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Abstract:  Convolutional neural networks have become very efficient in performing tasks like Object Detection providing human 
like accuracy. However, their practical implementation needs significant hardware resources and memory bandwidth. In recent 
past a lot of research is being carried out for achieving higher efficiency in implementing such neural networks in hardware. We 
talk about FPGAs for hardware implementation due to their flexibility for customisation for such neural network architectures. 
In this paper we will discuss the metrics for efficient hardware accelerator and general methods available for achieving an 
efficient design. Further, we will discuss the actual methods used by recent research for implementation of deep neural networks 
particularly for object detection related applications. These methods range from actual ASIC design like TPUs [1] for on chip 
acceleration, state of the art open source designs like Gemini to methods like hardware reuse, re-configurable nodes and 
approximation in computations as a trade-off between speed and accuracy. This paper will be a valuable summary for the 
researchers starting in the field of hardware accelerators design for neural networks. 
Keywords: Deep Neural Network, FPGA, Quantization, Precision, Object Detection, YOLO. 
 

I. INTRODUCTION 
Artificial Intelligence (AI) including Machine Learning and Deep Learning has evolved as a universal field with applications in 
every aspect of life. Deep learning is based on the working of human brain and utilizes deep neural networks for achieving high 
degree of accuracy and is being widely used in computer vision. The main advantage of the DNN over other prediction techniques is 
its capability to learn hidden relationships in data with unequal variability Hardware accelerator term is used for devices which are 
specifically designed for a particular application such as object detection. On one hand, we have general-purpose systems such as 
CPUs and GPUs that are capable of performing any task but are not very efficient, and on the other hand, we have ASICs that can 
run with high efficiency for the task at hand but require lots of effort, time, and money to build. In this trade-off between efficiency 
and generalizability, FPGAs provide a very attractive middle ground. FPGAs are a set of logic gates that can be programmed to 
perform any function. In this review we examine the research in the field of hardware accelerators using FPGAs particularly in the 
field of object detection using Convolutional neural networks. We cover the various methods of optimising the efficiency and 
throughput without significant loss of accuracy. 

 
II.  KEY PERFORMANCE METRICS FOR HARDWARE ACCELERATORS 

A. Accuracy 
Accuracy [2] is employed as a metric to signify the level of quality in achieving a desired outcome for a certain task. The popularity 
and extensive utilisation of Deep Neural Networks (DNNs) in contemporary times can be attributed to their ability to attain 
exceptional accuracy across a diverse array of jobs. The choice of units for measuring precision is contingent upon the specific 
activity at hand. In the context of object detection, accuracy is commonly quantified as the proportion of images accurately 
predicted. On the other hand, in the domain of object detection, accuracy is typically measured using the mean average precision. 
Complexity in terms of the number of MAC operations and different weights, as well as increased size of the model) is sometimes 
necessary to attain high accuracy on challenging tasks or datasets. The variation in layer shapes and other factors can have an impact 
on the hardware’s efficiency in processing the DNN model. 
 
B. Throughput and Latency 
Throughput is a metric employed to quantify the volume of data that can be effectively processed or the frequency of task 
executions that can be successfully accomplished within a specified duration. The need of high throughput is frequently emphasised 
in various applications. For example, the requirement of processing video at a rate of 30 frames per second is essential in order to 
achieve real-time performance.  
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In the context of data analytics, the term “high throughput” refers to the ability to analyse a larger volume of data within a specified 
time frame. The significance of high-throughput big data analytics is escalating due to the exponential growth of visual data. This is 
especially crucial when prompt action is required based on the analysis, such as in the fields of security or terrorism prevention, 
medical diagnostics, or drug discovery. The metric commonly used to quantify throughput is the frequency of operations executed 
within a given time frame. When it comes to inference, the measurement of throughput is typically expressed as the number of 
inferences performed per second, or alternatively, as the duration required to execute a single inference, measured in seconds. 
Latency refers to the temporal interval between the arrival of input data to a given system and the generation of the corresponding 
output. The requirement of low latency is crucial for the seamless operation of real-time interactive applications, including 
augmented reality, autonomous navigation, and robots. The measurement of latency is commonly in units of seconds. The impact of 
the DNN model on the number of MAC operations per inference is dependent on network architecture (specifically, layer shapes) 
and the sparsity of weights and activations. However, the overall effect of the DNN model on throughput and latency is contingent 
upon the hardware’s capability to incorporate these approaches without significantly diminishing the utilisation of processing 
elements (PEs), the number of PEs, or the cycles per second. This is the reason why the quantity of MAC operations may not serve 
as an adequate indicator for evaluating both throughput and delay. Likewise, the quantity of processing elements (PEs) present in 
the hardware and their maximum throughput do not provide an adequate basis for assessing the overall throughput and latency. 
Reporting the real runtime of deep neural network (DNN) models on hardware is of utmost importance in order to consider 
additional factors such as the utilisation of processing elements (PEs).  
 
