a resource allocation 
technique based on reinforcement learning (RL). Reinforcement learning is a subset of machine learning that essentially 
employs an agent to act in the environment and gather rewards, both positive and negative. We will be using the Twin Delayed 
Deep Deterministic Policy Gradient (TD3) algorithm as it's an improvement to its predecessor algorithm (DDPG). We will be 
tweaking the parameters in RL for better efficiency: Latency, Throughput, energy efficiency, fairness, and rewards. 
Keywords: NB-IoT, LPWAN, Long-Term Evolution (LTE), Reinforcement Learning, TD3. 
 

I. INTRODUCTION 
Narrowband Internet of Things (NB-IoT) is a cellular technology designed to provide a cost-effective and low-power consuming 
connectivity among IoT devices. It was developed by the third-generation partnership program (3GPP). Additionally, it was 
engineered to offer expanded coverage while operating harmoniously alongside the Long-Term Evolution (LTE) standard. [1]. 
Various Telecommunications companies and network operators across the world deployed NB-IoT shortly after its release and were 
later integrated with the 5G network. IoT device manufacturers, chip and module vendors, and technology providers have also 
contributed to the expansion of NB-IoT. Since its creation, NB-IoT has been known for co-existing with other cellular technologies 
enabling efficient use of spectrum resources and allowing IoT devices to operate alongside other wireless services without causing 
interference. NB-IoT is utilized in three operational modes: (1) as a stand-alone system on a dedicated frequency band, (2) within 
the existing wideband LTE carrier's occupied spectrum, and (3) within the guard band of an established LTE carrier [2]. 
NB-IoT has a spectral occupation of 180 KHz (both uplink and downlink) with flow rates of at most 250 kbit/s. Even though the 
flow rates are lower, these speeds are adequate for this protocol’s specific applications. There are certain ways of improving the 
efficiency of NB-IoT. It is done by tweaking certain parameters like latency, throughput, energy efficiency, and Resource block 
allocation. NB-IoT’s uplink and downlink have their sub-carriers like the NPDCCH (Narrow-Band Physical Downlink Control 
Channel) subcarrier, NPUSCH (narrow-band physical uplink shared channel) subcarrier, NPDSCH (Narrowband Physical 
Downlink Shared Channel), and so on. There are 12 subcarriers in the uplink, and each has a bandwidth of 15 KHz [3]. Resource 
allocation is usually done with the help of resource blocks or with the help of subcarriers (also known as tones). Resource Block is a 
concept that involves the allocation of a group of subcarriers in both the frequency and time domains for data transmission. 
Subcarriers are individual frequency components within an OFDM (Orthogonal Frequency Division Multiplexing) signal and are 
used for data transmission within each OFDM symbol. 
Although NB-IoT is designed for low-rate, time-insensitive applications, improved radio resource management will guarantee the 
best possible resource utilization for anticipated throughput and coverage improvement if the necessary performance parameters are 
fulfilled. A novel definition of the paging resource set and matching resource selection procedure are included in the proposed 
resource allocation strategy [4]. Massive connection paging information transmission overloads the allocated resources, leading to 
more padding bits and inefficient use of those resources. It is just used for paging traffic unloading. 
NB-IoT systems need to be equipped to make better decisions in future wireless networks, and existing algorithms do not meet this 
need.  
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This paper [5] offers a broad summary of the NB-IoT innovation's resource allocation solutions and makes additional 
recommendations and arguments for the intelligence of upcoming resource allocation solutions. Machine learning techniques have 
been used to investigate alternative solutions; nonetheless, more sophisticated solutions are needed. Reinforcement learning has 
been used in relatively few publications, such as [6] and [7], for effective uplink transmission and access control in NB-IoT. In this 
paper, we further the research on using RL-based algorithms for effective resource allocation. 
 

