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Abstract: The continuously rising global trend in demographics is a challenge that modern agriculture has to contend with to 
feed the world by producing food produced with scarce inputs. In response, Advanced emerging technologies like machine 
learning (ML) and the IoT have birthed intelligent farming. This paper gives a decision-making framework for crop 
management, particularly using machine learning models to identify rice quality. Apache Kafka and Spark are used with the 
system and are coupled with big data techniques for enhanced data streaming and processing. Real-time classification of rice 
quality using various ML algorithms, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and 
Feedforward Neural Networks (FFNN) are used. This research shows that this methodology significantly improves the decision-
making approach in precision agriculture as a viable framework for future agricultural systems. Lastly, suggestions for future 
development aret presented regarding incorporating environmental information and utilizing the models in wider scouting 
practices. 
Keywords: Smart farming, Decision Support System (DSS), Machine Learning (ML), Rice quality prediction, Real-Time data 
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I.      INTRODUCTION 
It is estimated that the total human populace is expected to be 9.7 billion by 2050, and there is a need to double food production 
rates globally simultaneously; water and arable land are scarce [1]. Specifically, through the use of the Internet of Things (IoT), 
artificial intelligence (AI), and machine learning (ML), smart farming offers valid opportunities for the enhancement of agriculture 
through a methodology that involves the employment of real-time data gathering, analysis, and planning. Expert systems, such as 
the Decision Support Systems (DSS), are used to understand various inputs, including soil and weather, and significantly 
recommend the most appropriate planting, watering, and harvesting regimes[2], [3], [4]. New developments in ML have improved 
the DSS's effectiveness in the forecasting of yield/ quality of crops[5], [6]. In this respect, field crops like rice that are vulnerable to 
factors such as temperature and water supply a model that uses ML for predicting quality, and the predictive parameters include the 
chemical composition of the food item and the phases of the crop's growth[7]. This paper evaluates a real-time ML-based DSS for 
rice quality prediction using Apache Kafka and Spark to facilitate real-time decision-making [8]. 
 

II.      RELATED WORK 
In recent years, machine learning (ML) applications have transformed decision support systems (DSS) in agriculture, particularly 
through predictive models that support real-time decision-making for crop management [9]. ML algorithms are applied across tasks 
such as yield estimation, disease detection, and quality classification [10], with studies showing high accuracy for models like 
support vector machines (SVM), neural networks, and decision trees [11]. For instance, Liakos et al. and Zhi Hong Kok et al. 
provide comprehensive reviews emphasizing the impact of these models in precision farming [12], [13]. However, they lack real-
time data integration for operational use Addressing this gap, our research integrates Apache Kafka and Spark for real-time 
processing, enabling immediate, large-scale data handling crucial for modern agriculture [14]. Scalability and robustness are vital 
for DSS, particularly crop quality predictions reliant on high-dimensional IoT data. Existing studies, such as Giusti's fuzzy DSS for 
irrigation, demonstrate effective agricultural data use but are limited to real-time, high-scale analysis [15]. By leveraging a cloud-
based architecture for data storage and visualization, our approach scales with large datasets and offers a dynamic framework for 
informed, real-time decisions in precision farming [16]. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue XI Nov 2024- Available at www.ijraset.com 
    

 1459 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

III.      METHODOLOGY 
Based on our research, the decision-making principles for intelligent farming were created, emphasizing rice quality on-the-fly 
prediction. The system combines and incorporates many technologies, such as machine learning (ML) algorithms, big data, and the 
cloud. The architecture framework involved is arranged so that big data retrieval and forecast are feasible and real-time and assist in 
timely strategic planning of crop management. 
 
A. Data Collection and Preprocessing 
The data used in the study were obtained from the Chinese National Germplasm Repository, which has 50,000 samples with 80 
original attributes. In this study, some output measures, for example, plant height, panicle number, and starch, were chosen, and 
therefore, the dataset was shrunk to 36 attributes after data preprocessing. In case of missing values, imputation followed by ASCII 
conversion for compatibility with the rest of ML models was applied. Normalization was used for feature scaling, ensuring that 
every input variable was normalized for training. 
 
