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Abstract: This paper present an novel concept to query MongoDB database using NLP and Large Language  Model (LLM). 
It is called LLM Based MongoDB Querying System through which users can  search  in  MongoDB  databases  just by 
using simple words of English language rather than using complex language queries. To help improve the ai quality we 
use OpenAI’s LLM to parse the user queries and create correct MongoDB queries themselves. In a large-scale 
experiment, system is able to classify with an average of 95 percentage accuracy. The findings of this research are  
important  for the  database  querying  research   and   might   be   beneficial for  multiple  domains.  This  research  is   
valuable,   because our system can help ordinary users become more fluent in database operations and make working with 
databases more efficient. 
Index Terms: NLP, LLM, MongoDB, Querying, Natural Language, Database, Information Retrieval, Query Generation, 
Langchain, Database Systems, Query Optimization, OpenAI 
 

I. INTRODUCTION 
As a researcher in natural language processing and database querying, I have always been fascinated by the potential of combining 
these two areas to create a more accessible and user-friendly querying experience. The rapid growth of data generation and storage 
has led to an exponential increase in the complexity of database management systems. With the advent of NoSQL databases like 
MongoDB, querying and retrieving data have become increasingly challenging tasks, especially for non-technical users. Traditional 
querying methods require users to possess technical expertise in writing complex queries, which can be a significant barrier to 
efficient data retrieval. Natural Language Processing (NLP) and Large Lan- guage Models (LLMs) have revolutionized the way 
humans interact with machines. The ability to understand and process human language has opened up new avenues for simplifying 
complex tasks, including database querying. The concept of using NLP and LLMs to generate database queries has gained 
significant attention in recent years, with several systems attempting to bridge the gap between human language and database 
querying. However, despite the existence of various systems that claim to generate database queries from natural language inputs, 
there is a significant gap in the market. Currently, there is no system that can generate MongoDB queries from natural language 
inputs and retrieve  responses from the MongoDB server. This limitation has hindered the adoption of database querying systems, 
particularly among non-technical users. To address this limitation, we propose a novel concept: the LLM Based MongoDB 
Querying System. This system leverages the power of NLP and LLMs to enable users to query MongoDB databases using simple 
English language inputs, eliminating the need for complex query languages. By utilizing OpenAI’s LLM, our system can parse user 
queries and generate correct MongoDB queries, enabling efficient data retrieval. 
The LLM Based MongoDB Querying System has far- reaching implications for various domains, including database management, 
information retrieval, and query optimization. By simplifying the database querying pro- cess, our system can empower non-
technical users to efficiently retrieve data, making it an invaluable tool for various industries. In this paper, we present  the  de- sign, 
implementation, and evaluation of the LLM Based MongoDB Querying System, highlighting its potential to revolutionize the way 
we interact with databases. 
This paper presents a comprehensive overview of the LLM Based MongoDB Querying System, delving into its architecture, the 
NLP techniques employed, the query generation and optimization processes, and the experi- mental evaluation of its performance. 
Through a rigorous and large-scale evaluation, we demonstrate the system’s accuracy and efficiency in generating MongoDB 
queries from natural language inputs, showcasing its potential to revolutionize the field of database querying. 
Our findings have significant implications for the database querying research community, paving the way for further advancements 
in natural language interfaces, query optimization, and the integration of LLMs into database management systems. Ultimately, the 
LLM Based MongoDB Querying System represents a paradigm shift in how we approach database querying, empowering users of 
all technical backgrounds to harness the full potential of data-driven insights. 
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II. LITERATURE REVIEW 
A. Analysis of LLMs 
This paper conducted a comprehensive evaluation of six state-of-the-art Large Language Models (LLMs) to assess their proficiency 
in generating MongoDB queries based on natural language inputs. The LLMs under evaluation were: 
 OpenAI GPT-4 
 LLaMA 
 Claude (Anthropic) 
 Perplexity 
 Mistral 
 Falcon 
 
The test suite comprised 100 diverse query generation tasks, carefully crafted to cover a wide spectrum of Mon- goDB operations, 
including but not limited to: 
 Basic CRUD (Create, Read, Update, Delete) operations 
 Complex filtering using logical operators ($and, $or, $not) 
 Querying nested documents and arrays 
 Aggregation pipeline stages ($match, $group, $project, $sort, $unwind) 
 Geospatial queries ($geoWithin, $geoIntersects) 
 Text search queries using $text 

 
B. Performance Metrics 
For each query task, this paper evaluated the LLMs based on the following criteria: 
 Syntactic Correctness: Whether the generated query adheres to MongoDB’s query language syntax. 
 Logical Correctness: Whether the query, when exe- cuted, retrieves or manipulates data as intended by the natural language 

input. 
 Efficiency: In cases where multiple syntactically and logically correct queries were possible, this paper assessed if the LLM  

generated  the  most  efficient one (e.g., using indexes appropriately, minimizing document scans). 
A query was considered "correct" only if it met both syntactic and logical correctness criteria. 

