

13 I January 2025

https://doi.org/10.22214/ijraset.2025.66519

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

1163 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Review of Obfuscation Techniques in FPGA (Field
Programmable Gate Array) Security

Nia Gella Augoestien, Abdul Ro`uf, Bambang Nurcahyo Prastowo, Jazi Eko Istiyanto

Departement of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta-Indonesia

Abstract: Hardware security is crucial for FPGA-based systems in addition to the functional realization of the system according
to the expected specifications and optimal performance. FPGA has a longer supply-chain model that involves many entities. This
results in greater opportunities for security threats and trust issues. Hardware Obfuscation is one method that can be used as a
mechanism for a security effort from the threats of IP Piracy, Overbuilding, Trojan Hardware, Reverse Engineering, and
Bitstream Modification. Obfuscation technique variations for FPGA-based system security cannot be fully implemented properly
according to the specifications and limitations of the system design. To prevent and anticipate security threat attacks on FPGA-
based systems, a performance analysis is needed to implement appropriate and effective techniques in system security. This paper
discusses obfuscation techniques that can be implemented for security on FPGA-based systems according to the design process
flow.
Keywords: Hardware Security, Obfuscation, FPGA, Design Flow, Hardware Trojan

I. INTRODUCTION
This paper discusses obfuscation techniques that can be implemented for security on FPGA-based systems according to the design
process flow. The use of compute hardware platforms such as Field Programmable Gate Arrays (FPGA) has been widely adopted in
various application areas such as the Internet of Things, Cloud computing, automotive, and military electronics[1]. FPGAs used as
the basis of the system vary from simple FPGAs to high-end FPGAs that have sophisticated features[2]. Although the main focus in
developing FPGA-based systems is how to realize the functionality of the system according to the expected specifications and
optimal performance, hardware security is crucial. The most attractive feature of FPGAs is the ability to reconfigure after the
fabrication process to facilitate dynamic war needs. When compared to ASICs, FPGAs have advantages in terms of development
time required, reliability, cost, and long-term maintenance[3].
Unlike Application Specific Integrated Circuit (ASIC), FPGA-based systems have a longer supply chain model that involves many
entities [4] so the opportunity for security threats and trust issues to arise is greater. Forms of security threats to FPGA-based
systems include device counterfeiting, Hardware Trojans, Reverse Engineering, IP Piracy, bitstream modification, and side-channel
attacks [5]. The growing market share of FPGAs motivates an increasing number of attackers to target FPGA systems.
There have been many studies that propose various techniques that can be used to improve the security of FPGA-based systems,
including bitstream encryption, Device identifier detection, Watermarking, PUF, Partial reconfiguration, and Hardware Obfuscation
[4]. The implementation of these security techniques varies throughout the FPGA supply chain, where most of these techniques
have been accommodated in high-end FPGAs that have sophisticated features. For some systems that use low-end FPGAs, these
features are not yet equipped. Thus, this paper will discuss the use of Obfuscation techniques at each level of the FPGA design flow.

II. RELATED WORKS
With the increasing number of entities involved in the development of the supply chain and the design flow of FPGA-based systems,
the security threats faced by FPGA-based systems are varied. There are 6 entities involved in the development of the FPGA supply
chain, namely: FPGA Vendor, Foundry, IP Vendor, EDA tools vendor, FPGA-based system developer, and FPGA-based system
user[4]. Each entity has its duties and roles. FPGA Vendor is a company such as Xilinx and Intel that designs the FPGA architecture
that builds FPGA chips, while Foundry is a semiconductor factory that fabricates FPGA chips for FPGA Vendors. In the traditional
design flow, these two entities are integrated into the same company, but along with the adaptation of global supply change in the
development of Integrated Circuits that can minimize costs in terms of production and maintenance, in general, FPGA vendors and
foundries are separate entities. Another entity involved in the FPGA supply chain is the IP Vendor who is tasked with developing IP
Cores for specific applications on FPGAs. Examples of IP Cores can be DSP processors, cryptographic processors, and others. The
use of IP Cores from certain IP vendors can shorten the development time of integrated circuits.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