B. Machine Learning Algorithms 
Three ML algorithms were chosen for their suitability in classification tasks and established efficacy in agricultural studies: K- 
Nearest Neighbors (KNN), Support Vector Machines (SVM), and Feed Forward Neural Network (FFNN). The first algorithm, KNN 
with the Euclidean distance, is relatively simple and more suitable for small datasets; the second algorithm, SVM with an RBF 
kernel, is considered to be highly effective for work in high-dimensional space; the third type of FFNN with three hidden layers was 
used to identify non-linear relationships at the cost of high computational parameters. 
 
C. System Architecture 
The IoT sensors are included in the DSS architecture, with Apache Kafka as a data streaming service, Apache Spark for real-time 
data processing, and Onesait as a cloud platform for data storage and visualization. For synchronous data migration, Kafka produced 
a highly reliable and effort-free solution, while for processing, Spark brought in mini-batch data processing for parallel, efficient 
operation. Onesait provided support for data storage and gave an announcement interface for live crop surveillance and quality 
checking. 

 
Fig1. Spark streaming data flow diagram 

 
D. Experimental Setup 
The system was tested using historical rice data for model training, with live sensor data streamed through the Kafka-Spark pipeline. 
Model performance was assessed through accuracy, precision, and F1-score metrics, while latency and scalability tests confirmed 
system robustness under varying data loads. 

 
IV.      RESULTS 

The KNN, SVM, and FFNN ML models were evaluated based on accuracy, precision, recall, F1 score, and computational cost. The 
key performance indicators and their definitions are outlined in Table 1. 

TABLE I.  PERFORMANCE METRICS FOR KNN, SVM, AND FFN MODELS 
Model Accuracy (%) Precision Recall F1-Score Computational 

efficiency (time) 
KNN 68.5 0.67 0.68 0.67 medium 
SVM 70.3 0.71 0.70 0.70 high 
FFNN 72.8 0.73 0.73 0.73 low 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue XI Nov 2024- Available at www.ijraset.com 
    

 1460 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

A. Machine Learning Model Performance 
The KNN model achieved 68.5% accuracy for rice quality classification, with precision and an F1-score of 0.67. They also found 
that increasing the degree of mock neighbors (k) influenced the accuracy of the program in finding the real neighbors, and k=5 was 
the optimum. However, misclassification was observed in the "low" and "high" quality classes. Accuracy is depicted in Figure 2, 
and computation times remain stable at various k values regardless of the configurations. This shows that KNN is best used in cases 
where a prioritization on computational speed outweighs a fractionally better accuracy result. 

 
Fig2. KKK Accuracy vs Computation time for different k values 

 
Unlike KNN, which scored only 59 %, the SVM model with a radial basis function using the RBF kernel attained a higher accuracy 
of 71%. The optimization of the penalty parameter (C) and kernel coefficient (gamma) significantly improved classification 
performance, particularly in separating the "high" and "low" quality classes. As illustrated in Figure 3, SVM's accuracy increased 
with larger training datasets, while computation time remained efficient due to the model's scalability. 

 
Fig3. SVM Accuracy vs Dataset 

 
SVM outperformed KNN in accuracy and generalization, making it a preferred model for predicting rice quality in more extensive 
and complex datasets. The confusion matrix, shown in Figure 4, demonstrates that SVM performed well in predicting the "medium" 
rice quality class, but there was still some overlap between the "low" and "medium" classes. 
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Fig4. Confusion matrix for rice quality classification 

 
The FFN model yields the highest accuracy at 77%, with an F1-score of 0.73. three hidden-layer architectures facilitated complex 
relationship mapping, but the model's computational demands were substantial. Figure 5 highlights the accuracy versus computation 
time for FFNN, while the loss curve in Figure 5 shows the model's convergence over 1,000 iterations, affirming training 
effectiveness. Although FFNN achieved superior accuracy, its computational cost may limit real-time application. 

