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Abstract: Convolutional Neural Networks (CNNs) have gained widespread recognition in the field of computer vision, 
specifically for handwritten digit recognition. Despite their remarkable accuracy, CNNs entail significant computational training 
demands and are susceptible to local optima, necessitating innovative optimization strategies. This research introduces a novel 
approach to hyperparameter tuning for CNN models tailored to the recognition of English-Devanagari handwritten digits. This 
method combines a Hybrid Evolutionary Algorithm (HEA) with a Variable Length Genetic Algorithm (VLGA) and leverages a 
comprehensive dataset encompassing both English and Devanagari handwritten digits. The strategy extends the conventional 
paradigm by integrating a variable-length GA, facilitating systematic and adaptive tuning of critical CNN hyperparameters, 
including optimizer selection, learning rate, global hyperparameters, kernel size, filter count, activation functions, layer count, 
and pooling mechanisms. Extensive experimentation across benchmark datasets underscores the superior performance of the 
proposed approach when compared to traditional optimization methods. Seven key hyperparameters are the focal point of 
optimization efforts: learning rate, optimizer, kernel size, filter count, activation function, layer count, and pooling strategy. The 
results highlight the significant performance boost achieved by CNNs assisted by genetic algorithms, underscoring the 
effectiveness of evolutionary approaches in CNN training. Notably, experiments reveal that a population size of 27 yields optimal 
fitness values and average fitness scores. In the culmination of this research, the HEA-VLGA model achieves an impressive 
accuracy rate of approximately 99.38%. These findings unequivocally affirm the efficacy of incorporating evolutionary 
techniques as a potent avenue for enhancing CNN training processes. 
Keywords: Genetic algorithms, Sparse Autoencoder, Hyperparameter optimization, Convolutional neural networks. Handwritten 
digit recognition. 
 

I. INTRODUCTION 
Pattern recognition, particularly in the domain of handwritten digit recognition, represents a fundamental challenge with broad 
applications, including postal code recognition, bank cheque processing, and more. Convolutional Neural Networks (CNNs) have 
emerged as powerful tools in this field, thanks to their innate capability to autonomously extract valuable features from raw input 
data. Achieving peak performance with CNNs necessitates meticulous consideration of layer and filter configurations, learning 
rates, batch sizes, and other critical hyperparameters. In the realm of deep learning, hyperparameter optimization poses a formidable 
challenge often requiring labor-intensive manual adjustments or exhaustive grid searches. Recognizing the agility of evolutionary 
algorithms in navigating vast solution spaces, this research introduces a novel methodology aimed at enhancing the accuracy of 
CNN models employed in English-Devanagari handwritten digit recognition. The proposed approach combines a Hybrid 
Evolutionary Algorithm (HEA) with a Variable Length Genetic Algorithm (VLGA). 
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A. Neural Network 
Neural Networks, also known as Artificial Neural Networks (ANNs), are computational systems designed to emulate the human 
brain's functioning. ANNs are typically employed to execute specific tasks, yet they possess the capacity to undergo training to excel 
in complex endeavors, potentially surpassing human performance. 
Neural networks are composed of 3 layers shown in Fig 1 
1) Input Layer 
2) Hidden Layer 
3) Output Layer 

 

 
Fig 1: Multilayer perceptron with 1 input layer, two hidden layers, and one output layer. 

 
B. Convolutional Neural Network 
The foundational elements of Convolutional Neural Networks (CNNs) encompass convolution layers, activation functions, and 
pooling operations. Within the convolution layer, multiple convolution kernels (referred to as filters) are employed to compute 
feature maps. During each forward pass through the convolution layer, these kernels convolve with the input image, yielding 
respective feature maps. The values within these feature maps then undergo activation functions such as Rectified Linear Unit 
(ReLU) and sigmoid functions to introduce non-linearity to the network. Following activation, feature maps are subject to down-
sampling through pooling techniques, including max-pooling and mean-pooling. These techniques partition the feature maps into 
non-overlapping rectangles, effectively downsizing the activated feature map representations. 
After several iterations of convolution, activation, and pooling, the resultant feature maps are channelled into fully connected layers 
for classification tasks. Notably, in recent years, numerous CNN architectures of varying complexities, including GoogleNet, 
ResNet, DenseNet, VGGNet, LeNet, and AlexNet, have emerged, each contributing to the evolution of CNN-based deep learning 
models. The o/p of the convolutional function can be defined as an integral transformation & is represented as: 

(ݐ)ݏ = (݂ ⋅ (ݐ)(݇ = ݐ)݇ ݔ∑ −  (ݔ)݂(ݔ
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C. CNN Model 