C. Energy and Power 
Energy efficiency refers to the measurement of the quantity of data processing per unit of energy. The significance of high energy 
economy becomes evident when considering the processing of deep neural networks (DNNs) on embedded devices situated at the 
edge, which possess limited battery capacity. Edge processing is often favoured over cloud computing in specific applications 
because of factors such as latency, privacy concerns, and constraints in connection bandwidth. The quantification of energy 
efficiency is commonly expressed as the ratio of activities performed to the amount of energy consumed, typically measured in 
joules. Power consumption” is a metric employed to quantify the quantity of energy utilised within a given timeframe. The 
relationship between power consumption and heat dissipation is such that an increase in power consumption leads to a 
corresponding increase in heat produced. Consequently, the maximum power consumption is determined by a design criterion 
commonly referred to as the thermal design power. The thermal design power is the power level that the cooling system is 
specifically designed to handle. The consideration of power consumption is crucial in processing Deep Neural Networks (DNNs) in 
cloud environments. This is primarily due to the fact that data centres impose strict power limitations, primarily driven by the 
associated cooling expenses. Additionally, handheld/wearable products face stringent power constraints. This is because users of 
such devices are typically highly sensitive to heat, and the physical design of these devices restricts the implementation of effective 
cooling mechanisms, such as the absence of fans. Power consumption is commonly expressed in units of watts (W) or joules per 
second (J/s).  
 
D. Hardware Cost 
To assess the desirability of a specific architecture or technique, it is imperative to take into account the associated hardware 
expenses.  
The term”hardware cost” refers to the financial expenditure associated with constructing a system. Determining the financial 
viability of a system holds significance from both an industrial and research standpoint. From a business standpoint, the limitations 
on costs are influenced by market dynamics. For instance, embedded devices are subject to more rigorous cost constraints compared 
to processor utilised in cloud computing. The chip area, measured in square millimetres, and the process technology, such as 45 nm 
CMOS, are significant factors that influence cost. These factors determine the limitations on on-chip storage capacity and 
computational capabilities, such as the number of processing elements (PEs) for custom deep neural network (DNN) accelerators, 
the number of cores for central processing units (CPUs) and graphics processing units (GPUs), and the number of digital signal 
processing 
(DSP) engines for field programmable gate arrays (FPGAs), among others. In order to convey data pertaining to area without 
explicitly mentioning a particular process technology, one can utilise the on-chip memory capacity (such as the storage capacity of 
the global buffer) and computational resources (such as the number of processing elements) as indicators of area. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue V May 2024- Available at www.ijraset.com 
     

 
4525 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

E. Flexibility 
The adaptability of a deep neural network (DNN) accelerator is also a determining factor in its merit. Flexibility pertains to the 
extent of DNN models that can be accommodated on the DNN processor, as well as the software environment’s capacity (such as 
the mapper) to fully use the hardware’s capabilities for any given DNN model. In light of the rapid progress in research and 
implementation of deep neural networks (DNNs), it is becoming more crucial for DNN processors to possess the capability to 
accommodate a diverse array of DNN models and jobs.  
 