  
Fig5 FFNN Accuracy vs. Computation time                                                      Fig6. FFNN Loss curve during training 

 
Among the models tested, FFNN attained the highest accuracy but required significant computational resources, while SVM 
provided a balanced solution suitable for real-time applications. 

 
B. Real-Time streaming performance 
The system's real-time streaming feature was evaluated based on latency and throughput using Apache Kafka and Spark. These 
metrics are provided in Table 2 below. Thus, Kafka maintained low interference, with an average of 1,200 ms of delay in smaller 
batches and a maximum of 2,500 ms in larger batches. Micro batch data processing was also managed well under Spark, with an 
average time of 2500 ms for small micro batches and a maximum of 3500 ms for larger ones. The merging of Kafka and Spark 
showed promising results in terms of scalability and efficacy, as requested by the real-time application of rice quality prediction 
using precision agriculture 

TABLE II.  KAFKA-SPARK STREAMING LATENCY AND THROUGHPUT 
Metric Kafka Spark Streaming 
Average latency (small batch, ms) 1200 ms 2500 ms 
Peak latency (large batch, ms) 2500 ms 3500 ms 
Throughput (message/sec) 5000 messages/sec 3000 messages/sec 
Fault tolerance high High (automatic replication) High (data persistence with 

RDDs) 
Scalability Horizontal scaling with partitions Distributes nodes 
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C. Comparison with existing approaches 
The fact that the proposed system will stream and incorporate scalability in real-time makes it a unique solution from the traditional 
batch processing techniques. Related works reviews on batch processing techniques have been addressed by previous researchers 
like Su Ying-xue [17] that did not involve real-time data streaming. They are mainly unsuitable for real-time operation, essential for 
precise farming. The Onesait platform was used to store and update data for real-time visualizations of the crops' health and quality 
predictions displayed on the operations dashboard. 

 
V.      DISCUSSION AND CONCLUSION 

In this work, the ML models for real-time rice quality prediction were examined, and the best models shown in the table were FFNN, 
which had the added disadvantage of very high computational time. The problem with such a formulation is that it diminishes the 
realism of developing an FFNN in a real-life release, as timeframe and resources are critical. SVM provided a comparable balance 
between accuracy and computational costs, corroborating other studies stating that SVM is accurate in reproducibly moderate 
resource-constrained contexts, placing it well for precision agriculture solutions [18], [19]. On the other hand, we observed that K-
Nearest Neighbours (KNN) tested moderate performance, and this is in agreement with studies that have pointed out that high-
dimensional data has one major drawback: it is based on the classification by proximity. This supports that more complex 
algorithms are required when large-scale agricultural data are complex, as presented in [20]. They are switching to real-time data 
handling through Apache Kafka, and Spark aided in the processing, providing an edge over batch processing. Like earlier work, the 
present study established that big data technology can potentially enhance efficient and sustainable crop decision systems. While 
FFNN has the possible influence mentioned above, the model's computational burden makes the model unsuitable for large-scale 
applications. Further studies should look at building models somewhere in between, or at least less complex, resource-demanding 
architectures to achieve comparable levels of accuracy. However, extending the number of predictors added to the model, such as 
environmental conditions like moisture, temperature, and humidity, can also increase the accuracy and the system's applicability 
toward precision farming.  
Last, we highlight how intelligent farming is made possible by machine learning and real-time data streaming; even now, there are 
issues with data processing and scalability. Cloud computing is characteristic of offering customizable solutions, but many systems 
do not fully leverage these services. This system advances the usefulness of rice quality prediction by integrating ML models with 
real-time streaming and cloud data management processes. This framework is generalizable well to other extensions of the 
administrative properties of agriculture and will ensure the effective utilization of resources. 
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