 
Fig 2: The CNN model architecture 

 
The principal objective in the domain of Convolutional Neural Networks (CNNs) pertains to the optimization of architectural design 
to attain peak performance, as outlined in reference [9]. This endeavor entails the judicious selection of hyperparameters, 
encompassing factors such as the number of filters in network layers, the depth of the network, the dimensions of the convolutional 
windows, the choice of the optimizer, and other pertinent variables. The diverse permutations of these hyperparameters yield a wide 
spectrum of potential CNN model configurations [1]. These CNN hyperparameters can be categorized into three distinct domains: 
global hyperparameters, layer-specific hyperparameters, and architectural hyperparameters. While the manual exploration of 
hyperparameters can yield favorable outcomes, this approach demands a substantial level of proficiency in deep learning and is 
often marked by a labor-intensive and time-consuming trial-and-error process. A more efficient solution to address this challenge 
involves the utilization of automated hyperparameter optimization methodologies. 
An alternative avenue for automating hyperparameter optimization is through Genetic Algorithms (GAs), a subset of Evolutionary 
Algorithms (EAs). GAs have gained widespread acceptance for their ability to automatically optimize hyperparameters. GAs offer 
advantages such as comprehensive search across parameter spaces [2], adaptability for integration with deep learning models, and 
access to extensive libraries. It is important to note, however, that GAs may encounter challenges related to the convergence process 
in their quest to achieve globally optimal solutions. 
The limitation of Genetic Algorithms (GA), as described in reference [3], has been addressed through the introduction of variable-
length chromosomes in the proposed method. This innovative approach has successfully mitigated issues related to premature 
convergence and local optima. However, it is worth noting that this study primarily focuses on optimizing two hyperparameters, 
namely architecture, and layers, with limited attention to other global hyperparameters that influence the convergence of CNN 
models, particularly in the context of the chromosome optimizer. This paper seeks to extend the application of variable-length GAs 
to optimize a broader spectrum of hyperparameters within CNNs, aiming for more efficient hyperparameter optimization. 
Furthermore, the proposed model's validation leverages the English Handwritten (EH) dataset, characterized by diverse writing 
styles that encompass variations in thickness, size, shape, and slope. Notably, this dataset encompasses alphanumeric characters (A-
Z, a-z, and 0-9) represented in the form of EH. 
Recent studies have explored the utility of metaheuristic approaches for optimizing CNN hyperparameters in image recognition 
tasks. Reference [4] employed GA to optimize layer-specific hyperparameters such as kernel size, padding, and activation functions 
using the Cifar-10 and Cifar-100 datasets, demonstrating superior performance compared to manual hyperparameter tuning. 
Additionally, [5] conducted layer optimization and architectural hyperparameter tuning, achieving a remarkable accuracy rate of 
95% on the Cifar-10 dataset. Meanwhile, references [6] (for Cifar-10) and [7] (for MNIST) harnessed GA [8] to comprehensively 
optimize all facets of CNN hyperparameters, including layers, architecture, and global parameters. They argued that optimizing the 
learning rate in the optimizer can significantly impact individual model quality. Furthermore, [9] and [7] applied hyperparameter 
optimization to kernel size and the number of kernels, focusing on maintaining model depth for optimal performance using the 
Caltech-256 dataset. They employed the conventional binary crossover operator from the original GA [10], indicating that 
hyperparameter values persist into the next generation but do not necessarily lead to consecutive value sequences. 
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A ground-breaking advancement in Genetic Algorithms (GA) was introduced by reference [11], wherein they proposed a novel 
sequential model of the crossover operator, characterized by incremental selective pressure. This innovative approach was designed 
to surmount issues related to evolutionary schedule management within GA. To substantiate their method, the authors conducted 
validation experiments employing supervised datasets, including CIFAR-10, MNIST, and Caltech256, achieving notably improved 
accuracy results across diverse datasets. In the realm of hyperparameter optimization, reference [12] demonstrated the efficacy of 
GA-based optimization for layer-specific hyperparameters using the Cifar-10 dataset, achieving an impressive precision rate of 
97%. Moreover, reference [13] extended the scope of hyperparameter optimization by encompassing global hyperparameters and 
layer-specific hyperparameters, leveraging GA as the optimization framework. They noted that the dropout value exhibited 
negligible influence on the accuracy of the MNIST training data, leading to valuable insights regarding the optimization process. In 
a comprehensive study by reference [14], the optimization of three facets of hyperparameters within CNNs, employing GA, was 
explored using a facial emotion recognition dataset. Their findings indicated a remarkable performance improvement of 8%, 
elevating accuracy from 74% to 82% compared to prior work reliant on trial-and-error methodologies. 
Furthermore, GA was shown to offer heuristic-driven navigation that enhances both exploration and exploitation of solution spaces, 
as emphasized by reference [15]. Their utilization of importance sampling based on Monte Carlo techniques, combined with 
datasets like MNIST and Cifar-10, underscored the ability of their proposed model to significantly enhance the quality of trained 
models. In the context of CNN hyperparameter optimization, reference [16] achieved exceptional accuracy rates of 99.72% using 
GA-based optimization with MNIST data. The cumulative body of work on GA-based CNN hyperparameter optimization 
underscores its efficacy and potential for yielding substantial performance improvements. 
 
