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Abstract: Wireless Sensor Networks (WSNs) are emerging as a significant area of research due to their potential to 
autonomously monitor physical and environmental conditions. These networks comprise spatially distributed, low-cost sensor 
nodes with limited transmission range, processing capabilities, storage, and energy resources. The primary function of these 
networks is to collect data from various nodes and transmit it to a base station for subsequent processing. WSNs present several 
challenges, including optimal sensor deployment, node localization, base station placement, target node location, energy-aware 
clustering, and data aggregation. Recently, global researchers have been employing a bio-inspired optimization algorithm, 
Particle Swarm Optimization (PSO), to enhance the efficiency of WSNs. This report explores the application of the PSO 
algorithm for optimal sensor deployment in WSNs, contributing to the ongoing efforts to maximize the potential of these 
networks. 
Index Terms: Wireless Sensor Networks (WSNs), Sensor Nodes, Node Localization, Optimal Sensor Deployment, Particle 
Swarm Optimization (PSO), Ant Colony Optimization, Network Efficiency 
 

I. INTRODUCTION 
In the rapidly evolving world of wireless sensor networks (WSNs), the strategic placement of sensor nodes is paramount. It plays a 
pivotal role in enhancing network performance and optimizing resource utilization. This report aims to delve into the complexities 
of optimizing the deployment of wireless sensor nodes, with a particular focus on two advanced algorithms - Particle Swarm 
Optimization (PSO) and Ant Colony Optimization (ACO). 
WSNs are characterized by their distributed nature and inherent resource constraints. These characteristics necessitate the 
development of efficient strategies for node placement. The goal is to ensure comprehensive coverage, maximize energy efficiency, 
and facilitate robust data collection. In this context, PSO and ACO emerge as promising solutions. 
PSO, an algorithm inspired by social behavior and natural phenomena, and ACO, which models the foraging behavior of ants, have 
been recognized for their effectiveness in addressing complex optimization challenges. These challenges are inherent in the 
deployment of WSNs. These algorithms iteratively refine node positions by leveraging the collective intelligence of nodes or agents. 
The objective is to strive toward an optimal solution that balances coverage, connectivity, and energy consumption. 

 
Fig 1: Landscape of Yellowstone National Park 
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This report provides a comprehensive exploration of PSO and ACO methodologies. It aims to elucidate their theoretical 
underpinnings, delve into the intricacies of their algorithms, and highlight their practical implications in the context of WSN 
deployment optimization. The report will also present empirical evaluations and comparative analyses. These will assess the 
efficacy and suitability of PSO and ACO in various deployment scenarios, shedding light on their strengths, limitations, and 
potential avenues for further research. 

 
II. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO), conceptualized by Eberhart and Kennedy in 1995, stands as a population-based optimization 
technique. In this method, particles, representing potential solutions, traverse the problem space by mimicking the movement of the 
current optimum particles. Each particle maintains its coordinates in the problem space along with the best solution (fitness) it has 
attained thus far, termed as pbest. Additionally, PSO tracks another crucial metric: the best value achieved by any particle in the 
swarm, denoted as gbest. Each particle dynamically adjusts its velocity based on its individual flying experience (pbest) and the 
collective experience of the swarm (gbest), aiming to guide the population towards more favorable solution regions. Operating 
within a D-dimensional search space, each particle is akin to a volume-less entity. The manipulation of particles follows a set of 
equations, orchestrating their movement towards optimal solutions. 
Vi
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The first part of the equation is the previous velocity of the particle. The second is the “cognition” part, representing the exploiting 
of its own experience, where c1 is an individual factor. And the third is the “social” pan. representing the shared information and 
cooperation among the particles, where c2 is the societal factor. 
 
A. PSO Parameters 
For the proposed method the number of particles is taken as 10 and the learning factor C1= C2= 2. An inertia weight factor is linearly 
reduced as the search proceeds from 0.9 to 0.4. The maximum velocity and maximum iterations are taken as 50 and 300 
respectively. 

 
B. Performance Improvement 
Particle Swarm Optimization (PSO) is known for its quick convergence and consistent efficiency, regardless of the complexity of 
the problem space, such as the number of peaks and dimensions. However, it does face certain challenges, including premature 
convergence and sensitivity to parameter settings, which can lead to local rather than global optimization. As a result, a significant 
amount of research has been dedicated to overcoming these obstacles. Strategies include adapting parameters, enhancing diversity, 
and modifying the algorithm to strengthen PSO’s global optimization abilities and facilitate dynamic adaptation. 

