
 

12 VII July 2024

 https://doi.org/10.22214/ijraset.2024.63565



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue VII July 2024- Available at www.ijraset.com 
    

297 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

Machine Learning Approaches for Network 
Intrusion Detection: An Evaluation of their 

Efficacy in Bolstering Security 
 

Gaurav Kumar1, Jawahar Thakur2  
1, 2Department of computer science, Himachal Pradesh University, Shimla, H.P 

                                                                
Abstract: In today's digital environment, securing networked systems is critical due to the increasing sophistication and 
frequency of cyberattacks. Network Intrusion Detection Systems (NIDS) are essential for detecting and addressing unauthorized 
and harmful activities within a network. NIDS function by continuously monitoring network traffic and analyzing data packets 
for signs of suspicious behavior or known attack patterns. This paper provides an in-depth examination of NIDS, focusing on 
the application of three machine learning algorithms—K Neighbors Classifier, Logistic Regression, and Random Forest 
Classifier—to create a robust model for network intrusion detection using the NSL-KDD dataset. Our findings highlight the 
superior performance of the Random Forest Classifier, which achieved an accuracy of 99.31%, proving its effectiveness in 
differentiating between normal and malicious traffic. The analysis of ICMP, TCP, and UDP protocols reveals unique attack 
patterns, underscoring the need for protocol-specific security measures. Additionally, the study emphasizes the importance of 
integrating NIDS with other security systems for a multi-layered defense strategy and the crucial role of skilled personnel in 
managing and interpreting NIDS alerts. The results advocate for ongoing innovation and adaptation in NIDS technologies and 
strategies to effectively counter evolving cyber threats. 
 

I.      INTRODUCTION 
In today's digital age, securing network systems is of utmost importance. As cyberattacks become more complex and frequent, 
organizations must adopt robust security measures to protect their information assets. Network Intrusion Detection Systems (NIDS) 
are essential in detecting and responding to unauthorized and malicious activities within a network. These systems monitor network 
traffic and analyze data packets for suspicious behavior or known attack patterns. By examining traffic in real-time, NIDS can 
identify various attacks, from common threats like malware and phishing to sophisticated intrusions such as zero-day exploits and 
Advanced Persistent Threats (APTs). 
NIDS operate by providing a defense layer at the network level, inspecting packets flowing through the network infrastructure. They 
use several techniques, including signature-based detection, anomaly-based detection, and stateful protocol analysis. Signature-
based detection compares network traffic against a database of known attack signatures, effectively identifying documented threats 
but struggling with new, unknown attacks. Anomaly-based detection establishes a baseline of normal network behavior, flagging 
deviations as potential intrusions. This method is particularly useful for detecting novel or polymorphic attacks but can have higher 
false-positive rates. Stateful protocol analysis looks for deviations from standard protocol behavior, identifying misuse or 
abnormalities that may indicate an intrusion. Integrating NIDS with other security systems, such as firewalls, Security Information 
and Event Management (SIEM) systems, and endpoint detection and response (EDR) tools, is crucial for a comprehensive security 
posture. This integration enables a multi-layered defense strategy, where insights from NIDS are correlated with data from other 
sources to provide a holistic view of the security landscape. Effective communication and collaboration among these systems 
enhance detection and response efforts, reducing the time to identify and mitigate threats. Deploying and managing NIDS require 
skilled personnel who can interpret alerts, fine-tune the system to reduce false positives, and respond appropriately to detected 
incidents. Training and awareness programs for network administrators and security professionals are essential to maximize NIDS 
effectiveness. As organizations adopt advanced technologies like cloud computing and the Internet of Things (IoT), the role of 
NIDS will expand to cover these new environments, necessitating continuous innovation and adaptation in NIDS technology and 
strategies. Network Intrusion Detection Systems are a vital component of modern cybersecurity frameworks. By continuously 
monitoring network traffic and identifying suspicious activities, NIDS help organizations defend against a wide range of cyber 
threats.  
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Despite the challenges, advancements in detection methodologies, integration with other security tools, and the evolution of threat 
intelligence enhance the capabilities and effectiveness of NIDS, making them indispensable in securing networked environments. 
 