D. Genetic Algorithm 
Genetic Algorithm (GA) is a metaheuristic inspired by the principles of natural biological genetics and is classified within the 
broader category of evolutionary algorithms. The concept of Genetic Algorithm was originally introduced by John H. Holland in 
1975 [17]. GA is a versatile optimization approach capable of addressing both constrained and unconstrained problems by 
efficiently exploring expansive solution spaces. The fundamental structure of GA involves several key steps: initialization, selection, 
crossover, mutation, and fitness evaluation. Initially, GA generates an initial population of candidate solutions randomly, 
representing the search space. Subsequently, these candidates are evaluated based on their fitness, with preference given to those 
most suited to the prevailing environment. The next phase involves crossover, where selected candidates undergo genetic 
recombination. Following this, mutation introduces controlled genetic changes. The cycle repeats as a new generation of solutions 
emerges from this process, subsequently undergoing selection, crossover, and mutation iterations. This iterative process continues 
for a specific number of generations, incorporating crossovers, mutations, and ongoing selection of solutions. Eventually, the GA 
reaches termination, yielding the best results based on the optimization objective. 
 
E. Devanagari-English [Numeral + A-Z] Dataset 
The Devanagari numeral database is provided by the Indian Statistical Institute (ISI), Kolkata [18].  
This dataset comprises Devanagari numerals from 0 to 9, and this dataset is considered to standard benchmark Devanagari numeral 
dataset, used by various authors all over the world.  The dataset contains all possible handwritten numerals in Devanagari style. 
Fig.1 contains a few samples of handwritten Devanagari numerals from the same database.  

 

 
Fig 3: Handwritten Devanagari Dataset sample  

Fig 4: A-Z ENGLISH DATASET: 
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F. Hyperparameter Optimization 

 
Fig 5: Elementary Framework of Hyper Parameter Optimization (HPO) 

 
The primary drivers behind the adoption of Hyperparameter Optimization (HPO) techniques encompass the following key 
motivations: 
1) Minimizing Manual Intervention: HPO techniques aim to reduce the necessity for manual intervention when constructing 

automated machine learning (AutoML) models. The objective is to streamline the process of model development, making it less 
reliant on human expertise. 

2) Enhancing Model Performance: HPO seeks to significantly enhance the overall performance of machine learning models. This 
is achieved by precisely identifying the optimal combination of model parameters and finely tuning their values to maximize 
predictive accuracy and effectiveness. 

3) Defining a Standardized Search Space: HPO involves the establishment of a consistent and well-defined search space for a 
given task. By specifying various hyperparameters, this approach facilitates the creation of a standardized framework for 
benchmarking the performance of models under consideration.  

4) Leveraging Cross-Domain Knowledge: HPO methods incorporate insights from diverse domains throughout the training 
process by systematically adjusting various hyperparameter values. This incorporation of cross-domain knowledge contributes 
to the improvement of model performance and adaptability. 

 
II. RELATED WORK 

Prior research has explored diverse avenues for enhancing Convolutional Neural Network (CNN) hyperparameters, encompassing 
methodologies such as evolutionary algorithms, random search techniques, and Bayesian optimization. However, the predominant 
approach in current methodologies relies on evolutionary algorithms characterized by fixed-length encoding. This limitation restricts 
their adaptability when dealing with varying CNN architectures. A potential remedy to this limitation lies in the utilization of 
Variable Length Genetic Algorithms (VLGAs). VLGAs offer the advantage of enabling the algorithm to simultaneously evolve both 
hyperparameters and the architectural design of the CNN. To augment optimization efficacy, hybrid evolutionary algorithms (HEAs) 
have emerged as a promising approach, amalgamating multiple evolutionary processes for a more versatile and effective 
hyperparameter optimization strategy. 

Table 1: Existing Approaches for HWR 
Reference Approach Key Contributions 
Patel et al. (2022) [29] Metaheuristic Optimization Applied various metaheuristic optimization techniques, 

including simulated annealing and particle swarm 
optimization, to CNN hyperparameter optimization. 

Gupta et.al (2021) [28] Evolutionary Algorithms       
 

Introduced an evolutionary algorithm-based approach for 
optimizing CNN architectures and hyperparameters.    

Chen et al. (2020) [27] Reinforcement Learning Investigated the use of reinforcement learning to optimize 
CNN architectures, achieving competitive results. 

Zhang et.al (2019) [26] Genetic Algorithms     Proposed a genetic algorithm-based approach for 
hyperparameter optimization, demonstrating better 
performance. 
 

