

13 I January 2025

 https://doi.org/10.22214/ijraset.2025.66739

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

2116 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Optimized High-Speed VLSI Implimentation of the
RSA algorithm

Nandini V Munavalli1, Pragati Suresh Naik2, Pranamyadevi V Hiremath3, Ravikant Shri Biradar4, Prema K N5

Department of Electronic and Communication Engineering, Jawaharlal Nehru New College of Engineering

Abstract: RSA, one of the most widely adopted public-key cryptographic algorithms, ensures secure communication by
leveraging the mathematical properties of modular exponentiation and large prime factorization. However, its computational
complexity and high resource demands pose significant challenges for real-time and high-speed applications. This paper
addresses these challenges by proposing an optimized Very-Large-Scale Integration (VLSI) design for RSA encryption and
decryption, focusing on accelerating the modular exponentiation process, which is the core of RSA computations.
The design incorporates Montgomery Modular Multiplication to eliminate time-intensive division operations, enabling efficient
computation in the modular arithmetic domain. It further integrates techniques such as pipelining, parallel processing, and
carry-save adders to reduce critical path delays and enhance throughput. Modular exponentiation is implemented using a
scalable iterative approach with the square-and-multiply method, optimized for hardware efficiency.
Hardware prototypes were synthesized and tested using FPGA and ASIC platforms, demonstrating superior performance in
terms of speed, area, and power consumption. The proposed architecture achieves high-speed operation while maintaining
security and scalability, making it suitable for real-time cryptographic applications such as secure communication, digital
signatures, and authentication systems. Comparative analysis with existing implementations highlights significant
improvements, establishing the proposed design as a viable solution for next-generation secure hardware accelerators.
Keywords: RSA algorithm, Verilog, FPGA

I. INTRODUCTION
In the modern era of digital communication, ensuring data security has become paramount. The RSA algorithm, named after its
inventors Rivest, Shamir, and Adleman, is one of the most widely used public-key cryptographic systems. It is valued for its
robustness and ability to secure data transmission over insecure channels. However, the computational complexity of RSA,
particularly the exponential operations involved in encryption and decryption, poses significant challenges for real-time
applications.
The integration of Very-Large-Scale Integration (VLSI) technology with Field-Programmable Gate Arrays (FPGAs) offers a
promising solution to these challenges. VLSI allows the development of highly efficient and compact hardware implementations,
while FPGAs provide the flexibility to design, prototype, and optimize such systems rapidly. By leveraging FPGA platforms,
researchers can achieve parallelism and high-speed performance, crucial for implementing computationally intensive tasks like RSA
encryption and decryption.
This paper explores the implementation of the RSA algorithm on FPGA-based VLSI designs. It focuses on optimizing key
parameters such as area, speed, and power consumption to meet the demands of real-time cryptographic applications. The paper also
highlights the advantages of using FPGAs for RSA, including hardware level parallelism, reconfigurability, and reduced
development cycles compared to traditional ASIC solutions.
The discussion encompasses the modular arithmetic operations fundamental to RSA, such as modular exponentiation and
multiplication, which are optimized using FPGA resources. Additionally, various design approaches, including pipelining and
parallel processing, are analyzed to enhance system performance. This implementation not only demonstrates the feasibility of
FPGA-based RSA systems but also sets a foundation for future research into scalable and efficient cryptographic hardware designs.
Through this work, we aim to provide insights into the practical challenges and solutions associated with implementing RSA on
FPGA boards, contributing to the broader field of secure hardware design and cryptographic system development.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

2117 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

II. LITERATURE SURVEY
[1] Sheba Diamond Thabah, Mridupawan Sonowal, Rekib Uddin Ahmed, Prabir Saha*, “Fast and Area Efficient Implementation of
RSA Algorithm, ICRTAC 2019.
REMARK: The paper reports a high-frequency, low-latency RSA cryptosystem using a shift-add multiplier and a binary digit-based
modular exponentiation circuit. By discarding the most significant bit (MSB), the system achieves higher operating frequencies, The
proposed design shows notable improvements in speed and efficiency, validated using both HDL simulation and Xilinx ISE, with
ASIC implementation also explored.
[2] Aashish Parihar, Sangeeta Nakhate, “Low latency high throughput Montgomery modular multiplier for RSA cryptosystem”,
2022.
REMARK: The proposed Montgomery modular multiplier is designed to achieve both low latency and high throughput, which are
essential for efficient RSA cryptosystems in modern communication systems.
[3] Somnath Mondal, Prof Sachin Patkar“Hardware-Software co-implementation of a high performance and light-weight scalable
Systolic-Montgomery based modified RSA for portable IoT devices”, 2021 International Conference on Emerging Smart
Computing and Informatics (ESCI).
REMARK: This paper presents a scalable, low-power RSA cryptosystem using Systolic-Montgomery Multiplication, optimized for
IoT devices. Implemented on Xilinx Artix-7 FPGA
[4] Falowo O. Mojisola, Sanjay Misra, C. Falayi Febisola, Olusola Abayomi-Alli, Gokhan Sengul, "An improved random bit-
stuffing technique with a modified RSA algorithm for resisting attacks in information security," 2022 THE AUTHORS. Published
by Elsevier B.V. on behalf of Faculty of Computers and Information, Cairo University
REMARK: The paper proposes an enhanced RSA algorithm, named RBMRSA, that aims to improve the security of the classical
RSA algorithm against various attacks.