II.      METHODOLOGY 
A powerful network intrusion detection model can be developed by integrating the strengths of three machine learning algorithms: 
KNeighborsClassifier, LogisticRegression, and RandomForestClassifier. This ensemble method trains each algorithm on the KDD 
dataset, which includes features of network traffic and their corresponding classifications as normal or attack types. 
KNeighborsClassifier is adept at identifying anomalies by comparing them to known attack patterns. LogisticRegression offers a 
probabilistic assessment of the likelihood of an attack. RandomForestClassifier utilizes multiple decision trees to boost accuracy and 
minimize overfitting. By combining their outputs, this ensemble model can provide robust and generalized detection of network 
attacks. Attack flags are crucial in Network Intrusion Detection Systems (NIDS) as they indicate potentially malicious activities 
within network traffic. These flags, found in packet headers of protocols like TCP, UDP, and ICMP, help NIDS identify abnormal 
patterns and behaviors that deviate from typical network operations. For example, a surge in TCP SYN packets without 
corresponding SYN-ACK responses might signal a SYN flood attack, while an unusual number of ICMP echo requests could 
indicate a Smurf attack. By monitoring these flags, NIDS can detect and alert administrators to various forms of network attacks, 
such as denial of service, port scanning, and attempts to exploit specific vulnerabilities. This proactive detection capability is vital 
for addressing threats, reducing the risk of breaches, and maintaining the integrity and availability of network services. The analysis 
of attack flags enables NIDS to provide robust, real-time defense mechanisms against a wide range of cyber threats, thereby 
enhancing overall network security. 
 
A. Dataset Used 
The NSL-KDD dataset is an enhanced version of the KDD Cup 1999 dataset, designed to improve the evaluation of network 
intrusion detection systems. It addresses the original dataset's issues, such as redundant records that could skew learning algorithms 
and lead to inaccurate performance metrics. By reducing these redundancies, the NSL-KDD dataset offers a more realistic and 
balanced environment for assessment. It includes various types of network traffic data, encompassing normal connections and 
different attack types, which are categorized into four main classes: Denial of Service (DoS), Probe, Remote to Local (R2L), and 
User to Root (U2R). Due to its improved quality and better representation of network traffic behavior, the NSL-KDD dataset has 
become a widely used benchmark in intrusion detection system research. 
 
B. Improvements Over the KDD'99 Dataset 
The NSL-KDD dataset offers several advantages over the original KDD dataset: 
1) It eliminates redundant records in the training set, preventing classifiers from being biased towards more frequent records. 
2) The proposed test sets do not contain duplicate records, ensuring that performance evaluations are not skewed by methods with 

higher detection rates for frequent records. 
3) The number of records from each difficulty level group is inversely proportional to their presence in the original KDD dataset, 

allowing for a broader range of classification rates among different machine learning methods. This facilitates more accurate 
evaluations of various learning techniques. 

4) The size of the training and test sets is manageable, enabling comprehensive experiments without the need to sample smaller 
subsets. This consistency ensures that evaluation results across different research works are comparable. 

C. Statistical Observations 
One significant deficiency of the KDD dataset is the large number of redundant records, which biases learning algorithms towards 
frequent records and hinders their ability to learn from infrequent but potentially more harmful records, such as U2R and R2L 
attacks. Additionally, the presence of these redundant records in the test set biases evaluation results towards methods that perform 
better on frequent records. 

Table 1: Statistics of redundant records in the KDD train set 
 Original Records Distinct Records Reduction Rate 

Attacks 3,925,650 262,178 93.32% 
Normal 972,781 812,814 16.44% 
Total 4,898,431 1,074,992 78.05% 
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Fig. 1 Statistics of redundant records in the KDD train set 

 
Table 2: Statistics of redundant records in the KDD test set 

 Original Records Distinct Records Reduction Rate 
Attacks 250,436 29,378 88.26% 
Normal 60,591 47,911 20.92% 
Total 311,027 77,289 75.15% 

 

 
Fig. 2 Statistics of redundant records in the KDD test set 
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The complexity of the records in the KDD dataset. Remarkably, around 98% of the training set records and 86% of the test set 
records were accurately classified by all 21 models. For our experiments, we created three smaller subsets from the KDD training 
set, each containing fifty thousand records. Each model was trained on these subsets. Subsequently, we used the 21 trained models 
(7 models, each trained 3 times) to classify the records in the entire KDD training and test sets, resulting in 21 predicted labels for 
each record. We assigned a #successfulPrediction value to each record, initially set to zero. Given that the KDD dataset includes the 
correct label for each record, we compared the predicted labels from each model with the actual labels, increasing the 
#successfulPrediction value by one for each match. This allowed us to determine the number of models that accurately labeled each 
record. The maximum value for #successfulPrediction is 21, indicating that all models correctly predicted the label for that record. 
 