Smith et al. (2018) [25] Grid Search and Random 
Search 

Introduced traditional hyperparameter optimization 
methods and compared their performance. 
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The tabulated summary presented herein compiles references to relevant works, providing concise descriptions of the methodologies 
employed and their respective contributions. This tabular format serves to offer a succinct overview of the state-of-the-art 
approaches within the domain of CNN hyperparameter optimization, specifically in the context of handwritten digit recognition. 
Notably, recent developments in this field have yielded substantial advancements, particularly in object detection and classification 
challenges. Numerous researchers have proposed diverse models and algorithms to optimize CNN hyperparameters. Certain 
classification models, such as Support Vector Machine (SVM) [19], Random Forest [20], and K-nearest neighbor (KNN), have 
demonstrated exceptional performance on small datasets and respectable results on larger datasets. 
In the domains of medical imaging and the processing of medical signals, such as ECG and EMG, CNNs have emerged as highly 
accurate models. Moreover, CNNs have played a pivotal role in the development of Generative Adversarial Networks (GANs), 
serving as both generators and discriminators to create photorealistic images and construct 3-D object models from photographs for 
visualization purposes. While these models have exhibited impressive levels of accuracy, they come with associated costs, primarily 
stemming from intensive processing requirements and the complexity inherent in architecture development. These costs are 
primarily attributed to the meticulous fine-tuning of neural network weights necessary for feature extraction, as well as the 
protracted convergence process. 
The encoding of problem instances and the subsequent fitness evaluation within Genetic Algorithms (GAs) are pivotal to their 
success. However, the translation of neural network weights into GAs (for weight initialization) and the representation of neural 
network architecture within GAs (for architecture optimization) can result in extended processing times, particularly when neural 
networks are applied to complex and sizable datasets. Given the computational demands imposed by neural networks, this 
subsequently diminishes the efficiency of GAs and inflates the computational overhead associated with evaluating the fitness 
function, thereby prolonging the overall modeling process. There has been 89% accuracy achieved on this dataset using contour 
extraction [21], 92% accuracy using the model based on invariant movements and division of image for recognition [22], and 
95.64% accuracy using ANN + HMM [23]. 
In the proposed methodology, the task of classifying the Devanagari numeral, English alphabet dataset is addressed through the 
utilization of Convolutional Neural Networks (CNN). Within this framework, the optimization of weights within the fully connected 
layer is achieved via a Hybrid Evolutionary Algorithm and variable Length Genetic algorithm.  
The research findings demonstrate that the employment of second-order-based optimization techniques on weights derived from 
GA, as opposed to employing randomly initialized weights, leads to expedited convergence toward the optimal solution. Notably, 
the scope of GA optimization is limited to the fully connected layer of the CNN, thereby maintaining a modest chromosome length 
and minimizing computational overhead. This strategic approach contributes to the efficiency of the optimization process while 
achieving the desired classification results. 
 
A. Specific Hypotheses 
Hypothesis 1 (H1_1): CNN models optimized using HEA-VLGA will achieve higher accuracy in recognizing English handwritten 
digits compared to models optimized with grid search. 
Hypothesis 2 (H1_2): CNN models optimized using HEA-VLGA will exhibit higher precision in recognizing Devanagari 
handwritten digits compared to models optimized with random search. 
Hypothesis 3 (H1_3): CNN models optimized using HEA-VLGA will achieve higher recall in recognizing both English and 
Devanagari handwritten digits compared to models optimized with grid search. 
Hypothesis 4 (H1_4): CNN models optimized using HEA-VLGA will have a higher F1-score in recognizing a combination of 
English and Devanagari handwritten digits compared to models optimized with random search. 
 

III. METHODOLOGY 
The methodology unfolds through a series of well-defined stages, commencing with data pre-processing. Subsequently, feature 
extraction is executed utilizing a sparse autoencoder, followed by the construction of a Convolutional Neural Network (CNN) 
architecture. The culmination of the methodology involves the incorporation of a Hybrid approach, combining genetic algorithms 
(GA) to optimize the weights of the SoftMax classifier. 
The initial phase of the pre-processing pipeline focuses on character normalization, where the image undergoes correction to 
conform to a standardized plane with predefined proportions. The primary objective of this pre-processing phase is the reduction of 
image noise and mitigation of both intraclass and interclass variability. This meticulous pre-processing stage lays the foundation for 
a more efficient feature extraction process and serves to enhance classification accuracy. 
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A. Sparse Autoencoder for Feature Extraction 
Leveraging a Sparse Autoencoder, a specialized deep learning model tailored for the purpose of approximating input data, we 
conducted feature extraction from the dataset. This intricate process entailed dimensionality reduction while integrating a sparsity 
parameter, thereby facilitating the extraction of essential, low-dimensional information. These extracted features form the 
fundamental components of our CNN classifier. The training of the sparse autoencoder was contingent upon the optimization of a 
comprehensive cost function, encompassing weight decay, the Kullback-Leibler (KL) divergence, and the summation of squared 
errors. This optimization process played a pivotal role in achieving effective training of the sparse autoencoder. Two critical 
hyperparameters, λ and β, were thoughtfully employed to govern weight decay and KL distance, respectively. 
The architectural configuration of the sparse autoencoder comprised an input layer featuring 1024 nodes and an output layer 
comprising 83 nodes, thoughtfully designed to accommodate the vectorized image format inherent in the supplied data. The training 
of the sparse autoencoder was diligently executed through L-BFGS gradient optimization, spanning a total of 500 iterations. 
 