II. ABOUT REINFORCEMENT LEARNING 
RL is one of the three main machine learning methods. The three methods are supervised learning, non-supervised learning, and 
reinforcement learning. Reinforcement learning works as follows: There are two components in this learning system. They are the 
Agent and the Environment. The Agent observes the environment and makes the best possible move to get the maximum reward, 
then the environment changes its state and lets the agent appraise the new state and the possible rewards. This learning is a trial-and-
error method learning, as the agent itself is prone to make mistakes and gain experience from it. The agent constantly appraises its 
environment, revises its action strategy to adapt to the environment, and takes action and gets the reward and experience from it [8]. 
Reinforcement learning is defined by the Markov Decision Process (MDP). This framework outlines an agent's interactions and 
introduces the concept of the value function to facilitate learning. In reinforcement learning, the utilization of Markov Decision 
Processes (MDP) and the value function is integral to the construction of the Bellman equation. The Bellman equation encapsulates 
the recursive relationship between the value of states or state-action pairs, forming the basis for Q-learning—a method employed to 
solve the Bellman equation and optimize decision-making strategies in sequential decision problems [16]. 
The goal of Reinforcement Learning is to find a policy that can be used to gain maximum reward. The policy is a strategy or 
mapping from states to actions that guide the agent's decision-making. The formula for policy is: 
a)ߨ ∣ s) = P[At୲ = a ∣ St = s]  (1) 
where ߨ = probability of policy, At୲ = action at time t, St = state at time t, a = action performed in state ' s '. 
The Value function is the cumulative reward to be received if the agent follows the policy from its current state. The formula for the 
value function is: 
Vߨ(s) = Eߨ[Rt + 1 + St)ߨVߛ + 1) ∣ St = s]      (2) 
Where Vߨ = expected equation, Eߨ = expected value, ߛ = Discount factor, Rt + 1 = next reward value. 
Bellman’s equation represents the relationship between the value functions of the current and the next state. There are two 
equations:  

vగᇲ(s) = ∑  ୟ∈ a)ߨ ∣ s) ቀR୲ାଵ + ߛ ∑  ୱᇲ∈ୗ   ୱܲୱᇲ
ୟ vగ(sᇱ)ቁ      (3) 

Where Vߨᇱ(s) = Bellman's expectation equation. 
v∗( s) = max Eߨ[Rt + 1 + v∗(Stߛ + 1) ∣ St = s]      (4) 
Where V∗( s) = Bellman's optimality equation. 
Reinforcement learning uses many types of algorithms like SARSA (State-Action-Reward-State-Action), Q-learning, Temporal 
Difference (TD), and function approximation [8]. We’ll be focusing on Q-learning. Q-learning is an off-policy reinforcement 
algorithm proposed by Christopher Watkins in 1989. It is an incremental (stochastic approximation) method for estimating the Q-
function in a Markov decision process (MDP) [9]. 
In this paper, we’ll be using Twin Delayed Deep Deterministic Policy Gradient (TD3): An algorithm based on Q-learning. This 
algorithm is built on the DDPG, and it was an upgrade to its predecessor, with increased stability, performance, and consideration of 
function approximation error [10]. TD3 also resolves an issue in DDPG, in which the learned Q-function dramatically overestimates 
Q-values, eventually leading to breaking policies. This is resolved by introducing three tricks [15]: (1) Clipped Double-Q Learning: 
TD3 trains with a pair of Q-functions, introducing a "twin" approach, and it utilizes the lower of the two Q-values to construct the 
targets in the Bellman error loss functions. (2) Delayed Policy Updates: TD3 adjusts the policy (along with the target networks) at a 
lower frequency compared to the Q-function. The suggested practice, as outlined in the paper [15], is to perform one policy update 
for every two Q-function updates. (3) Target Policy Smoothing: In TD3, noise is introduced to the target action to increase the 
difficulty for the policy to exploit Q-function errors. This is done to smooth out the Q-value along with changes in action, 
preventing the policy from taking advantage of inaccuracies in the Q-function [15]. 
This study focuses on the difficult issue of controlling NPUSCH transmissions, which includes scheduling which devices can 
transmit, determining their link adaptation parameters, and allocating resources to each NPUSCH transmission. 
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III. SPECIFICATION 
A base station that provides service to several NB-IoT devices is part of the system. The devices need to finish both a connection 
procedure and a random-access procedure using NPRACH resources. After connecting, they watch for an uplink grant from the base 
station so they can send data over an NPUSCH. With a 180 KHz bandwidth, the system uses one carrier for each transmission 
direction. Ten subframes, each lasting one millisecond, make up each frame that makes up the time dimension. 
Devices that have transmitted preambles receive a Random-Access Response (RAR) message from the base station, which gives 
them access to uplink resources so they can send their connection request message. The RAR message contains uplink grants that 
give the UE (User Equipment) the uplink resources it needs to send its connection request message, as well as a Temporary C-RNTI 
(Cell Radio Network Temporary Identifier) that is specific to each device. Twelve 15 kHz subcarriers make up the carrier 
bandwidth that isn't set aside for NPRACH (Narrowband Physical Random-Access Channel). For two types of transmissions, the 
base station needs to allot time-frequency resources of the uplink carrier: (i) the previously mentioned UE connection requests; and 
(ii) NPUSCH (Narrowband Physical Uplink Shared Channel) transmissions containing UE data. This distribution needs to prevent 
any overlap with NPRACH resources. 
Devices receive control messages via the downlink carrier's NPDCCH (Narrowband Physical Downlink Control Channel). The 
NPDCCH is used to transmit specialized control messages known as Downlink Control Information (DCI) Format N0, which 
contain the uplink data grants (alternate formats serve different purposes). Depending on the destination device's path loss, multiple 
DCI messages are sent. 
Several UEs share the NPUSCH channel, which is used to transmit uplink data. Each UE receives time-frequency resources for 
transmission from the base station based on a scheduling algorithm that considers priority and channel quality. The scheduling 
algorithm seeks to balance UE fairness with maximizing the system throughput. The modulation and coding scheme (MCS) is also 
modified by the base station using link adaptation techniques to optimize the data rate while preserving a certain degree of 
reliability. The channel quality indicator (CQI), which is a measurement of the signal-to-noise ratio (SNR) and interference level, is 
provided by the UE and is used to choose the MCS. The Shannon formula can be used to determine the data rate:  
C = Blog 2(1 + SNR)   (5) 
Where B is the bandwidth in hertz, SNR is the signal-to-noise ratio, and C is the channel capacity in bits per second. To increase 
transmission reliability, the base station additionally employs hybrid automatic repeat request, or HARQ, which retransmits packets 
that are incorrectly received. By combining retransmission and forward error correction (FEC), HARQ can achieve high overhead 
with minimal reliability. 