III.      EXPERIMENTAL SETUP 
This involves examining network traffic data categorized by different protocols and types of attacks. The key findings are visualized 
using pie charts, which help illustrate the distribution and prevalence of various attack types across different network protocols. This 
section provides a detailed examination of these findings. The below pie charts shown for different network protocols (ICMP, TCP, 
and UDP) and the distribution of various types of network traffic or attack flags associated with each protocol. 
 
A. ICMP Traffic Analysis 
The ICMP traffic is categorized into normal traffic and various attack types, including Smurf, IPSweep, and Portsweep. The pie 
chart for ICMP traffic shows that normal diagnostic messages like echo requests and replies constitute a significant portion of the 
traffic. However, attacks like Smurf, which involves sending ICMP echo requests with a spoofed source IP address, also have a 
notable presence. IPSweep and Portsweep activities are evident, indicating efforts to map network topology and identify open ports 
using ICMP. 

 
Fig. 3 Distribution of ICMP Traffic by Attack Type 

B. TCP Traffic Analysis 
TCP traffic analysis reveals a more complex landscape. The normal TCP traffic includes regular web traffic (HTTP/HTTPS), file 
transfers (FTP), and other standard services. However, the pie chart highlights several attack types, such as Back, Neptune, and 
Satan, which collectively represent a substantial portion of the traffic. 
1) Back Attack: Involves sending continuous SYN packets to a web server, attempting to exploit system vulnerabilities. 
2) Neptune Attack: A form of SYN flood attack that disrupts the TCP handshake process by overwhelming the server with 

connection requests. 
3) Satan Attack: Utilizes a network scanner tool to identify system vulnerabilities. 
Other attacks like Portsweep, Buffer_overflow, and Teardrop are also present, indicating various methods used to exploit network 
weaknesses. 
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Fig. 4 Distribution of TCP Traffic by Attack Type 

C. UDP Traffic Analysis 
UDP traffic is typically faster but less reliable than TCP. The normal UDP traffic includes DNS queries and streaming data. The pie 
chart for UDP traffic shows that attacks like Back and Portsweep are significant. Back in the context of UDP represents 
overwhelming the target with a continuous stream of packets. The presence of Neptune-like flooding activities in UDP traffic 
suggests attempts to disrupt services through high-volume packet flows. 

 
Fig. 5 Distribution of UDP Traffic by Attack Type 

 
D. Comparison of Normal and Attack Traffic 
A detailed comparison of normal and attack traffic reveals distinct patterns. In normal traffic, TCP connections are mostly 
successfully established and terminated without issues, as indicated by the dominance of the SF (Successful Establishment) flag. 
REJ (Rejected) connections are fewer, aligning with expected network behavior where most connections are legitimate. 
In attack scenarios, the S0 flag (SYN packets without SYN-ACK responses) is predominant, a hallmark of SYN flood attacks. The 
presence of various reset flags (RSTR, RSTO) and other anomalous connection states (S1, S2, S3, OTH) is significantly higher in 
attack traffic, highlighting disrupted and abnormal connection attempts. 
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E. Service Distribution in Normal vs. Attack Traffic 
The analysis of service distribution in normal and attack traffic shows a stark contrast. Normal traffic is dominated by HTTP, 
reflecting typical web browsing and service interactions. Other services like DNS (domain_u), email (smtp), and file transfer 
(ftp_data) also contribute but to a lesser extent.  
The figure 6 below describes the distribution of connection flags in normal traffic. 

 
Fig. 6 Distribution of Flags in Normal Dataset 

 
Attack traffic, however, is characterized by a more diverse distribution of services. The "private" service category is particularly 
dominant, suggesting that attackers often exploit non-standard or custom applications. This indicates that attacks target a wide range 
of services, exploiting vulnerabilities across different areas, including FTP, Telnet, SMTP, and others. 
The figure 7 below describes the distribution of connection flags in ttack traffic. 