B. CNN Architecture 
The architecture of the Convolutional Neural Network (CNN) commences with an input layer designed to accommodate images of 
dimensions 32*32*3. These images undergo processing in the convolutional layer, characterized by a 9*9 kernel and 256 feature 
maps. Upon convolution, the resulting output assumes dimensions of 256*24*24. Subsequently, this output is directed to the 
activation layer, producing an output of equal dimensions, namely 256*24*24. This activated output serves as the input for the 
subsequent pooling layer, where an 8*8 patch is employed for mean pooling. Following mean pooling, the output dimensions reduce 
to 256*3*3, which is equivalent to 2304, and this value serves as the chromosome length, utilized as input for the Genetic 
Algorithm. Post-execution of the Genetic Algorithm, the best candidate, of the same dimensions, is obtained. This candidate is then 
fed into the input layer of the Fully Connected layer, which houses a single-layer SoftMax regressor. Subsequently, the weights of 
this fully connected layer are further enhanced through the application of the L-BFGS algorithm, aimed at optimization. For detailed 
technical insights regarding the functioning of L-BFGS, additional information can be found in reference [32]. 
 
1) Genetic Algorithm implementation with Hyperparameter Optimization 
In the implementation of the Genetic Algorithm, an initial population consisting of 10 candidates is generated, where the length of 
each candidate aligns with the number of weights in the SoftMax Classifier. The chromosome values are generated following a 
random normal distribution characterized by a mean of 0 and a variance of 1. During each iteration of the algorithm, two candidates 
are randomly selected from the population with equal probabilities. The fitness of these selected candidates is evaluated by 
computing the classification cost. This assessment is conducted by initializing the weights of the classifier with values encoded 
within the respective chromosomes. 
 
2) Determination of Hyperparameter Ranges and List 
This paper optimizes seven hyperparameters divided into three types: global, architecture, and layer.  
Global hyperparameters can affect the overall model. Parameters included in this category are optimizer and learning rate. 
Meanwhile, the Hyperparameter layer includes the number of output channels, kernel size, and activation function. Finally, the 
architecture hyperparameters include the number of the convolutional layer. Range hyperparameters are defined as the depth of the 
CNN model shown in Table 2. 

Table 2. Range of hyperparameter 
Hyperparameter Choices 
Number of outputs 8, 16, 32, 64, 128, 256, 512 
Convolutional Filter Size 1x1, 3x3, 5x5, 7x7, 9x9 
Activation Function type ReLu, Sigmoid 
Pooling Type MaxPooling, AverangePooling 
Skip Connection Yes, No 
Batch Normalization Yes, No 
Numbers of Layers ≥ 2 
Optimizer Adam, Adamax, Adagrad, Adadelta, Nadam, SGD, RMSprop 
Learning rate [0.001, 0.01] 
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The proposed approach combines the strengths of HEAs and VLGAs to optimize CNN hyperparameters while allowing for 
architectural variations in the network. The key steps in our methodology are as follows: 
a) Initialization: Initialize a population of CNN models with variable-length encoding, including different architectures, 

hyperparameters, and dropout rates. 
b) Fitness Evaluation: Evaluate the fitness of each CNN model using a cross-validation strategy with the English-Devanagari digit 

recognition dataset. 
c) Evolutionary Operators: Employ genetic operators like mutation and crossover to evolve the population iteratively. Use HEA 

techniques such as local search or memetic algorithms to refine the solutions within the population. 
d) Termination: Terminate the optimization process based on convergence criteria or a maximum number of generations. 
e) Experimental Results: In this section, the experimental results of the approach are presented. The proposed HEA-VLGA 

method is compared with traditional hyperparameter optimization techniques, which include grid search and random search, on 
benchmark datasets for English-Devanagari handwritten digit recognition. Evaluation metrics such as accuracy, precision, 
recall, and F1-score are utilized for performance assessment. 

f) Variable-length Genetic Algorithms: Original GA requires a fixed chromosome length if applied to optimize CNN 
hyperparameters. This is because CNN has a varying number of convolution layers and different depths. The variable length of 
the chromosome in GA contains the parameters that represent the solution from the hyperparameter CNN configuration. The 
Architecture of Proposed approach is illustrated in Fig 6. 