 
Fig. 1 Random Access Procedure Flowchart 
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IV. PROBLEM STATEMENT 
We suggest using reinforcement learning techniques, which appear to have not been thoroughly investigated in NB-IoT transmission 
control despite their present popularity. The heuristic suggested in [11] could easily work with our transmission control method, in 
contrast to attempts to apply RL in the setup of random-access parameters, particularly for the allocation of NPRACH resources of 
each CE level [12]. 
As noted in [12], real network conditions can differ dramatically from the simulated environment after deployment, rendering 
control rules worthless. Therefore, RL algorithms are usually required to be trained offline in a simulator before being deployed. 
One possible solution is to set up the algorithms to self-tune after deployment, but this raises questions about how long the tuning 
process would take and how it might affect network performance. Our objective is to suggest a system that, once implemented in the 
network, can learn on its own (online learning). Our numerical results confirm that current RL algorithms cannot perform this task 
without worsening the transmission delay while they are still learning. The low sample efficiency of model-free RL algorithms is 
the cause. They must investigate a variety of policies before settling on an effective one, which necessitates choosing extremely 
ineffective courses of action over an extended length of time. 
Prior research on creating online learning algorithms to manage network functions has been done by [13], which suggests a model-
based reinforcement learning approach based on a novel modeling strategy consisting of a self-assessment mechanism and a 
classifier based on a kernel.[14] employs particular ad hoc procedures derived from sequential likelihood ratio calculations and [6] 
suggests a novel model-based reinforcement learning algorithm for link adaptation that has a high sample efficiency. 
Our goal is to create an algorithm that can learn how to minimize the average transmission delay by controlling uplink data 
transmissions. The radio access network's algorithm needs to be able to learn online. This suggests that the algorithm needs to make 
irreversible decisions, track the outcomes of those decisions, and adjust its control strategy as necessary. 
 

