

12 VI June 2024

https://doi.org/10.22214/ijraset.2024.63417

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue VI June 2024- Available at www.ijraset.com

1782 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

PHP Laravel - A Focus on Customization and
Schedule Job Management

Akhil Duggirala

Sails Software Solutions, RGUKT - IIIT Srikakulam, India

Abstract: The PHP-based web framework Laravel is a prominent option for developers who want to create safe and effective
online apps. Its rich feature set reduces the need for substantial planning from the ground up and saves developers much time.
Using Laravel, developers may easily combine different customized packages for their projects, which expedites the coding
process and improves the app's logical structure. Laravel plays a crucial role in the need for secure web development. Because of
its robust security features, Laravel stands out as the most prominent framework. The schedule jobs library is updated by the
author highlighting the framework’s adaptability and flexibility for the project requirements.
Keywords: Laravel, Spatie, Laravel Schedule Monitor, Artisan, Github

I. INTRODUCTION
In today’s fast-paced digital environment, the efficient management and tracking of planned tasks within web applications is critical
for guaranteeing peak performance and dependability. Laravel a renowned PHP-based web framework has been developed
continuously to satisfy developers who want to build safe and robust effective web applications. The vast package ecosystem plays a
significant role in Laravel’s adaptability over the world which improves many facets of application development. One of the packages
among them is “laravel-schedule-monitor” which is especially useful for detailed information about the jobs and commands. The
integration of Laravel’s schedule monitor enables the developers to track the time taken for the execution of the job, spotting the issues
and performance reviews when the command runs. Laravel Schedule Monitor library permits synchronization with other services such
as Oh Dear. The connection between them promptly notifies developers when the event of a task fails or is delayed by any means.

II. BACKGROUND OF STUDY
Regularly reviewing and evaluating the tasks to ensure they are completed as planned and to promptly address any deviations or issues
is the responsibility of monitoring scheduled tasks. Its ongoing process helps maintain the promptness, reliability, and effectiveness of
a project or organization. GitHub has the code that was utilized for the analysis. Most developers can save a great deal of time when
looking into scheduled command failures by using the study's prediction of error logs when a command fails.

III. METHODOLOGY
A. Workflow of Schedule Commands

Figure 1: Workflow of schedule commands

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue VI June 2024- Available at www.ijraset.com

1783 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

IV. PROPOSED SYSTEM
The package makes it simple to monitor, identify issues, and analyze performance by offering a dependable way to track and
document the completion of planned tasks in Laravel applications. We present a feature in our suggested system that allows the failure
causes of scheduled operations inside Laravel apps to be stored in a database. The improvement helps the developers effectively
monitor the task and assists in investigating the failure reasons for task failures leading to easy problem-solving and proactive
application performance monitoring. By systematically registering the failure causes, developers can obtain maximum insights and
knowledge about the issues occurrences and make the necessary adjustments or modifications on the jobs which will eventually
improve the application efficiency and reliability. The failure data that has been stored can also be used for additional analysis and
further optimization technical improvements.

Figure 2: Proposed model for workflow of schedule commands

V. IMPLEMENTATION

A. Library Installation
You can install the package via composer [2]:

Figure 3: Install the package

The command "composer require spatie/laravel-schedule-monitor" adds the "spatie/laravel-schedule-monitor" package as a
dependency in a Laravel project. The Spatie helps in organizing and monitoring the scheduled tasks and enhances Laravel’s
capabilities also helps in obtaining insightful information on how the commands are being carried out such as storing the status of the
job and monitoring the task.

B. Database Preparation
You must publish and run migrations:

Figure 4: Publish the package and migrate

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue VI June 2024- Available at www.ijraset.com

1784 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The command, "php artisan vendor: publish --provider="spatie\ScheduleMonitor\ScheduleMonitorServiceProvider"
--tag="schedule-monitor-migrations" is used to publish the migrations provided by the “spatie/laravel-schedule-monitor”. The
migrations create the tables in the database schema for the package functionality to store the execution logs..
The command “php-artisan migrate” is used to perform the migrations after the publishing. This will create relevant database tables in
the database schema in the application. This connection enables the controlling of holding the appropriate data about scheduled jobs
and their monitoring by the ‘spate/laravel-schedule-monitor’.

C. Schedule Command Creation
1. Create a New Command [3]:
First, create a new artisan command using the following command:

Figure 5: Command to create an artisan command.