 
Fig 6: Flow Architecture of the proposed model using HEA-VLGA-CNN 
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Within the initial population, two convolutional layers are established, and the hyperparameter configurations for each individual are 
initialized randomly. Subsequently, their performance accuracy is assessed through validation on the CNN using dataset validation, 
which serves as a criterion for evaluating and ranking these individuals based on their fitness. The next generation is formed through 
a combination of crossover and mutation operations, employing the initial genetic algorithm operator. Individuals with the highest 
fitness scores are selected to progress to the new generation. In the crossover process, two individuals assume the roles of parents, 
and their offspring inherit traits from both parental sets. 
Conversely, the mutation process involves the alteration of specific hyperparameters within designated configurations. After the 
evolution of these initial two layers, the algorithm transitions into a phase where the generation of subsequent iterations 
encompasses an expanded number of layers and incorporates hyperparameter modifications. 
 
C. Encoding Scheme 
Chromosomes serve as carriers of essential information for each individual within the context of CNN hyperparameter optimization. 
While conventional chromosome representations utilize binary values (0 and 1), this paper adopts a more diverse encoding 
approach. These encoded values encompass various CNN hyperparameters, encompassing the global, architectural, and layer-
specific aspects. Notable hyperparameters include optimizer selection, learning rate determination, the number of convolutional 
layers, the count of dense layers, kernel size specifications, filter configurations, activation functions, and more. Once the 
chromosome configuration is established, it is employed to construct the corresponding CNN model. In the initial phase of the 
proposed model, two convolutional layers, denoted as "Layer A" and "Layer B," are featured. These layers are accompanied by an 
encoding of suitable hyperparameters within the chromosomes.  
Additionally, three supplementary hyperparameters are introduced to govern the behavior of the two-layer convolution block. These 
hyperparameters encompass pooling type selection and the inclusion or exclusion of a skip connection. In cases where a skip 
connection is employed, the connection layer bypasses a 1 x 1 convolution and integrates its output with the overall block output. 
Furthermore, the chromosome incorporates an "Activation Type" attribute, defining the choice of activation function to be applied 
throughout the entire model. 
 

IV. IMPLEMENTATION 
The optimization process unfolds through the following structured steps: 
 
1) Initialization: An initial population of CNN models is established, featuring a diverse range of hyperparameters and 

architectural configurations, which may be either randomly generated or predefined. 
2) Fitness Evaluation: Each CNN model within the population undergoes rigorous evaluation, employing cross-validation 

techniques applied to the training dataset. The fitness of each model is assessed based on its performance, with higher fitness 
indicating superior results. 

3) Iterative Refinement: The optimization process continues iteratively until a predefined termination criterion is met. This 
criterion may encompass reaching a maximum number of generations or achieving convergence. 

a) Parent Selection: Parent individuals are selected from the current population based on their fitness scores, favoring those with 
higher fitness values. 

b) Genetic Operators: Genetic operators, including mutation and crossover, are systematically applied to generate a new 
generation of CNN models, thereby diversifying the population. 

c) Hybrid Evolutionary Algorithm (HEA): Techniques such as local search are employed as part of HEA to further enhance 
solutions within the population. 

d) Fitness Assessment: The fitness of the new population is rigorously evaluated, allowing for the identification of improvements. 
 

4) Model Selection: The CNN model exhibiting the highest fitness score is selected as the optimized model, reflecting the best-
performing configuration. 

5) Final Evaluation: To gauge its real-world performance, the selected optimized model is assessed on an independent test dataset, 
providing a comprehensive evaluation of its capabilities. 
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Algorithm: CNN Hyperparameter Optimization using HEA-VLGA 
Input:  
Training dataset: Dtrain  
Testing dataset: Dtest 
Maximum number of generations: Gmax 
Population size: Npop 
Hyperparameter search space:  

 Learning rate range: LRrange = [LRmin, LRmax] 
 Batch size range: BSrange = [BSmin, BSmax] 
 Number of filters range: NFrange = [NFmin,NFmax] 
 Number of layers range: NLrange = [NLmin,NLmax] 

Output:  
Optimized CNN model: Mopt 
 
1) Initialization 
Initialize a population of CNN models: P=[M1,M2,...,MNpop]   
where each Mi represents a CNN model with hyperparameters: 
 Learning rate: LRi ∈ LRrange  
 Batch size: BSi ∈ BSrange 
 Number of filters: NFi ∈ NFrange 
 Number of layers: NLi ∈ NLrange   

 
2) Fitness Evaluation 
Evaluate the fitness of each CNN model in the population using k-fold cross-validation on the training dataset Dtrain 
Fitness function: F(Mi)→Fitness Scorei 
 
3) Main Optimization Loop 
Initialize generation counter: g=0 
Repeat the following steps until g<Gmax or convergence is reached:  

a. Select parent individuals based on their fitness scores. Let Pparents represent the selected parents. 
b. Apply genetic operators (mutation and crossover) to create a new generation of CNN models:  

 Mutation operation: Mmutated=Mutate(Mi) 
 Crossover operation: Mcrossover=Crossover(Mparent1,M{parent2}) 

c. Apply HEA techniques (e.g., local search) to refine solutions within the population: 
 Local Search operation: Moptimized=LocalSearch(Mi) 

d. Evaluate the fitness of the new population: Pnew=[Mmutated,Mcrossover,Moptimized,...] 
 Calculate fitness scores for Pnew  

e. Select individuals for the next generation based on their fitness scores: 
 Pnext=SelectNextGeneration(Pparents,Pnew) 

f. Increment generation counter: g=g+1 
 
4) Final Model Selection 
Select the CNN model with the highest fitness from the final generation as the optimized model: Mopt=argmaxMi(Fitness Scorei) 
5) Evaluation 
Evaluate the performance of the optimized model Mopt  on the test dataset Dtest: 
Test accuracy: Atest=Accuracy (Mopt,Dtest) 
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The Workflow of Proposed approach is illustrated in Fig 7. 