 
Fig. 7 Distribution of Flags in Attack Dataset 
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IV.      SIGNIFICANCE AND IMPLICATIONS 
The analysis highlights the importance of monitoring and securing a broad spectrum of network services. Normal traffic patterns 
provide a baseline for identifying anomalies, while attack traffic patterns reveal common strategies and vectors used by attackers. 
The findings underscore the need for comprehensive security measures that encompass not only standard services but also custom 
and less commonly used applications. 
The figure 8 below describes the distribution of Flags in NormalMCS And Attack Dataset. 
 

 
Fig. 8 Distribution of Flags in NormalMCS And Attack Dataset 

 
The stark difference between the two charts highlights how attack traffic is more varied and targets a broader range of services 
compared to normal traffic. In normal network activity, http is the dominant service, indicating routine web browsing and 
interactions. However, in attack scenarios, the prevalence of "private" services suggests that attackers frequently target custom or 
non-standard services, which may be less secure or monitored less closely. 
The variety in the attack traffic chart shows that attackers often use multiple vectors to exploit vulnerabilities across different 
services. This can include services like ftp (file transfer), telnet (remote access), smtp (email), and many others, indicating a 
comprehensive approach to finding weak points in the network. 
By comparing the two pie charts, we can infer that normal traffic is heavily dominated by web traffic, with other services playing 
smaller roles. In contrast, attack traffic is more evenly distributed among a wide range of services, with a significant focus on 
custom or less common services. This information is crucial for network administrators and cybersecurity professionals to 
understand common attack patterns and to implement security measures across a broad spectrum of services to protect against 
potential threats. 
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V.      RESULT ANALYSIS 
The fig. 9 shows a box plot comparing the performance of three different classifiers: KNeighborsClassifier, LogisticRegression, and 
RandomForestClassifier. The y-axis represents the performance metric, likely accuracy, with values ranging from 0.4 to 1.0. 

 
Fig. 9 Box Plot of Classifier Performance Metrics 

 
1) KNeighborsClassifier: The box plot for this classifier shows a performance metric very close to 1.0, indicating high accuracy. 

The small interquartile range suggests that the performance is consistently high across different runs or folds. 
2) LogisticRegression: The box plot for this classifier shows a significantly lower performance, centered around 0.4. The 

interquartile range is also small, indicating that the performance is consistently low. 
3) RandomForestClassifier: Similar to KNeighborsClassifier, the box plot for this classifier shows performance close to 1.0, 

indicating high accuracy. The small interquartile range again suggests consistent performance. 
Overall, the box plot reveals that both KNeighborsClassifier and RandomForestClassifier perform very well with high and 
consistent accuracy, while LogisticRegression performs poorly with low and consistent accuracy. The consistency across the 
classifiers can be inferred from the narrowness of the boxes, indicating low variability in their performance. The tilt of the x-axis 
labels suggests a standard formatting to make the labels more readable. Fig. 10 shows the confusion matrix for classification model 
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Fig. 10 Confusion Matrix for Classification Model 

 
The figure 10 is a confusion matrix used to assess the performance of a classification model, probably in identifying normal and 
attack records in a dataset. The matrix is a 2x2 grid that shows the actual versus predicted classifications: 
 True Positives (Predicted Attack, Actual Attack): The bottom-right cell shows 35,066 instances where the model correctly 

identified attacks. 
 True Negatives (Predicted Normal, Actual Normal): The top-left cell shows 39,995 instances where the model correctly 

identified normal behavior. 
 False Positives (Predicted Attack, Actual Normal): The top-right cell shows 319 instances where the model incorrectly 

identified normal behavior as attacks. 
 False Negatives (Predicted Normal, Actual Attack): The bottom-left cell shows 204 instances where the model incorrectly 