2. Define the Schedule Logic:
Open the generated command file located at app/Console/Commands/. Define the logic of your command in the handle() function
which will be executed when the scheduled command runs.

3. Usage
You need first run schedule-monitor: sync to keep an eye on your schedule. This command will examine your schedule and add a
record to the monitored_scheduled_tasks table for every task.

Figure 6: Sync the package.

D. Example
Let’s write a command GeneratePassword which updates the password every minute.

Figure 7: Basic Command

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue VI June 2024- Available at www.ijraset.com

1785 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Lets register the command in Kernel.php

Figure 8: Register the Command in Kernel

Run the command at the background
To run the command we use schedule:work command

Figure 9: Schedule Work command execution

Let’s see the users table for some users

Figure 10: Checking Users table

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue VI June 2024- Available at www.ijraset.com

1786 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

You can observe that initially there are no users in the table and run the schedule:work

Figure 11: Checking Schedule Logs

E. Observation
We are facing a problem with minimal metadata being returned when a command fails. Examples of this metadata include "runtime",
"exit_code", and "memory". It may not be enough to diagnose complex failures.
Based on these constrained information values, it's easier to identify the issue when working with fewer instructions. But when
commands get more complicated that is, when you have to deal with a lot of lines, manipulate data, or perform intricate operations it
gets harder to figure out the failure's primary cause with just this scant metadata.
The “MonitorScheduledTask” package is built in a way that, if any event or job fails it will store the runtime, exit code, and memory
metadata fields in the database, but it doesn’t offer any further explanation and information on the context for the failure reasons. It is
indeed necessary to improve the reliability of the monitoring system to record and collect more metadata of the error message which
offers more insights into the underlying problems of the commands/jobs failure.

Figure 12: Monitored Schedule Task Model

The subject is accurate that a longer investigation may result from a lack of specific details regarding the reason a command failed
which involves more manual tasks to debug the issues in the absence of sufficient context or error warning.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue VI June 2024- Available at www.ijraset.com

1787 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

F. Monitored Scheduled Task - Package Update
Updating the package to record the cause of the failure reason helps in enhancing the troubleshooting and investigation time. This
change in the package helps the monitoring system record the failure reason along with the metadata. This includes adding
comprehensive error logging information to the MonitoredScheduledTask package. The package catches the error messages and helps
in storing the new information in the database.
When looking into command failures, administrators and developers would have access to a larger collection of information by doing
this. They could rapidly determine the failure's primary cause and take the necessary action to fix it by simply querying the database to
obtain the error messages linked to unsuccessful commands..

 [1]
Figure 13: Code to be added

At line number: 157, we have added the bit of code to capture the error logs.
Link: https://github.com/spatie/laravel-schedule-monitor/pull/97

Figure 14: Updated Code

If we make the command run now, by schedule:work in terminal.

Figure 15: Schedule Work

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue VI June 2024- Available at www.ijraset.com

1788 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Figure 16: Error Log in Schedule Logs Table

VI. CONCLUSION

The ability to record and keep comprehensive error data in the database has made it easier for developers to locate and fix the core
reasons for command failures. This change gives them the capacity to identify and fix problems quickly, reducing downtime and
increasing system dependability. Furthermore, centralizing error data in the database makes it easier to do continuous analysis and
follow trends. Development teams can prioritize improvements and improve system performance over time by identifying reoccurring
problems or areas for improvement. The system will adapt to meet changing demands and requirements thanks to this iterative
approach, which promotes ongoing progress. In conclusion up, adding thorough error logging to the package is a proactive step that
improves the system's maintainability and dependability. This improvement enhances operational excellence and yields measurable
time and resource savings by providing developers with the knowledge they need to resolve problems effectively and enable
systematic analysis for long-term optimization.

REFERENCES
[1] https://github.com/spatie/laravel-schedule-monitor/pull/97
[2] https://spatie.be/docs/laravel-query-builder/v5/installation-setup
[3] https://www.cloudways.com/blog/custom-artisan-commands-laravel/
[4] https://laravel.com/docs/11.x

ABOUT THE AUTHOR

Akhil Duggirala is a Software Developer at Sails Software Solutions having 2+ years of experience in Full Stack
Development and graduated from RGUKT IIIT SRIKAKULAM. He is very fascinated with technology and has
a publication in Machine Learning in IJSRD titled Bank Loan Personal Modelling using Classification
Algorithms of Machine Learning. His interest lies in various Machine Learning Techniques, Full Stack
Development and open-source contributions.