F. Scalability 
The significance of scalability has grown in light of the extensive applications of deep neural networks (DNNs) and the emergence 
of technologies aimed at expanding not just the chip’s dimensions but also constructing systems comprising many chips, commonly 
known as chiplets, or even wafer scale processors. The term “scalability” pertains to the “extent to which a design can be expanded” 
in order to “achieve greater throughput and energy efficiency” by using number of “processing elements (PEs) and on-chip storage 

 
III.  TECHNIQUES TO IMPROVE EFFICIENCY OF HARDWARE ACCELERATOR FOR DNNs. 

A. Energy Efficient Data Flows 
In the context of DNNs, the main performance bottleneck arises from memory access. Each MAC operation necessitates three 
memory reads (for filter weight, feature map activation, and partial sum) and one memory write (for updating the partial sum). In 
the worst-case scenario, all these memory accesses must go through the off-chip DRAM, significantly impacting both processing 
throughput and energy efficiency. Accelerators, such as spatial architectures, present an opportunity to mitigate the energy cost 
associated with data movement by introducing multiple tiers of local memory hierarchy, each with varying energy costs. This 
hierarchy includes a substantial global buffer, several hundred kilobytes in size, connected to DRAM; an inter-PE network enabling 
direct data exchange between ALUs; and a register file (RF) within each processing element (PE), typically a few kilobytes or 
smaller. The inclusion of these diverse memory levels helps enhance energy efficiency by offering cost-effective data access 
solutions. For instance, retrieving data from the RF or neighbouring PEs incurs energy costs one or two orders of magnitude lower 
than fetching from DRAM. Accelerators can be tailored to support 
Specialized processing data flows that leverage this memory hierarchy. The dataflow determines which data are read into which 
level of the memory hierarchy and when they are processed. Given the deterministic nature of DNN processing, it’s possible to 
design a fixed dataflow that can adapt to various DNN shapes and sizes, optimizing for optimal energy efficiency. This optimized 
dataflow minimizes accesses to the more energy-intensive levels of the memory hierarchy, recognizing that larger memories capable 
of storing substantial data consume more energy than smaller counterparts. 
 
B. Data Reuse Opportunities in DNNs 
Few properties of DNN lend them to be leveraged for data reuse. Firstly, MAC operations do not have to be in a particular order 
within a layer which lends it for parallelism to improve throughput. Secondly, the “data movement cost can be addressed by the 
DNNs property that same piece of data is often used for multiple MAC operations” [3]. This property manifests in following forms:  
1) Input Feature Map Reuse: Reuse of input feature maps occurs when various filters (with a dimension of M) are applied to the 

same input feature map, leading to the generation of multiple output feature maps. Consequently, each input activation is 
utilized multiple times, precisely M times. 

2) Filter Reuse: Filter reuse manifests when processing a batch of input feature maps (with a size of N), as the same filter is 
applied to all inputs within the batch. Consequently, each filter weight is employed repeatedly, specifically N times. 

3) Convolutional Reuse: Convolutional reuse pertains to convolutional layers, where the dimensions of a filter (R x S) are smaller 
than those of an input feature map (H x W). The filter traverses various positions within the input feature map, often with 
overlapping regions, to produce an output feature map. As a result, each weight and input activation are additionally reused P x 
Q and R x S times, respectively, to generate distinct output activations. 

 
C. Reducing Precision 
Data movement consumes huge energy and determines the throughput. The bit width for weight representation can be reduced to 
improve latency. “Using fewer bits per weight and/or activation effectively reduces the number of unique values that they can take 
on and thus is often referred to as reducing precision [4]. It results in reduced data movement, reduced storage cost, reduced energy 
per memory access, and reduced energy and time per MAC operation”.  
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Benefits of Reduction in Precision: - 
1) Reduces data movement and thereby consuming less energy and improving throughput. This keeps the PEs busy and reduces 

idle cycles: 
2) Reduces storage required for “weights, activations, and/or partial sums” by reducing on chip memory and keeping more 

weights in same memory by data reuse: 
 
D. Quantisation 
A strategy to lower computational expenses involves minimizing the bit count necessary to represent the weights and activations of 
a DNN model.” This reduction in bits allocated per weight and/or activation results in fewer distinct values they can represent, 
commonly known as precision reduction. The bit width of a specific data type is determined by the number of unique values it can 
encompass. This transformation, which involves mapping data from a wide range of potential values (full precision) to a more 
limited set of values (reduced precision), is referred to as quantization. 
 