 
Fig 7: Workflow of the proposed VLGA-HEA-CNN technique 

 
SoftMax Function: The mathematical expression for the SoftMax function is given below: 

{}(ݖ)ߪ =  
ቄ൫(ೕ)൯ቅ

{ ∑ {௭(ೖ)} }{ೖ}
{಼సభ}

  for j=1,..,k 

Sigmoid Function: The sigmoid function is defined mathematically as   ଵ
ଵାషೣ

  , where ‘x’ is the input value and ‘e’ is the 
mathematical constant of 2.718. 
ReLU Function: The rectified linear activation unit, or ReLU, is one of the few landmarks in the deep learning revolution. It’s 
simple, yet it’s far superior to previous activation functions like sigmoid or tanh. 
ReLU formula is defined mathematically as:  f(x)=max(0,x) 
 

V. RESULTS & ANALYSIS 
 

Table 3: Comparison of ‘CNN without GA’ and with ‘GA assisted CNN’ 
Model  Accuracy  Precision Recall F1-Score 
CNN without using 
GA 

95.25% 0.95 0.95 0.95 

CNN with GA 96.51% 0.96 0.96 0.96 
 
The population is configured as 16 with 10 generations. The best and average fitness results for each generation are shown in Fig. 
12. From these results, the best individual is produced by the 8th individual in the 8th generation with a fitness value or accuracy of 
99.38%. 

  
Fig 8: Numerals Devanagari Labels 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue IX Sep 2023- Available at www.ijraset.com 
     

 
1298 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 
Fig 9: Chart for Consonants Devanagari 

 

 
Fig 10: Chart for English Labels 
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Fig 11: The Best Fitness & Average fitness based on the configuration number of population 

 
The details of the hyperparameters in the best population are the first number of output channels is 7x7 with kernel size is 256, the 
activation function is ReLU, the following number of output channels is 3x3 with kernel size is 64, the optimizer is Adamax with 
learning rate is 0.001. Adamax is an optimizer which is a variant of the Adam optimizer. However, in practice, there is the addition 
of the infinity norm [28].  Furthermore, the proposed method is compared with the existing models, like ANN, CNN, LSTM, CNN-
RNN and HEA-VLGA-CNN. The comparison result of accuracy is shown in  
 

Table 4: Comparison of the accuracy of the proposed HEA-VLGA model with others. 
Model  Accuracy 
ANN 96.27% 
CNN 70.32% 
LSTM 96.85% 
CNN- RNN 97.12% 
HEA-VLGA-CNN 99.38% 

 
The results indicate that our HEA-VLGA approach outperforms traditional optimization methods in terms of both accuracy and 
convergence speed. The ability to evolve not only hyperparameters but also the architecture of the CNNs allows our method to 
discover more efficient network configurations.  
 

 
Fig 12: Using ReLU Activation Function 
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Test loss: 1.171, Training loss: 1.110, Learning Rate: 0.001, Activation: ReLU, Regularization: L1, Regularization Rate: 0.001 
Test Loss: Test loss is a metric that measures how well a machine learning model performs on a separate dataset that it has not seen 
during training. It quantifies the error between the predicted values and the actual values in the test dataset. In this case, the test loss 
is 1.171, indicating the level of error in the model's predictions on this specific dataset. 
Training Loss: Training loss is similar to test loss but pertains to the error during the model's training phase. It measures how well 
the model is fitting the training data. A training loss of 1.110 suggests the level of error observed during the training process. 
Learning Rate: Learning rate is a hyperparameter that controls the step size or rate at which a machine learning model adjusts its 
internal parameters (weights and biases) during training. A learning rate of 0.001 signifies that the model's parameters are updated 
with very small steps in each iteration to ensure gradual convergence. 
Activation Function: Activation functions are mathematical functions applied to the output of a neuron (or a layer of neurons) in a 
neural network. They introduce non-linearity to the model, allowing it to learn complex patterns. In this case, the ReLU (Rectified 
Linear Unit) activation function is used, which is a common choice known for its simplicity and effectiveness. 
Regularization: Regularization is a technique used to prevent overfitting in machine learning models. It adds a penalty term to the 
loss function, discouraging the model from fitting noise in the data. In this case, L1 regularization is employed. L1 regularization 
encourages sparsity in the model by adding the absolute values of the weights to the loss function. 
Regularization Rate: The regularization rate (0.001 in this case) represents the strength of the regularization term. A smaller value 
indicates weaker regularization, while a larger value imposes stronger regularization, potentially resulting in sparser model weights. 