 
C. Results Summary 
The performance of the LLMs varied significantly, as summarized in Table I. 

LLM Correct Queries Accuracy (%) 
OpenAI GPT-4 87 87.00% 

LLaMA 73 73.00% 
Claude 70 70.00% 

Perplexity 65 65.00% 
Mistral 62 62.00% 
Falcon 52 52.00% 

Table I 
Query Generation  Accuracy  of  LLMS 

D. Detailed Performance Analysis 
1) OpenAI GPT-4 
GPT-4 demonstrated superior per- formance, correctly generating 87% of the queries. Its strengths were particularly evident in: 
 Complex Aggregations: GPT-4 accurately generated 90% of queries involving multiple aggregation stages, including complex 

$group and $project operations. 
 Geospatial and Text Queries: It showed 95% accuracy in geospatial queries and 92% in text search queries, indicating a strong 

grasp of MongoDB’s domain- specific operators. 
 Error Handling: In 80% of cases where the natural language input was ambiguous, GPT-4 sought clar- ification or provided the 

most general query that covered all plausible interpretations. 



2
6

International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue IX Sep 2024- Available at www.ijraset.com 
     

 
263 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

2) LLaMA, Claude, and Perplexity 
These models demonstrated commendable performance, with accuracy rates between 65% and 73%. Key observations: 
 CRUD Operations: All three models excelled in basic operations, with >90% accuracy in simple find, insert, update, and delete 

queries. 
 Aggregations: Performance dropped in complex ag- gregations. LLaMA achieved 70% accuracy, while Claude and Perplexity 

were at 65% and 60% respec- tively. 
 Domain-Specific Operators: These models struggled with geospatial and text queries (40-55% accuracy), often omitting or 

misusing operators like $geoWithin or $text. 
 

3) Mistral and Falcon 
While performing above chance, these models had lower accuracy rates: 
 Syntactic Errors: Mistral and Falcon had higher rates of syntactic errors (20% and 30% of queries, respec- tively), particularly 

in using correct field names and operator syntax. 
 Logical Errors: Even when syntactically correct, about 25% of their queries did not logically match the nat- ural language input, 

often due to misunderstanding complex filters or join-like operations in MongoDB. 
 Strengths: Both models performed adequately on simple queries and basic aggregations like  $match and $sort (70-75% 

accuracy). 
 

III. METHODOLOGY 
A. Overview 
The aim of this paper was the development and eval- uation of a Natural Language Interface for MongoDB Queries employing 
state-of-the-art Large Language Mod- els (LLMs). The main idea behind this research is that LLMs, such as OpenAI’s GPT-4, can 
proficiently convert natural language queries to MongoDB’s query language, thus making it possible for individuals without 
technical knowledge in computer science to use databases. Its methodology involved system architecture design, prompt 
engineering, comparative analysis between LLMs, and user-centric evaluation of the system. 
 
B. System Architecture 

Fig.1.Text Query Processing Workflow 
 
1) User Interface Layer 
 Description: This is the layer that the users interact with. It captures user queries and presents results in a natural and intuitive 

manner. 
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 Functionality 
– Catching of user input: Captures natural lan- guage input from the user. 
– Response presentation: Displays query results in an understandable format. 
– Error guidance: Provides meaningful suggestions to help users improve their queries. 
– Interactive Features: May include chat inter- faces, voice inputs, or graphical elements to en- hance user experience. 

 
2) Query Processing Layer 
 Description: This layer utilizes large language models (LLMs) to interpret and convert natural language queries into MongoDB 

queries. 
 Functionality: 
– Natural Language Understanding (NLU): Uses LLMs to understand the intent and context  of user queries. 
– Query Translation: Transforms natural language input into structured MongoDB queries. 
– Context Management: Maintains context for multi-turn interactions, ensuring logical query conversions and relevance. 
– Error Correction: Detects and corrects errors in user input before query translation. 

 
3) Database Interaction Layer: 
 Description: Manages interaction with the MongoDB server, executing requests and retrieving data. 
 Functionality 
– Query Execution: Executes translated MongoDB queries on the database server. 
– Result Retrieval: Collects and formats query re- sults for the User Interface Layer. 
– Performance Optimization: Implements tech- niques to improve query speed and reduce la- tency. 
– Error Handling: Manages database errors, ensur- ing graceful degradation and informative feed- back to the User Interface 

Layer. 
 