E. Mixed Precision 
The most suitable quantization approach depends on the data distribution. To further reduce the necessary bit width while upholding 
accuracy, a tailored quantization method can be employed for each distinct data type, each of which possesses varying distributions. 
Employing diverse levels of precision for different data types is commonly known as mixed precision. In the context of inference, 
the pertinent data types encompass weights, activations, and partial sums. When it comes to training, the relevant data types 
comprise weights, activations, partial sums, gradients, and weight updates. Typically, training necessitates higher precision than 
inference due to the wider range exhibited by gradients and weight updates compared to weights and activations. Consequently, this 
is why inference can be executed using 8-bit fixed-point representation, whereas training requires 16-bit floating-point precision. 
 
F. Varying Precision 
Much like how distinct data type’s exhibit varying distributions, these distributions can also differ across different segments of the 
DNN, such as layers, filters, or channels. Consequently, for a more pronounced reduction in bit width, the quantization approach can 
adjust to accommodate these varying distributions. Allowing the level of precision to fluctuate across the diverse sections of the 
DNN model is commonly termed as varying precision. 
 
G. Binary Nets 
There have been studies focused on reducing the number of bits used for weights and/or activations to as few as one bit, essentially 
limiting each input value to just two possible values. Such types of DNNs are commonly referred to as binary nets. In addition to 
lowering memory requirements, binary nets also substantially decrease computational costs. When one of the operands is binary, 
multiplication simplifies to addition. If both operands are binary, the multiplication operation can be transformed into an XNOR 
operation, and multiple multiplications can be executed using bitwise XNOR operations. Following these bitwise operations, 
accumulation is performed using a hop count. However, one of the main drawbacks of binary nets is their impact on accuracy. 
Using binary weights and activations directly leads to a significant drop in accuracy, with a 29.8 percentage point decrease observed 
when applying them to AlexNet for image classification on the Image Net dataset. Consequently, binary nets are often combined 
with many of the techniques discussed earlier to regain lost accuracy. For example, in many cases, the first and last layers in the 
DNN are retained at full precision (32-bit float), which is a form of varying precision that necessitates adaptable hardware.  
 
H. Exploiting Sparsity 
An important attribute of the data employed in DNN calculations is its potential sparsity. When we mention data sparsity, we are 
indicating the presence of numerous recurring values within the data, with zero being the most frequent repeated value. This sparsity 
gives an opportunity to reduce MAC operations. This may result in saving of energy or time or both.” The following sources can be 
exploiting sparsity: - 
1) Activation Sparsity: Sparsity in activation data can arise from various sources, with the most apparent and frequently leveraged 

source being the use of ReLU as a nonlinearity. Additional sources include capitalizing on correlations within input data or the 
up sampling process in up-convolution layers. ReLU, a commonly employed nonlinearity in DNNs, functions by setting all 
negative values to zero. Consequently, the resulting output activations of feature maps post- ReLU exhibit fewer non-zero 
values, essentially becoming sparse. For instance, experimental results with AlexNet’s feature maps indicate a density of non-
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zero values ranging from 19 to 63This activation sparsity gives ReLU an advantage over other nonlinearities like sigmoid, 
among others. Further reduction in activation density can be achieved by setting values below a specific threshold to zero, often 
referred to as pruning, a technique that can also be applied to weights. The fact that ReLU effectively eliminates negative output 
activations introduces the possibility of employing approximate computing to reduce the number of MAC operations. To be 
precise, we can halt the computation of the output activation value if we can predict in advance that the output will be negative. 