V. METHODOLOGY 
In this paper, we will be comparing the efficiency of the algorithms DQN (Deep Q-Networks), PPO (Proximal Policy Optimization), 
and TD3 (Twin Delayed Deep Deterministic Policy Gradient) under different factors. The factors are Throughput, Latency, 
Fairness, Energy efficiency, and Total Rewards.  
DQN is a value-based method that is designed for discrete action spaces but can be used for continuous action spaces. DQN requires 
more experience to work as intended, and the experience is only generated over time. The behavior of a DQN agent is unpredictable 
as it is prone to make more random decisions to get familiar with the unknown parts of the environment. This makes it difficult to 
understand whether the actions done were intentional or random [19]. 
PPO (Proximal Policy Optimization) is a model-free DDPG (Deep Deterministic Policy Gradient) algorithm that focuses on 
optimizing policies/strategies so that the expected cumulative reward is maximized [6]. While being a successful algorithm for 
continuous action spaces, its optimization behavior still runs a risk of performance instability [17]. 
TD3 is an extension of the DDPG algorithm. It combines value-based and action-based methods. It employs two critic networks to 
approximately find the value function and an actor-network to find the policy. It is particularly created for continuous action spaces 
[18]. 
 

VI. SIMULATION ENVIRONMENT 
The Python-based simulation environment is intended to simulate the resource allocation dynamics of an NB-IoT (Narrowband 
Internet of Things) network. The environment consists of several components, such as a population of devices that are attempting to 
connect to the system and send packets of data. The base station is a key element; it's in charge of channel coordination, scheduling 
transmission opportunities, and access management. 
A device goes through several stages once it is active. It must first finish the access process, which entails sending a preamble 
sequence selected at random over the NPRACH. During the RAR window, contention resolution takes place when the base station 
transmits a signaling message to the device. When a signaling exchange is successful, the device becomes connected. Before 
making another access attempt, a backoff period is started in the event of a collision or poor signal quality. 
Following a successful connection, a device watches for an uplink grant that a DCI indicates. The device sends its data packet to the 
designated NPUSCH after obtaining the grant. Depending on the decoding status, the device waits for an acknowledgment (ACK) 
or another DCI for retransmission. When you receive an ACK, the connection is closed. 
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VII. PARAMETERS 
 

TABLE 1 
NB-IOT PARAMETERS 

PARAMETER VALUE 
FREQUENCY BANDS [800,900,1800] 

MHZ 
BANDWIDTHS [1.4,3.75] MHZ 
DATA RATES [200,250] KBPS 

TRANSMISSION POWER 
LEVELS 

[0,5,10] DBM 

NOISE POWER -120.0 DBM 
 

TABLE 2 
STATE AND ACTION SPACES 

PARAMETER VALUE 
NUMBER OF USERS 100 

NUMBER OF CHANNELS 10 
MINIMUM RESOURCE 

UNITS 
0 

MAXIMUM RESOURCE 
UNITS 

10 

 
TABLE 3  

TIME PARAMETERS AND DEVICE BEHAVIOR 
PARAMETER VALUE 

CURRENT TIME STEPS 0 
MAXIMUM TIME STEPS 100 

INITIAL ENERGY EFFICIENCY 
FINAL ENERGY EFFICIENCY 

1.0 
0.2 

 
TABLE 4  

PATH LOSS MODEL PARAMETERS 
PARAMETER VALUE 

PATH LOSS EXPONENT 
PATH LOSS REFERENCE 

DISTANCE 

2.0 
1.0 METRES 

BATCH SIZE 64 
MAXIMUM EPISODES 1000 

 
TABLE 5  

TD3 AGENT-SPECIFIC PARAMETERS 
PARAMETER VALUE 

Critic networks: Learning rate 
Actor networks: Learning rate 

Policy noise 

0.001 
0.001 

0.2 
Noise clip 0.5 
discount 0.99 
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VIII. ALGORITHM 
Input: Initialize the variables and the values given in Tables 1 to 5. Instantiate lists to store entropy and alpha values. Initialize lists 
to store the values of the following metrics: latency per episode, fairness per episode, throughput per episode, energy efficiency per 
episode, rewards per episode, and episode data. Initialize lists to store action distributions for each episode. Initialize lists to store 
action distributions for each episode. Initialize energy efficiency increment. 
Output: Graphical representation of Energy efficiency, Throughput, Latency, Fairness, Episode vs Reward, and Resource allocation. 
 