 
Fig 13: Using Sigmoid Activation Function 

 
Test loss: 0.713, Training loss: 0.165, Learning Rate: 0.0001, Activation: Sigmoid, Regularization: L2, Regularization Rate: 
0.001.  
Test Loss: The test loss is a measure of how well a machine learning model performs on a separate dataset that it hasn't seen during 
training. It quantifies the difference between the model's predictions and the actual values in the test dataset. In this case, the test 
loss is 0.713, which indicates the level of error in the model's predictions on this specific dataset. 
Training Loss: The training loss is similar to the test loss but pertains to the error during the model's training phase. It measures how 
well the model is fitting the training data. A training loss of 0.165 suggests the level of error observed during the training process. 
Learning Rate: Learning rate is a hyperparameter that controls the step size at which a machine learning model updates its internal 
parameters (weights and biases) during training. A learning rate of 0.0001 means that the model's parameters are adjusted with very 
small steps in each iteration, which can lead to slow but precise convergence. 
Activation Function: The activation function is a mathematical function applied to the output of a neuron (or a layer of neurons) in a 
neural network. It introduces non-linearity to the model, allowing it to learn complex patterns. In this case, the Sigmoid activation 
function is used. Sigmoid is known for its S-shaped curve and is commonly used in binary classification tasks where the output 
should be between 0 and 1. 
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Regularization: Regularization is a technique used to prevent overfitting in machine learning models. It adds a penalty term to the 
loss function, discouraging the model from fitting noise in the data. In this case, L2 regularization is employed. L2 regularization 
encourages the model's weights to be small by adding the sum of the squares of the weights to the loss function. 
Regularization Rate: The regularization rate (0.001 in this case) represents the strength of the regularization term. A smaller value 
indicates weaker regularization, while a larger value imposes stronger regularization, potentially leading to a simpler model with 
smaller weights. 

VI. CONCLUSION & FUTURE SCOPE 
This research paper introduces an innovative approach aimed at enhancing the performance of Convolutional Neural Network 
(CNN) models designed for the recognition of English-Devanagari handwritten digits. The methodology leverages the synergy of 
Hybrid Evolutionary Algorithms (HEA) and Variable Length Genetic Algorithms (VLGA) to optimize hyperparameters effectively. 
The experimental results substantiate the significant performance advantages of this approach in comparison to conventional 
optimization techniques. The implications of this novel technique extend beyond handwritten digit recognition, offering potential 
advancements in various computer vision applications. The model's performance can be assessed through the test loss and training 
loss values. A lower test loss indicates that the model is making more accurate predictions on unseen data, while a lower training 
loss suggests that the model is fitting well to the training data. In the example given, the test loss is higher than the training loss, 
which is a common observation but could indicate some degree of overfitting. The learning rate of 0.0001 implies that the model is 
updating its internal parameters with very small steps during training. This can result in slow but precise convergence. Choosing an 
appropriate learning rate is crucial for training neural networks effectively.   The choice of the Sigmoid activation function suggests 
that the model is likely used for binary classification tasks where the output should be between 0 and 1. Sigmoid is commonly used 
for such tasks. The use of L2 regularization with a rate of 0.001 indicates an attempt to prevent overfitting by adding a penalty term 
to the loss function based on the sum of the squares of the weights. This can help in improving the model's generalization to unseen 
data. In order to ensure the convergence of the model, this study introduces the incorporation of global hyperparameters, specifically 
pertaining to optimizer selection and learning rate adjustment, into the existing variable-length GA model. The experimental 
validation is conducted utilizing a dataset comprising handwritten English digits, reinforcing the practical relevance and 
applicability of the proposed approach. However, the GA encoding method yields lengthier chromosomes with an increase in the 
number of rounds, thereby diminishing its effectiveness. Consequently, heightened iterations lead to reduced accuracy. Based on the 
empirical findings of the experiments, it has been determined that a population size of 27 yields the most favorable fitness values 
and an elevated average fitness score. Moreover, comparative analysis underscores the superior accuracy achieved by our proposed 
model, with the HEA-VLGA model exhibiting an impressive accuracy rate of approximately 99.38%. To address concerns regarding 
the growing chromosomal length resulting from extended iterations, ongoing efforts are directed toward refining the GA encoding 
method. Additionally, there is an ongoing initiative to develop a more robust architectural framework capable of harnessing the 
potential of GA for specific CNN layers. Future research endeavors are poised to explore avenues for automated architecture 
discovery through the utilization of VLGAs. Furthermore, the applicability of this approach to a diverse range of computer vision 
challenges is a subject of keen interest. 
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