1164 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The short development time can also affect the overall cost. In developing an FPGA-based system, EDA tools are needed to
facilitate circuit design and integration into a system. Several FPGA companies such as Xilinx and Intel complement the FPGAs
marketed with software tools such as Vivado and Quartus to facilitate the development of FPGA-based systems. EDA tool
development is sometimes carried out by vendors separate from the FPGA vendor.
Furthermore, FPGA can be utilized by developers of FPGA-based systems or also by users of FPGA-based systems. With the many
entities involved, FPGA-based systems become vulnerable to security issues. Security techniques that can be used are based on
variations in security threats that endanger FPGA-based systems. From the explanation given, several challenges and opportunities
for research directions on FPGA-based system security can be seen, including the vulnerability of tools from FPGA Vendors used in
the FPGA-based system design flow. In addition, it should be considered that the security of the FPGA bitstream is mandatory.
Bitstream is a binary configuration file loaded on the FPGA and includes the encoding architecture requirements to realize user
designs[6]. In developing an FPGA-based system, several stages need to be passed by the developer of an FPGA-based system. The
5 general stages are system specification, system modeling, synthesis, implementation, and generating bitstream. At the system
specification stage, the functional specifications of the system are defined along with several additional features. After the
specifications are complete, the next stage is system modeling. FPGA-based system modeling can be done using HLS (High-Level
Synthesis) or HDL (Hardware Description Language). If the system is modeled using HLS, it must first be compiled into RTL. The
synthesis results obtained will then be implemented. At the implementation stage, it is divided into 3, namely mapping, place and
route. The results of this implementation will later be converted into bitstream.
For the FPGA to be configured according to the bitstream that has been generated, several phases need to be passed. Threats from
the FPGA bitstream perspective can be classified into 5 phases, namely Generation, Rest, Loading, Running, and end of life[2].
From the taxonomy of the forms of attacks described, it is known that several types of security threats can attack from more than 1
phase of the bitstream cycle such as IP Piracy, Trojan Hardware, and Reverse Engineering. Hardware Obfuscation is a powerful
technique that can be used to prevent and anticipate these forms of attacks [7].
Hardware Obfuscation is a method used to modify a circuit to cover up hardware functionality so that incorrect key usage causes the
device to not work according to its function[8]. The implementation of hardware Obfuscation techniques on FPGAs varies widely.
However, these techniques cannot be fully adopted by simple FPGA-based systems. For example, in the research of[9], it was
proposed to use random CFGLUTs programmed at system runtime on FPGA to perform Obfuscation. Although the results obtained
are optimal in terms of security and overhead, this technique cannot be applied to simple FPGA-based systems that do not have
these features.
Implementation of Obfuscation techniques can also be implemented at different stages in each FPGA design flow. 2 Obfuscation
techniques at the RTL level that can be used to anticipate Hardware Trojans was propose by [10]. Implemented the Obfuscation
technique by modifying the netlist of the logic synthesis process is designed by [3]. Implementing the Obfuscation technique in the
high-level synthesis phase was proposed by [11].
The variations of the proposed Obfuscation techniques usually focus on specific design factors [12]. According to [13], several
specific parameters can be used to measure the performance of the Obfuscation technique, including SAT-Hardness, Output
Corruptibility, percentage of recoverable key bits, and additional Overhead both in terms of resource usage and execution time. The
above considerations can be used to conduct further analysis in providing recommendations for effective obfuscation techniques for
simple FPGA-based systems.

III. THREATS AND ATTACKS ON FPGA
Hardware Trojan is an act with malicious intent to modify electronic circuits or their design to change hardware functionality, leak
confidential information, or destroy the system in a special condition design. Hardware Trojans can be inserted from IP modeling to
the manufacturing process[10]. In general, hardware trojans can be divided into 2 parts, namely:
 Trigger is the part that is tasked with activating the payload when certain conditions are met
 Payload is the part that is tasked with carrying out hardware functions, leaking information, and reducing circuit performance.

Triggers are usually implemented in the remaining modules while payloads are distributed across many modules. [14]. Physically,
the trigger module is implemented independently as a Single module that is not used in the original circuit. The trigger module will
send different outputs depending on the conditions met. This condition is known as the Rare Condition. By placing the trigger
process in Rare Conditions, it will be difficult to detect the presence of hardware trojans inserted into a system. Based on the
elements contained in the trigger section, a hardware trojan can be classified into combinational Trojans and Sequential Trojans.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