Algorithm 1 Training TD3 agent 

1. Initialize TD3 agent and replay buffer 
2. for episode = 1 to max_episode do 
3.     Obtain the initial state after resetting the environment 
4.     total_reward = 0 
5.     Initialize a list to accumulate experiences for batch training 
6.     while True do 
7.         Obtain the value of an action by passing state value through a policy network, adding noise to it, clips result to a 

specific range, and get a float output 
8.         Obtain the values for next state, reward, and done (Confirmation if maximum episode count is reached) 
9.         Append the values of state, action, reward, next_state, and done to list "episode_experiences" 
10.         state = new_state 
11.         total_reward = total_reward + reward 
12.         if done is True then 
13.             break 
14.         end if 
15.     end while 
16.     Append the list "episode_experiences" to list "replay_buffer" 
17.     Train the TD3 agent with the values of "replay_buffer" and "batch_size" 
18.     Calculate latency for this episode 

19.     Latency =  Total Communication Delay 
 Number of Data Transmissions 

 

20.     Extract resource allocations from the replay buffer entries 
21.     Calculate fairness using Jain's fairness index 

22.     Fairness Index = 
൫∑షభ

ಿ   Throughput ൯
మ

ே∑షభ
ಿ   Throughput ൯

మ 

23.     Append fairness to the list "fairness_per_episode" 
24.     total_resource_units = sum of all action values 
25.     bit_rate_per_resource = 200 
26.     Append the value of throughput to list "throughput_per_episode" 

27.     Throughput =  Total Data Successfully Transmitted 
 Total Time 

 

28.     Convert total energy consumed to milliwatts 

29.     Energy Efficiency =  Throughput 
 Power Consumption 

 

30.     Append total_reward to rewards_per_episode 
31.     Append the episode's data to the dictionary "episode_data" 
32.     Append values of resource allocations to the list "episode_action_distributions" 
33.     Print episode+1, total_reward, energy_efficiency, total_latency, achieved_data_throughput, total_latency, fairness_index 
34.     Plot throughput, latency, fairness, episode vs reward, latency, fairness, action distribution evolution 
35. end for 
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IX. SIMULATION RESULTS AND ANALYSIS 
A. Total Reward 
Total reward refers to the cumulative reward obtained by the agent during the course of training or executing episodes. During 
training, the agent interacts with the environment, taking actions based on its current state, receiving rewards as feedback, and 
updating its policy accordingly. At each time step within an episode, the agent receives a reward from the environment, and these 
rewards are accumulated over the entire episode to compute the total reward for that episode. 
In the context of NB-IoT (Narrowband Internet of Things) resource allocation, our TD3 (Twin Delayed Deep Deterministic Policy 
Gradient) algorithm demonstrates superior performance compared to existing DQN (Deep Q-Network) and PPO (Proximal Policy 
Optimization) methods, as evidenced by the Fig 2. TD3 consistently achieves higher cumulative rewards across training episodes, 
indicating more effective learning and better performance in optimizing resource allocation for NB-IoT systems. This 
outperformance suggests that TD3 is better suited for addressing the complexities and challenges of NB-IoT resource allocation 
tasks, offering improved efficiency and effectiveness in managing resources and enhancing overall system performance. 
 

 
Fig. 2 Total Reward Versus Episode 

 
B. Energy Efficiency 
The ability of a system or algorithm to accomplish its goals while consuming the least amount of energy is referred to as energy 
efficiency. It entails maximizing the intended output or performance per unit of energy consumed through resource optimization. In 
Fig 3, which is after averaging, TD3's energy efficiency remained nearly constant at 7.2 bits/joule for the duration of the simulation, 
indicating consistently high performance. PPO showed a waveform that was mostly below that threshold, with occasional peaks that 
matched the TD3 algorithm to indicate periods of comparable efficiency. When compared to TD3 and PPO, DQN consistently 
displayed the lowest energy efficiency, indicating a higher energy consumption. 
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Fig. 3 Energy Efficiency Versus Episode 

 
C. Throughput 
Throughput refers to the amount of information or data processed per unit of time, and an increased throughput indicates that the 
algorithm is processing and managing a greater amount of data effectively. In Fig 4, the TD3, DQN, and PPO algorithms were 
compared over a thousand episodes, and with a waveform peak that was higher than 3000 bits, TD3 demonstrated its superior 
performance in terms of throughput optimization. while DQN trailed closely behind and showed strong simulation efficiency, the 
PPO trailed behind and showed relatively lower throughput. 