identified attacks as normal behavior. 
Darker colors in the matrix indicate higher counts. The model demonstrates high accuracy for both normal and attack classifications, 
with high numbers of true positives and true negatives and relatively low false positives and false negatives. This suggests that the 
model effectively distinguishes between normal and attack records, which aligns with the strong performance observed in the 
KNeighborsClassifier and RandomForestClassifier in the previous analysis. 
The RandomForestClassifier achieved an impressive accuracy of 0.993, or 99.31%, during its evaluation. This high accuracy 
indicates the model's exceptional ability to correctly classify instances in the dataset, distinguishing effectively between normal and 
attack records. 
The confusion matrix from the second uploaded image further illustrates this performance. It shows that out of 40,514 actual normal 
instances, 39,995 were correctly classified, while only 319 were misclassified as attacks. Similarly, out of 35,270 actual attack 
instances, 35,066 were correctly identified, with only 204 incorrectly labeled as normal. This high true positive and true negative 
rate confirms the model's robustness and precision. 
Additionally, the box plot from the first uploaded image highlights the RandomForestClassifier's consistency and reliability. Unlike 
the LogisticRegression, which had low and consistent accuracy around 40%, the RandomForestClassifier consistently achieved 
near-perfect scores close to 1.0 across different runs or folds.  
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This consistency in high performance aligns with the observed confusion matrix results, reinforcing the RandomForestClassifier's 
suitability for the binary classification task of identifying normal and attack records. 
Overall, an accuracy of 99.31% not only demonstrates the model's effectiveness in this specific task but also underscores its 
potential for application in real-world scenarios where distinguishing between normal and malicious activity is critical. 
 

VI.      CONCLUSION 
The comprehensive analysis conducted in this study underscores the critical role of Network Intrusion Detection Systems (NIDS) in 
safeguarding networked environments from a plethora of cyber threats. Through the meticulous evaluation of network traffic, the 
NIDS framework demonstrates its efficacy in identifying both common and sophisticated attacks. The study’s findings highlight 
that robust security measures at the network level are indispensable for modern organizations, given the escalating complexity and 
frequency of cyberattacks. One of the pivotal discoveries of this research is the exceptional performance of the 
RandomForestClassifier. With an impressive accuracy rate of 99.31%, this classifier not only showcases its capability to distinguish 
between normal and malicious traffic but also emphasizes the importance of leveraging advanced machine learning algorithms in 
NIDS. The consistency of the RandomForestClassifier, as evidenced by its narrow interquartile range, further validates its reliability 
across different datasets and experimental setups. 
The detailed traffic analysis, encompassing ICMP, TCP, and UDP protocols, reveals distinct patterns that are crucial for developing 
targeted defense strategies. The dominance of certain attack types in specific protocols, such as the prevalence of Smurf and 
Portsweep attacks in ICMP traffic, or the diverse array of attacks in TCP traffic, underscores the necessity for protocol-specific 
security measures. The nuanced understanding of these patterns enables more precise anomaly detection and mitigation strategies, 
enhancing the overall effectiveness of NIDS. 
Moreover, the study's examination of service distribution in normal versus attack traffic provides valuable insights into attacker 
behavior. The stark contrast between the service usage in normal traffic and the diverse exploitation of services in attack traffic, 
particularly the frequent targeting of non-standard services, highlights the attackers' adaptive strategies. This insight is critical for 
network administrators to prioritize the security of lesser-monitored services and implement comprehensive security policies. The 
practical implications of these findings are profound. Network administrators and cybersecurity professionals must not only focus 
on deploying robust NIDS but also ensure continuous monitoring and adaptation of these systems to evolving threats. Integrating 
Network Intrusion Detection Systems (NIDS) with other security measures like firewalls and Security Information and Event 
Management (SIEM) tools is crucial for a robust defense strategy. This integration offers a comprehensive view of the security 
landscape, enhancing the efficiency of threat detection and response.  
Additionally, the effectiveness of NIDS heavily relies on the expertise of the personnel managing them. It is vital for network 
administrators to receive continuous training and skill development to accurately interpret alerts, refine detection algorithms, and 
respond promptly to incidents. As technology evolves and the network environment becomes more complex with the rise of IoT and 
cloud computing, the importance of skilled personnel in managing NIDS will grow.  
In conclusion, this study reinforces the indispensable role of Network Intrusion Detection Systems in modern cybersecurity 
frameworks. By providing a detailed analysis of network traffic and demonstrating the efficacy of advanced machine learning 
algorithms like RandomForestClassifier, the research offers valuable contributions to the field. The insights gained from the traffic 
and service distribution analyses inform the development of more effective security measures, emphasizing the need for continuous 
innovation and adaptation in NIDS technology and strategies. As cyber threats continue to evolve, so too must the defenses, 
ensuring that organizations can protect their critical information assets against an ever-changing threat landscape. 
This underscores the study's key findings on the critical role of NIDS in modern cybersecurity, the effectiveness of machine 
learning classifiers, and the necessity for ongoing adaptation and expert management to safeguard networked environments.  
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