 
Fig 2: Geometric illustration of particle movement in PSO 

 
C. Optimal WSN Deployment 
The Wireless Sensor Network (WSN) conundrum revolves around determining the strategic placement of sensor nodes to achieve 
desired coverage, connectivity, and energy efficiency while minimizing node count. Inadequate sensor coverage results in unnoticed 
events, while dense sensor populations lead to congestion and delays. Optimal WSN deployment ensures quality of service, 
prolonged network lifespan, and cost-effectiveness. Existing PSO solutions for deployment are typically computed centrally, often 
on a base station, to ascertain sensor positions. 
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D. Sensor Coverage 
A sensor positioned at coordinates (X1, Y1) effectively covers another point (X2, Y2) if the Euclidean distance between them 
satisfies the condition: (X1-X2)2 + (Y1-Y2)2 ≤ r2, where r represents the sensor's sensing range. The mean value of location points (Xi, 
Yi) for i=1, 2, ..., M is denoted as (mx, my). The sensor node serves as the centroid of the location points it covers, with the sensing 
range r determined by the distance between the sensor node and the farthest location point. Area A is partitioned into R regions, 
each allocated sensor node by minimizing the Euclidean distance between location points and their respective centroids. 
Consequently, Area A is covered by R sensor nodes. Formulating the coverage problem as an optimization task involves 
determining the optimal deployment of R sensors across the set of points P, ensuring comprehensive coverage of every location 
point. 

 
E. Problem Formulation 
The primary aim of this study is to optimize the deployment of sensor nodes in a network. The goal is to minimize the distance 
between adjacent nodes, thereby maximizing network coverage, while concurrently adhering to all constraints.  
 
The following assumptions underpin this study: 
1) All sensor nodes are identical and possess mobility. 
2) It is assumed that the deployed sensor nodes can comprehensively cover the sensing fields. Both the sensing coverage and 

communication coverage of each node are presumed to be circular, devoid of any irregularities. 
3) The design variables in this study are the two-dimensional coordinates of the sensor nodes. 
4) Each sensor node is assumed to cover an equal area of the sensing field. 
 
These assumptions are commonly made in numerous sensor network applications and form the basis of our analysis in this report. 

 
F. Flow Chart 
In the context of wireless sensor networks, the concept of fitness, denoted as (F), is determined by the Euclidean distance between a 
sensor node and its nearest centroid. The calculation of fitness for each particle involves evaluating its proximity to the optimal 
solution. The particle within the swarm that exhibits the lowest fitness is identified as the global best particle, indicating its 
closeness to the optimal solution. The achievement of the swarm is recognized when all particles attain fitness values that are less 
than or equal to the range of the sensor network. 
 
The Particle Swarm Optimization (PSO) process can be outlined as follows: 
1) Initialization: The network information and algorithm parameters, including inertia, weight, learning factor, velocity boundary 

value, and maximum iteration count, are initialized. An array of particles is also initialized with random position and velocity 
vectors. 

2) Fitness Calculation: The fitness for each particle at its current position is calculated by determining the distance to its nearest 
sensor. 

3) Fitness Minimization: The fitness values are minimized with the ideal goal of reaching zero, indicating that the distance 
between points of interest and their nearest sensors falls within the sensor’s sensing range. If a particle’s fitness surpasses the 
current best, it is designated as the best particle for the subsequent move, and its fitness is updated accordingly. 

4) Position and Velocity Adjustment: Each particle’s position and velocity are adjusted based on the calculated fitness. 
5) Position Evaluation: The algorithm determines whether the next position of the particle yields an improvement; if so, the 

particle adopts the new position, otherwise, the algorithm continues with the existing position. 
6) Iterative Process: The process is repeated iteratively until all particles communicate with each other, collectively maximizing 

coverage. 
 
This iterative process propels the optimization of sensor node deployment within the network, aiming towards comprehensive 
coverage and efficient resource utilization. This professional exploration of PSO provides a robust framework for optimizing 
wireless sensor networks, contributing to the advancement of this dynamic field. 
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Fig 3: Flowchart of PSO Algorithm 

 
III. IMPLEMENTING OF PSO TO PYTHON 

The implementation of Particle Swarm Optimization (PSO) in Python involves coding the PSO algorithm using Python 
programming language. This entails defining classes or functions to represent particles, initializing their positions and velocities, 
updating them iteratively based on PSO equations, evaluating fitness functions, and iteratively optimizing the solution until 
convergence. Python offers various libraries and tools such as NumPy and SciPy that facilitate the implementation of PSO and 
enable efficient computation, making it a popular choice for implementing optimization algorithms like PSO. 
 