III. OBJECTIVES

1) To generate public and private key.
2) To perform RSA encryption and decryption process.
3) To implement RSA algorithm using FPGA/hardware components.
4) To evaluate the performances and efficiency of the implemented algorithm.

IV. METHODOLOGY

RSA is a public key cryptographic algorithm. The major steps involve in RSA algorithm are
 Key generation
 Encryption process
 Decryption process

1) Key Generation
To generate the public key and private key algorithm 1 is followed. In this algorithm (algorithm 1) 2 ,1 are the selected inputs,
and ݁, ݀ are the outputs which are the two keys required for the RSA algorithm. To generate these two keys, select two large prime
numbers of equal length, i.e., 1 and 2. Compute the modulus number ݊݊ and the function Ѱ(݊).

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

2118 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Choose a positive integer ݁ such that,1 < ݁ < Ѱ(n), calculate gcd (݁, Ѱ (n)) = 1. Here, ݁ is called the encryption key or the public
key. Then, compute the decryption key or the private key݀, 1 < ݀ < Ѱ(n), such that ݁. Ѱ (݊) = 1. The decryption key ݀ is obtained
by taking the multiplicative inverse of the encryption key ݁.

2) Encryption Process
The RSA encryption process can be computed through algorithm 2, where modular exponentiation has to be performed by the
sender. First, get the public key (݁, ݊) of the recipient and also the plaintext to be sent which is represented as ݉݉. After receiving
݁, ݊, ݉, encrypt the plain text into cipher-text or coded text and then transmit the cipher-text through the channel to the recipient

3) Decryption Process
The RSA decryption process involves the recipient using their private key d and the modulus n to decrypt the ciphertext C and
retrieve the original plaintext message. The decryption is carried out through modular exponentiation, where the recipient computes
m= C^d \mod n, with m representing the plaintext message. The ciphertext CCC is raised to the power of the private key d, and the
result is taken modulo n, which effectively reverses the encryption process. This process relies on the recipient’s private key, which
is kept confidential, ensuring that only they can decrypt the message. Modular exponentiation techniques, such as the square-and-
multiply algorithm, are typically used to efficiently perform the decryption, even with large values of d and n. Thus, the RSA
decryption process guarantees that only the intended recipient, who possesses the correct private key, can successfully decrypt and
access the original plaintext message.

V. IMPLEMENT RSA ALGORITHM USING FPGA
To implement the RSA algorithm on the Spartan-6 FPGA, the first step is to understand the core operations of RSA: key generation,
encryption, and decryption, all of which rely on modular arithmetic. The RSA algorithm involves the use of modular
exponentiation, which can be computationally intensive, particularly for large key sizes. The Spartan-6 FPGA provides a suitable
platform due to its DSP slices, logic cells, and block RAM, all of which can be used to optimize modular multiplication and
exponentiation operations.
Key Operations and FPGA Implementation:
1) Modular Multiplication:
The RSA algorithm requires modular multiplication, which is efficiently implemented on the Spartan-6 using Montgomery
Multiplication. This method avoids division and reduces latency by performing multiplication in a transformed domain. FPGA's
DSP slices are well-suited for these high-speed arithmetic operations, ensuring that large numbers (such as those used in RSA) are
handled efficiently. By pipelining the multiplication stages, the throughput can be enhanced, reducing the overall computation time.

2) Modular Exponentiation:
RSA’s encryption and decryption processes require modular exponentiation, which can be implemented using the square-and-
multiply algorithm. The Spartan-6 FPGA’s parallel processing capabilities allow this algorithm to be pipelined, significantly
improving speed. The exponentiation algorithm works by iterating through the bits of the exponent, squaring and multiplying
modularly based on the bit values. Using FPGA resources such as the LUTs and DSP slices, the implementation can process each
step of exponentiation in parallel.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

2119 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

3) Control Logic and Finite State Machine (FSM):
A key part of the FPGA design is the control unit that manages the RSA algorithm's execution. This is achieved using a finite state
machine (FSM) that controls the flow of operations. The FSM governs the fetching of inputs, the execution of modular arithmetic,
and the storage of intermediate and final results. It ensures that the encryption or decryption process proceeds step-by-step, while
managing the flow of data between different modules of the FPGA.

4) Synthesis and Testing:
After implementing the design in Verilog or VHDL, the next step is synthesizing the design using Xilinx’s Vivado or ISE tools.
These tools generate the bitstream file, which is then loaded onto the Spartan-6 FPGA for testing. Simulations are conducted to
verify the correctness of the RSA algorithm and its functionality under various conditions. Performance analysis, including
throughput, latency, and resource utilization, is performed to ensure the design meets the required specifications.