 
Fig. 4 Throughput Versus Episode 
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D. Fairness 
In general, Fairness refers to the distribution of resources among entities without any bias. Throughput and Fairness are frequently 
complicated trade-offs that rely on the needs and priorities of the system or application. In Fig 5, in evaluating the Fairness of TD3, 
PPO, and DQN algorithms over 1000 episodes, TD3 treated all entities equally during the simulation, maintaining a high level of 
Fairness and a steady waveform at 1.0. Meanwhile, DQN, which showcased better throughput, now showed the lowest Fairness 
among the three algorithms. PO showed a significant fairness next to TD3. 

 
Fig. 5 Fairness Versus Episode 

 
E. Latency 
The term "latency" describes the interval of time that elapses between the start of a resource request and the real delivery or 
accomplishment of the associated task. Low latency is preferred for resource allocation because it guarantees timely resource 
allocation, which accelerates task completion and enhances user experience. After analyzing Fig 6, with the lowest latency values, 
TD3 demonstrated its effectiveness in reducing delays between episodes. Conversely, PPO and DQN demonstrated increased 
latency values, indicating relatively longer response times. According to these results, TD3 minimizes latency better than PPO and 
DQN, which makes it a good option in situations where quick responses are essential.  

 
Fig. 6 Latency Versus Episode 
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F. Recovery Time 
Recovery time is crucial for assessing the efficiency of reinforcement learning algorithms such as TD3, PPO, and DQN. It reflects 
how quickly each algorithm can recover and stabilize performance after training episodes, indicating learning speed and policy 
optimization. In Fig 7, TD3 excels with the lowest recovery times, averaging around 2.99 seconds, showcasing its quick adaptation 
abilities. PPO follows, starting at 3.67 seconds and showing consistent performance with minor fluctuations. In contrast, DQN has 
the highest recovery times, beginning at approximately 3.97 seconds and remaining above 3.95 seconds, indicating challenges in 
learning efficiency. Overall, TD3's superior recovery time makes it ideal for rapid decision-making applications, while DQN may 
need improvements to compete effectively. 
 

 
Fig. 6 Recovery Time Versus Episode 

 
G. Resource Allocation (Channels) Over Episodes 
In our NB-IoT resource allocation framework, we conducted experiments to analyze the resource allocation patterns across the 10 
available channels. Through our training process using the TD3 algorithm, we recorded the resource allocation values for each 
channel at the end of every episode. Subsequently, we visualized this data by plotting the resource allocation against the training 
episodes for all 10 channels. Fig 8 offers insights into how the resource allocation strategies evolve throughout training and provides 
a comprehensive overview of the allocation dynamics across different channels. Such analysis allows for a deeper understanding of 
the algorithm's behavior and its ability to effectively distribute resources among multiple channels in NB-IoT environments. 
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Fig. 8 Resource Allocation (Channels) Over Episodes 

 
X. CONCLUSION AND FUTURE WORK 

In conclusion, this research article explores the application of reinforcement learning, specifically the Twin Delayed Deep 
Deterministic Policy Gradient (TD3) algorithm, for resource allocation in Narrowband Internet of Things (NB-IoT) systems. 
Through a comprehensive analysis and comparison with existing algorithms such as DQN and PPO, TD3 demonstrates superior 
performance across various metrics including total reward, energy efficiency, throughput, fairness, and latency. The results highlight 
TD3's effectiveness in optimizing resource allocation, managing data transmission, and minimizing delays in NB-IoT environments. 
Additionally, the visualization of resource allocation patterns across multiple channels provides valuable insights into the 
algorithm's behavior and its ability to adapt to different scenarios. Overall, the findings suggest that TD3 offers a promising solution 
for enhancing the efficiency and effectiveness of resource allocation in NB-IoT systems, paving the way for improved performance 
and reliability in IoT applications. Further research and experimentation could delve deeper into fine-tuning parameters and 
exploring additional optimization strategies to further enhance the capabilities of TD3 in real-world deployment scenarios. 
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