A. Python Code 
import random 
import numpy as np 
class Particle: 
    def __init__(self, position): 
        self.position = position 
        self.velocity = np.zeros_like(position) 
        self.best_position = position 
        self.best_fitness = float('inf') 
 
def PSO(ObjF, Pop_Size, D, MaxT): 
    swarm_best_position = None 
    swarm_best_fitness = float('inf') 
    particles = [Particle(np.random.uniform(-0.5, 0.5, D)) for _ in range(Pop_Size)] 
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    for particle in particles: 
        fitness = ObjF(particle.position) 
        if fitness < swarm_best_fitness: 
            swarm_best_fitness = fitness 
            swarm_best_position = particle.position 
        particle.best_fitness = fitness 
        particle.best_position = particle.position 
 
    for itr in range(MaxT): 
        for particle in particles: 
            w, c1, c2 = 0.8, 1.2, 1.2 
            r1, r2 = random.random(), random.random() 
            particle.velocity = (w * particle.velocity + 
                                 c1 * r1 * (particle.best_position - particle.position) + 
                                 c2 * r2 * (swarm_best_position - particle.position)) 
            particle.position += particle.velocity 
            fitness = ObjF(particle.position) 
            if fitness < particle.best_fitness: 
                particle.best_fitness = fitness 
                particle.best_position = particle.position 
            if fitness < swarm_best_fitness: 
                swarm_best_fitness = fitness 
                swarm_best_position = particle.position 
 
    return swarm_best_position, swarm_best_fitness 
 
def F1(x): 
    return np.sum(x**2) 
def F2(x): 
    return np.max(np.abs(x)) 
 
Objective_Functions = {'F1': F1, 'F2': F2} 
 
Pop_Size = 100 
MaxT = 100 
D = 2 
 
for funName, ObjF in Objective_Functions.items(): 
    best_position, best_fitness = PSO(ObjF, Pop_Size, D, MaxT) 
    print(f"Running Function = {funName}") 
    print(f"BEST POSITION : {best_position}") 
    print(f"BEST COST : {best_fitness}") 
    print() 

IV. RESULT 
The initial population is created randomly, and the objective function is calculated. The new sequence generation is based on the 
initial sequence illustrated in the following example. Consider the following initial sequence Pibest and Pgbest as follows: 
 Present:   2 6 3 5 4 1 
 Pibest:        6 1 2 5 3 4 
 Pgbest:       5 3 6 4 2 1 
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Assume C1= C2= 2 and rand () =1. Then Pibest is generated by swapping the individuals of a present sequence.  
                 Present: 2 6 3 5 4 1 Swap :( 2, 6) 
                               6 2 3 5 4 1 Swap :( 2, 1) 
                               6 1 3 5 4 2 Swap :( 3, 2) 
                               6 1 2 5 4 3 Swap :( 4, 3) 
Here (2,6) (2,1) (3,2) (4,3) are used for getting Pibest from the present sequence. The Pgbest is generated by swapping the individual of 
a present sequence. 
                 Present: 2 6 3 5 4 1 Swap :( 2, 5)  
                                5 6 3 2 4 1 Swap: (6, 3)  
                                5 3 6 2 4 1 Swap: (2, 4)  
                                5 3 6 2 4 1—Pgbest.  

Hence (2, 5), (6, 3), and (2, 4) are used for getting Pgbest from the present sequence. 
Vid = ω.Vid+ C1*rand()* [Pid – Xid] + C2*rand() [Pgd – Xid] 
Velocity=1*1{(2,6),(2,1),(3,2),(4,3)}+1*0.57{(2,5),(6,3),(2,4)} 
 
The 57% of the change in both parts is considered. Hence the first two changes in both the parts (2,6), (2,1) and (2,5),(6,3) are 
considered. New sequence=present+ velocity=2 6 3 5 4 1+ (2, 6), (2, 1), (2, 5), (6, 3) Hence the sequence generated for the next 
generation is 3 1 6 2 4 5. Similarly for all other particles the new sequences are generated, and the objective function is evaluated 
and is shown in Fig.4  

 
a. Randomly distributed particles 

 

 
b. Particles position after 50 interactions 
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c. Particles position after 90 interactions 

Figs 4: Flowchart of PSO Algorithm 
 

Table and Graph 
 

 
 
 

 
Fig 5: Graph 
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V. ANT COLONY OPTIMIZATION 
A. Introduction 
Ant Colony Optimization (ACO) emerged in the 1990s as a pioneering metaheuristic algorithm inspired by the foraging behavior of 
ants. It was conceptualized by Marco Dorigo and his team, drawing insights from observations of ant colonies' efficient food-
gathering processes. ACO falls within the domain of swarm intelligence, leveraging the collective actions of simple agents to 
address complex optimization problems. Historically, Marco Dorigo, during his tenure at the Free University of Brussels, developed 
the foundational Ant System, an early instance of ACO tailored for solving the Traveling Salesman Problem (TSP). Since its 
inception, ACO has undergone substantial refinement, leading to its widespread adoption across diverse optimization domains. 
At its essence, ACO mimics ants' pheromone trail-laying behavior. Ants deposit pheromones along paths they traverse, with the 
intensity of these trails reflecting path attractiveness. The algorithm iteratively constructs solutions by probabilistically selecting 
components based on both pheromone trails and heuristic information. As iterations progress, paths yielding superior solutions 
accumulate more pheromones, steering subsequent iterations towards increasingly optimal solutions. 
 