VI. RESULTS AND ANALYSIS

The image shows a timing simulation for a hardware design, likely for RSA encryption and decryption, based on the signals and
values displayed in the waveform.

The image shows a timing simulation for a hardware design, likely for RSA encryption and decryption, based on the signals and
values displayed in the waveform.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

2120 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

VII. CONCLUSION
Implementing the RSA algorithm on the Spartan-6 FPGA presents a powerful solution for high-speed cryptographic operations,
leveraging the FPGA’s inherent parallelism, reconfigurability, and hardware acceleration capabilities. By utilizing Spartan-6’s DSP
slices, Block RAM, and logic cells, the design effectively handles the computationally intensive tasks of modular multiplication and
modular exponentiation, which are fundamental to the RSA algorithm.
The use of Montgomery Multiplication optimizes modular arithmetic by avoiding costly division operations, significantly
improving the efficiency of modular multiplication on the FPGA. Additionally, implementing pipelined modular exponentiation
using the square-and-multiply algorithm accelerates encryption and decryption processes. Spartan-6’s resources allow for efficient
handling of large RSA key sizes, such as 1024-bit and 2048-bit keys, ensuring scalability for real-world applications.
By employing a Finite State Machine (FSM) for control logic, the FPGA efficiently manages the step-by-step execution of RSA
operations, ensuring that key generation, encryption, and decryption are carried out seamlessly and in the correct sequence. The
design also efficiently utilizes Spartan-6’s Block RAM for storing large intermediate values, which is crucial for handling the large
numbers involved in RSA.
Simulation and testing using Xilinx Vivado or ISE tools verify the correctness of the design, while performance analysis—
measuring throughput, latency, resource utilization, and power consumption—ensures the FPGA implementation meets the required
performance benchmarks.
In conclusion, implementing RSA on the Spartan-6 FPGA offers a high-speed, energy-efficient, and scalable solution for
cryptographic applications. This approach provides a substantial performance improvement over software-based RSA
implementations, making it ideal for applications in secure communication, digital signatures, and real-time authentication systems.
The Spartan-6 FPGA’s versatility and resources make it a suitable platform for efficiently deploying RSA in embedded and high-
performance environments.

VIII. FUTURE SCOPE
The future scope of implementing the RSA algorithm on Spartan-6 FPGA is vast and holds significant potential for enhancing
cryptographic systems. One key direction is supporting larger RSA key sizes (4096-bit, 8192-bit, etc.), which would require
additional FPGA resources such as more Block RAM and high-performance arithmetic units. Another area is the parallelization of
RSA encryption and decryption, allowing multiple operations to be performed simultaneously, which would improve throughput in
high-demand environments. Additionally, integrating RSA with symmetric cryptographic algorithms like AES for hybrid systems
could optimize both speed and security in real-time applications. Preparing for quantum threats is another important future focus,
where post-quantum cryptographic algorithms could be implemented on FPGA to safeguard RSA against quantum attacks.
Furthermore, the optimization of RSA for embedded systems, with an emphasis on low-latency and low-power designs, will be
crucial for IoT devices and mobile applications. Power optimization techniques, such as dynamic power management and voltage
scaling, can be explored to minimize power consumption while maintaining high-speed performance. Distributed RSA
implementations across multiple FPGA devices can also be developed for large-scale systems, enhancing performance and
scalability. Integrating FPGA-based RSA into Hardware Security Modules (HSMs) would also be a promising future application,
offering dedicated cryptographic processors for secure key management. Additionally, FPGA-based RSA implementations can
support the growing demand for secure blockchain systems and modern cryptographic protocols like TLS 1.3. Overall, the future of
RSA on FPGA offers immense potential for improving performance, scalability, and security in a variety of applications, from
secure communications to cryptographic key management and beyond.

REFERENCES
[1] Bansal, A., & Soni, R. (2011). "A High-Speed VLSI Architecture for RSA Cryptosystem." International Journal of Computer Applications, 24(3), 1-4.
[2] Sinha, P., & Chattopadhyay, S. (2017). "Efficient FPGA Implementation of RSA Algorithm with High-Speed Modular Exponentiation." International Journal

of Computer Science and Information Security, 15(9), 352-358.
[3] Chin, K. M., & Wong, H. K. (2015). "High-Speed and Low-Power VLSI Architecture for RSA Cryptosystem." Journal of VLSI Signal Processing Systems for

Signal, Image, and Video Technology, 80(5), 1146-1156.
[4] Sarkar, P., & Ghosh, S. (2010). "Efficient VLSI Design for RSA Cryptosystem Using Hardware Optimization Techniques." Proceedings of the IEEE

International Conference on Electronics and Communication Engineering (ICECE), 1-6.
[5] Zhang, X., Li, Y., & Li, X. (2018). "A High-Speed FPGA-Based Implementation of RSA Cryptosystem for Real-Time Applications." Proceedings of the 2018

IEEE International Conference on Application of Electronics (ICAE), 1-4.