2) Weight Sparsity: Sparsity in weights can originate from various sources. One naturally occurring instance of repeated weights 
within a filter arises when the number of weights in the filter surpasses the count of unique weights possible, a limit often 
determined by the number of bits per weight. For instance, if each weight in a 3 x 3 x 128 filter is represented using 8 bits, it 
will exhibit repeated weights since 8 bits can only represent 256 distinct values. Additionally, the introduction of repeated 
weights in the DNN model can be intentional and controlled. This can be achieved through filter design or implemented during 
the training process by techniques such as weight pruning (where weights are set to zero) or by reducing the number of distinct 
weights available 

 
IV.  RECENT WORKS ON EFFICIENT HARDWARE IMPLEMENTATION OF DNNS 

A. Binarized Neural Networks 
According to S liang et al [5] DNN accelerators which are based on FPGAs suffer problems of limited resources and memory 
bandwidth can be a bottleneck during data loading. To mitigate this problem, they have use Binarization to compress a neural 
network. This technique can directly shrink the weights from 32 bit (single precision floating point) to a single bit. Analytical 
resource aware model analysis with XNOR, pop count and shifting operations for BNN to replace multipliers has been used for this 
method. 
 
B. Tiny YOLO 
Object detection architecture, for the purpose of implementing it on an FPGA. To optimise computational efficiency, a strategy is 
employed wherein a highly efficient and versatile computing engine is utilised. This computing engine consists of 64 replicated 
Processing Elements (PEs) that operate concurrently. Within each processing element (PE), a total of 32 multiply accumulate 
(MAC) operations are carried out in a pipelined fashion to enhance parallelism. In order to minimise memory usage, the technique 
of data reusing and data sharing has been employed. This involves parallel processing elements (PEs) sharing the same input data, 
and utilising on-chip buffers to store and cache data and weights for subsequent reuse. 
 
C. YOLO Object Detection 
In a related work on YOLO [6] streaming hardware accelerator implemented a YOLO CNN whose parameters are retrained and 
quantized with PASCAL VOC dataset using binary weight and flexible low-bit activation. The binary weight enables storing the 
entire network model in Block RAMs of a field-programmable gate array (FPGA) to reduce off-chip accesses aggressively and 
thereby achieve significant performance enhancement. 
 
D. Gemmini Generator 
Gemmini [7] is a comprehensive, open-source tool that generates deep neural network (DNN) accelerators. It supports a wide range 
of hardware architectures, programming interfaces, and system interaction options. Gemmini provides users with the capability to 
construct a wide range of accelerators, ranging from low-power edge accelerators to high performance cloud accelerators that are 
equipped with out of- order CPUs. Subsequently, users have the opportunity to examine the interplay between hardware 
components, system on- a-chip (SoC) architecture, operating system (OS), and software overhead in order to assess their collective 
impact on overall performance and efficiency. 
 
E. Spiking Neural Networks 
Unlike ANNs where the major operations are matrix multiplications of weights and activations of network layers, the spiking nature 
of SNNs avoid complex computations thereby reducing resource and energy requirements. J Han et al [8], [9] proposed a FPGA 
based SNN hardware implementation using a hybrid of time stamped and event driven updating algorithms. The model was 
evaluated on MNIST dataset and showed a classification accuracy of 97.06 percent with .477 W power consumption and achieved a 
frame rate of 161 frames per second. The issues of memory bandwidth bottleneck can be reduced by reducing bit width of weights 
and network pruning. 
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F. Efficient Activation Function Implementation 
Activation functions using purely combinational circuits. They focussed on two widely used activation functions namely SELU and 
Tanh. The results of their work show that neural networks are generally insensitive to precision of the activation functions and 
combinational circuits-based approach is very efficient in terms of speed and area with negligible accuracy loss. The results were 
validated using MNIST, CIFAR and ImageNet datasets. On similar concept different ways can be used to approximate the 
activation functions [10], [11], [12], [13], [4]. 
 