B. Key Components of ACO 
1) Pheromone Trails: Representing collective memory guiding exploration. 
2) Heuristic Information: Directing the search towards promising regions of the solution space. 
3) Pheromone Update Rule: Governing pheromone deposition and evaporation, balancing between exploration and exploitation. 
ACO has found application in diverse optimization challenges such as routing, scheduling, and logistics. Its efficacy in handling 
complex, combinatorial problems with irregular structures has made it indispensable in both academic research and industrial 
applications. The success of ACO has spurred further innovation, leading to the development of hybrid and variant algorithms 
tailored to address specific optimization challenges. 

 
Figure AA 

 
In our proposed method, we employ ACO with three paths and twelve "ants" to simulate signal transmission between 
communication towers. The paths represent different signal routes, while the ants symbolize the transmissions sent and received 
within a cycle of time. 
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Figure BA 

 
To simulate our model, we utilized NetLogo, a program capable of running simulations based on predefined code. Our model 
comprises three main components: the nest, food piles, and ants. In our representation, Information Tower 1 corresponds to the nest, 
while the remaining nodes are depicted as food piles with distinct colors. These nodes are positioned approximately in accordance 
with their real-world locations to provide a 1:1 representation of the distances between them. For visual clarity, we provide two 
figures: Figure AA depicting a map of Yellowstone National Park with labeled paths, and Figure BA illustrating the map 
representation within the NetLogo program. Additionally, Figure BB provides a key explaining the representation of each area in 
Figure BA about Figure AA. 

Color Node Type Node 

White Nest Information Tower 1, Point 1 

Cyan Food Pile Point 2 

Sky Blue Food Pile Point 3 

Blue Food Pile Point 4 

Green Food Pile Point 5 

Red Food Pile Point 6 

Orange Food Pile Point 7 

Yellow Food Pile Point 8 

Purple Food Pile Point 9 

Turquoise Food Pile Information Tower 2, Point 10 

Figure BB 
 

The purpose of the simulation is to determine the shortest and most frequently used path among three options: Path L, Path M, and 
Path R, as depicted in Figure AA. The simulation, facilitated by the NetLogo program, employs the nest as a point of origin, with 
ants more inclined to head toward it as they get closer.  
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In operation, the simulation starts with the release of 200 ants randomly into the simulation area. When an ant reaches a food pile, it 
promptly returns to the nest to deposit the food, leaving a trail of pheromones. As ants move, the black background gradually turns 
white, indicating the accumulation of pheromones. The identification of the optimal path relies on two main factors: the time taken 
for pheromones to envelop a path and the direction ants take after reaching Information Tower 2 (Point 10). Due to program 
limitations preventing the existence of two nests, the direction of ants leaving Point 10 is particularly significant in determining the 
optimal path. 
The results of the simulation indicate that as ants reached Point 10, they overwhelmingly headed directly toward Point 5 instead of 
Point 9 (refer to Figure CA). The simulation concluded upon the depletion of food at Point 5, marking a convergence criterion. 
Figure CB demonstrates that none of the ants leaving from Point 10 headed towards Point 4, suggesting that Path M is the most 
optimal route back to the nest. 
In summary, the simulation effectively determines the most efficient path for ant movement, highlighting the practical application of 
ACO in solving optimization problems. 

 
Figure CA 

 

 
Figure CB 
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VI. CONCLUSION 
In conclusion, after a comprehensive analysis of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for the 
crucial task of detecting wildfires using wireless sensor nodes in Yellowstone National Park, it becomes evident that PSO emerges 
as the superior choice.  
PSO showcases remarkable efficacy in optimizing the deployment of sensor nodes, efficiently maximizing the coverage area while 
minimizing energy consumption. Its ability to swiftly converge to optimal solutions, adapt to dynamic environmental changes, and 
mitigate the impact of local optima sets it apart in the context of wildfire detection.  
While ACO demonstrates notable capabilities, particularly in complex routing scenarios, its performance in this specific application 
falls short compared to PSO. The inherent characteristics of PSO, such as its simplicity, scalability, and robustness, make it the 
preferred optimization algorithm for ensuring timely and accurate wildfire detection, thereby significantly enhancing the safety and 
conservation efforts within Yellowstone National Park. 
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