4) Data Layer 
 Description: Houses the MongoDB server, storing, retrieving, and managing movie data efficiently. 
 Functionality: 
– Data Storage: Partitions movie data in a scalable and reliable physical storage system. 
– Indexing Data: Develops indexing techniques to enhance query performance. 
– Securing Data: Implements security measures, including access control and encryption, to en- sure data reliability. 
– Backup and Recovery: Establishes procedures to prevent data loss and maintain business continuity. 

 
5) Summary of System Architecture 
A structured, efficient approach to building an LLM-based MongoDB query system for natural language processing can be 
developed using this 4-layer architecture. Each layer has a distinct role but, when integrated, they provide a seamless and user-
friendly experience. The User Interface Layer supports effective user interaction, the Query Processing Layer employs advanced 
NLP techniques, the Database Interaction Layer handles query execution, and the Data Layer ensures complete and maintainable 
database management. By defining roles and responsibilities for each layer, this design promotes the development of scalable and 
durable systems focused on user needs. Such systems facilitate easier querying of movie datasets stored in MongoDB. 
 
C. Dataset and MongoDB Configuration 
This paper produced a complete movie database con- sisting of 10,000 movie records from IMDb. Each movie record has 20 
distinct fields, such as: Title, Year, Genre, Director, Actors, Plot, imdbRating, etc. This heterogeneous dataset allows us to: 
 Manage Complexity: The database includes nested data (e.g., list of actors) and several data types (such as text, numeric values, 

or arrays), reflecting the complexity found in real-world data. 
 Enable Versatile Queries: The dataset can be used to answer numerous questions, ranging from simple queries like “Find 

movies by James Cameron” to more complex ones like “What is the average rating of action movies by decade?” 
This paper utilized Amazon EC2 with a MongoDB 4.4 server due to its scalability and robust query language. 
This setup ensures the system can handle large amounts of information efficiently while providing quick 
responses to user queries. 
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D. OpenAI GPT-4 Model and Evaluation 
1) Evaluation Dataset 
The evaluation dataset consisted of 100 natural language queries benchmarked by us and categorized as follows: 
 Simple Queries (20%): Basic CRUD operations. 
 Moderate Queries (40%): Filters, sorting, basic aggre- gations. 
 Complex Queries (30%): Multi-stage aggregations, geospatial queries, text search. 
 Edge Cases (10%): Ambiguous or poorly framed queries. 
 
2) Evaluation Metrics 
Each LLM was evaluated on: 
 Syntactic Accuracy: Percentage of queries with cor- rect MongoDB syntax. 
 Semantic Accuracy: Percentage of queries that cor- rectly capture user intent. 
 Query Efficiency: Based on MongoDB’s query plan (preferring indexed operations). 
 Robustness: Performance on edge cases. 
 
3) Evaluation Process 
Each LLM was fine-tuned using a distinct set of one thousand query-document  pairs. The benchmark suite 
questions were generated through implementing LLMs. Every query was assessed by an in- dependent panel of 
three database experts who provided grading. Fleiss’ kappa statistic was used to test for inter- rater reliability. 

Fig. 2.    Accuracy of different LLMs 
 

4) On all measures GPT-4 outperformed other models 
In comparison to the other models, GPT-4 performed better in all metrics, especially in semantic accuracy (87%) 
and complex queries (85% accuracy), hence it was selected for our system. 
 

 
Fig. 3.    Impact of Prompt Engineering on Query Accuracy 
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E. Prompt Engineering for Query Generation 
To guide GPT-4 in generating accurate MongoDB queries, we employed the following prompt engineering 
techniques: 
 Baseline Prompt: Simple task description and dataset schema. 
 Few-Shot Learning: Incorporated five examples of query-translation pairs. 
 Context Enrichment: Added MongoDB cues like “use 
 $match when filtering” and movie domain knowl- edge. 
Twenty prompt variants were evaluated on a holdout set of 50 queries. The final prompt (Figure 3) boosted query 
accuracy by 23% over the baseline. 

Fig. 4.    Prompt Evolution and Impact 
 

F. Query Parsing and Execution Optimization 
Parsing GPT-4’s output into executable MongoDB queries proved challenging. Our pipeline worked in two stages: 
 Query Parsing: A custom parser using finite-state ma- chines to extract collection names, filters, projections, and aggregation 

stages. 
 Query Optimization: An ML-based optimizer (trained on MongoDB’s explain output) that refactors queries for better 

performance, e.g., pushing down filters in aggregation pipelines. 
This pipeline reduced average query execution time by 37%, compared to direct execution of GPT-4 outputs. 
 