G. Approximation of transcendental functions 
Xin Fan et al [10] proposed leveraged pareto front optimisation at three hierarchies from the parameter layer upto the structure and 
algorithmic layer to approximate the design space of activation functions. They achieved an accuracy of 99 percent on MNIST 
dataset. In this work a compact shift-based approximation is proposed that applies to 2’s compliment numbers which achieves 1.5 
times area reduction and 3.4 times energy consumption reduction. H. Approximate Computing Approximate computing is 
predicated on the capacity of several systems and applications to endure a certain degree of degradation in the quality or optimality 
of the calculated outcome. Approximate computing approaches offer a significant enhancement in energy efficiency by alleviating 
the requirement for absolute precision or deterministic computations. Jie Han et al [9] explored various design of approximation 
arithmetic blocks, as well as the relevant error and quality measurements. Few approximate arithmetic circuits are given below: - 
1) Approximate Full Adders 
In several approximate implementations, multiple-bit adders are partitioned into two modules: the upper module, which handles the 
more significant bits with accuracy, and the bottom module, which handles the less significant bits with approximation. A modified 
and therefore imprecise function of addition is implemented by a single-bit approximate adder for each lower bit. The process of 
simplifying a full adder design at the circuit level involves modifying some entries in the truth table of the full adder at the 
functional level.  

 
2) Approximate Multipliers 
The utilisation of speculative adders to calculate the sum of partial products is a common approach when considering approximate 
multipliers. Nevertheless, employing approximate adders directly in a multiplier may not be optimal in terms of balancing accuracy 
with energy and area savings. Reducing the critical route of combining the partial products is a crucial design aspect for achieving 
an approximation multiplier. Due to the typical implementation of multiplication using a cascaded array of adders, it is common 
practise to omit certain less significant bits in the partial products. 

 
3) Limited Numerical Precision 
Deep networks can be trained using only 16-bit wide fixed point number representation when using stochastic rounding, and incur 
little to no degradation in the classification accuracy according to Suyog Gupta et al [14] Also, an energy efficient hardware 
accelerator can be implemented using low precision fixed point arithmetic. The substitution of floating-point units with fixed-point 
arithmetic circuits comes with significant gains in the energy efficiency and computational throughput, while potentially risking the 
neural network’s performance. For low-precision fixed-point computations, where conventional rounding schemes fail, adopting 
stochastic rounding during deep neural network training delivers results nearly identical as 32-bit floating-point computations 
 
Configurable Layer Reuse Configurable Layer Reuse for minimalist Hardware Architecture. The work of E Wu et al [15] proposes a 
configurable layer reuse architecture with an aim to compute faster and keeping compute busy and simplify implementation. They 
used 3 parallel googlenets with their own weights and aggregated 3046 images per second. In this work 95 percent DSP cycles were 
utilized; all tensors were stored in SRAM (UltraRAM and BRAM). 
Rout et al [4] proposed an approach of performance centric pipeline Coordinate Rotation Digital Computer (CORDIC)–based MAC 
unit that implements a scalable CORDIC-based DNN architecture that is area- and power efficient and has high throughput. The 
CORDIC-based neuron engine uses bit-rounding to maintain input-output precision and minimal hardware resource overhead. 

 
V. CONCLUSION 

We have compiled the most recent research in the field of implementation of Deep Neural Networks on hardware (FPGA). It can be 
observed that due to limitation of memory bandwidth and compute resources there exist many problems in implementing full scale 
neural networks on FPGA.  
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However, for application of deep neural networks like object detection these hardware (FPGA) can be exploited due to their 
advantages over ASICs and general purpose hardware (CPU/GPU). With the evolution of DNN Models starting from simple neural 
networks for edge identification to latest YOLO models the complexity of models is increasing and this demands to have a set of 
methods which are available with the researchers so as to use while implementing these models. This paper has summarized such 
methods which are effective and have been validated in various experiments by researchers and can be employed in further research 
in this field. 
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