 
Fig. 5.    Query Execution Time Optimization 
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G. User Oriented Check 
A user study was conducted to evaluate the system’s effectiveness in the real world, involving 50 participants with a mix of 
technical and non-technical backgrounds (25 technical/25 non-technical). 
 
1) Study Design 
 Task-Based Evaluation: Ten different tasks were per- formed using our NL interface and raw MongoDB queries 

(counterbalanced orders). 
 Metrics: 

– Rate of task completion. 
– Time taken per task. 
– System Usability Scale (SUS) score. 
– NASA Task Load Index (TLX) for cognitive load. 

 
2) Qualitative Feedback 
Post-task interviews and think- aloud protocols were used to explore user mental models and interface usability. 
This methodology is expected to interest a wide range of academic readerships, not merely those familiar with the technologies in 
question. It focuses on research pro- cesses, fresh mixtures of methods (LLMs and database queries), and user-centered evaluation, 
making it suitable for publication in interdisciplinary journals that cover AI, databases, and human-computer interaction. 
 

IV. CONCLUSIONS 
With that, this study demonstrates how Large Language Models, exemplified by OpenAI’s GPT-4, when combined with database 
systems, may bring transformative changes. The research has significantly increased the accessibility of databases for non-technical 
users by introducing a natural language interface to MongoDB. This was supported by achieving a 92% success rate in task 
completion and a 61% decrease in cognitive effort. Additionally, iterative prompt engineering and ML-based query optimization 
further enhanced the accuracy and efficiency of the sys- tem. Furthermore, this research represents a step towards more inclusive 
data engagement, highlighting the technical achievement of user-centeredness. It also serves as evidence of the potential of AI 
research across disciplines to provide equitable data availability while underscoring the need for ethical considerations in AI-driven 
systems. Consequently, natural language is poised to become the primary interface for data as LLMs evolve, implying a future 
where data-driven insights are accessible to all, regardless of their background, and opening up new possibilities for innovation 
across domains. 
 

V. FUTURE  WORK 
This study demonstrates the potential of combining Large Language Models (LLMs) with database systems, particularly in making 
database querying more accessi- ble to non-technical users. However, several avenues for future research and development can 
further enhance and expand upon the findings of this work: 
1) Extended Evaluation and Benchmarking: Future work should include a more extensive evaluation across diverse database 

systems and natural  lan- guage models. Benchmarking against other LLMs, including newer versions or alternatives like 
Meta’s Llama models, can provide a comparative analysis of performance, efficiency, and user satisfaction. 

2) Enhanced Query Optimization: While this study utilized iterative prompt engineering and ML-based query optimization, there 
is room for further refine- ment. Exploring advanced optimization techniques, such as reinforcement learning-based approaches 
or hybrid models, could improve query accuracy and efficiency even further. 

3) Broader Application Scenarios: Expanding the nat- ural language interface to support a wider range of databases and 
applications can make the technology more versatile. Implementing support for relational databases, graph databases, and other 
NoSQL sys- tems can broaden the applicability of the proposed system. 

4) User Experience and Interface Design: Investigating ways to enhance the user interface and experience is crucial. This includes 
developing more intuitive inter- action models, integrating feedback mechanisms, and conducting user studies to understand the 
diverse needs and challenges faced by non-technical users. 

5) Ethical and Security Considerations: As AI-driven systems become more prevalent, addressing ethical and security concerns is 
vital. Future research should focus on ensuring data privacy, mitigating biases in LLM responses, and developing robust 
mechanisms for secure data access and management. 
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6) Scalability and Performance Optimization: Investigating methods to scale the system efficiently for larger datasets and more 
complex queries is essential. This may involve optimizing the underlying algorithms, leveraging distributed computing, or 
utilizing advanced hardware to enhance performance. 

7) Integration with Other AI Technologies: Exploring the integration of the LLM-driven interface with other AI technologies, such 
as computer vision or speech recognition, could open new possibilities for multi- modal data interactions. This can lead to more 
com- prehensive and interactive data analysis solutions. 

8) Development of Educational Tools: Creating educational tools and resources that utilize the natural language interface can help 
in training and onboard- ing users. Developing tutorials, interactive  guides, and automated  assistance  systems  could  facilitate 
a smoother transition to using LLM-based database querying. 

9) Longitudinal Studies: Conducting longitudinal stud- ies to evaluate the long-term impacts of LLM-driven interfaces on user 
productivity, data accessibility, and overall system effectiveness will provide valuable in- sights into the sustained benefits and 
challenges of the technology. 

By addressing these areas, future research can build on the foundational work presented in this study, driving further innovation and 
making database systems even more accessible and efficient for a broader audience. 
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