1165 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

In combinational Trojans, there is no flip-flop element in the trigger section so the payload will be activated if the variation of input
conditions is met. Triggers that are carried out when a transition to a certain state occurs using state elements are known as
sequential trojans. The form of sequential trojans can also be distinguished into being triggered when a certain count value is met
which is usually implemented using a k-bit counter. The second form will be triggered when a sequence of n-bit input values is met.
Reverse Engineering is the process of understanding the functional architecture of an electronic system using special methods. The
purpose of reverse engineering on FPGA is to rediscover the high-level description of the bitstream. In general, the process can be
done in 2 stages, namely decompiling the FPGA bitstream to produce a netlist and producing a high-level description of the
obtained netlist. Bitstream in the early stages can be obtained from the 6th phase of the bitstream life cycle, while reverse
engineering techniques on ASIC can be adopted when performing reverse engineering in later stages. On the other hand, reverse
engineering on FPGA is often used to detect the presence of hardware trojans and IP hijacking. In 2019, a toolchain was proposed
that was used to perform reverse engineering on the FPGA bitstream to produce RTL code which can later be used to detect
hardware trojans. The technique used is to construct an integrated database that involves information from the FPGA architecture
and bitstream mapping information. The results obtained are used to build the BRT (Bitstream Reversal Tools) and NRT (Netlist
Reversal tools) tools to then combine the results obtained to obtain the RTL code. The evaluation results show that the tools created
can rediscover the same RTL code and 100% correct netlist from the given benchmark bitstream [15].
IP piracy is a form of threat that uses licensed IP illegally. There are several forms of attack models, including obtaining IP in the
form of a netlist by stealing the owner's IP encryption key, reverse engineering to obtain a netlist on an encrypted IP, using physical
extraction techniques for encryption keys for encrypted bitstreams, and others. After obtaining IP illegally, changes are usually
made to the LUT encoding, input pins on the LUT, LUT routes and placements, and the addition of dummy circuits to obscure the
occurrence of IP piracy. In detecting IP piracy, there are several obstacles, including some commercial FPGAs that obscure the
bitstream format and slight changes to the flow and design process will change the binary footprint of the bitstream[6].

IV. HARDWARE OBFUSCATION ON FPGA
Hardware Obfuscation is a method used to modify the design, making it difficult to reverse engineer or piracy [7]. This form of
protection is an active category that transforms the Original design into a disguised design through functional and structural
transformations. Obfuscation results work with 2 modes, namely Lock and Unlock. Unlock mode is obtained when the use of IP
uses the correct key so that the circuit works according to its function, while when the wrong key is used, the IP is in Lock mode
and the circuit does not produce the correct function. Many Obfuscation techniques can be implemented on FPGA. In this paper,
obfuscation techniques are explained based on the design stage flow. Behavioral modeling is the initial stage in the FPGA design
flow. Obfuscation carried out at this stage is more flexible because the disguised device can be used for different needs [16]. The
Obfuscation process begins with structural modeling of the circuit, then identifying the modules in the circuit that have the most
impact on the output of the circuit and the next level circuit. The identified modules will be Obfuscated. Thus the Obfuscation
process is not performed on every module in the circuit, but only on one module. This design method produces low overhead in
terms of resource usage for the Obfuscation circuit.
The Obfuscation process at the RTL level in FPGA can be done by adding a state with the correct key sequence to a circuit. If the
key sequence is wrong, then the final state will never be reached. However, if the key sequence is correct, then the module works
according to its function because the obfuscated circuit will reach the state where the original circuit operates [10]. By using this
scheme, the Obfuscation results can prevent the obfuscated module from using a black box with an overhead that is not too
significant. However, the obfuscation mechanism which is designed structurally separate from the actual functional mode of the
circuit makes the circuit identifiable using reverse engineering. The obfuscation approach by utilizing the bit content used in the
LUT can be implemented at the Netlist level in FPGA, thereby reducing overhead in terms of Delay, Power, and Area. The initial
stage required is to identify all LUTs that do not utilize all of their inputs. For example, if the FPGA architecture has a 6-input LUT,
then all LUTs that only utilize 5 or fewer inputs can be used. Next, prioritize the LUT candidates that can be used based on the
highest fan-out so that it produces a large corruptibility output[3]. Some things to consider from using this method are that it is not
suitable for implementation in certain situations where there are not enough LUTs that have free space to use. In addition, in very
complex circuits, there is a possibility that the implementation results cannot be routed for design on FPGAs with high constraints
and very deep logic levels.
Obfuscation method using Configurable look Up Tables (CFGLUT). CFGLUT is entered randomly based on optional parameters in
the design. Then program the CFG to complete the FPGA bitstream and design functionality. There are 2 stages, namely: Selecting
the part of the HDL that will be configured using CFG based on considerations either randomly or Some parts that are vulnerable to

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

1166 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

HDL code attacks. Furthermore, using CFGLUT to substitute the HDL part to complete the bitstream during the running process[9].
This method can only be implemented on FPGA architectures that have CFGLUT features, namely on high-end FPGAs that can be
partially configured.
In its application, Hardware Obfuscation to secure systems on FPGAs often collaborates with PUF (Physical Uncloned Function).
PUF is used to generate keys that will be used for obfuscation. Without the correct key generated by the PUF, the functional system
embedded in the FPGA cannot work properly. The key generated from PUF is UNCLONE because it depends on the variation of
the IC manufacturing process. so that with the same input it will produce different outputs on each different chip. The characteristics
of the key generated by PUF are also unpredictable because they vary on each IC. So when using PUF to generate keys for
obfuscation, 2 schemes are needed that can be done with key knowledge before designing obfuscation. Based on the key generated
by PUF, the obfuscation technique is implemented. Designing an obfuscation technique whose key can be flexible. The key used
does not change the flow of the obfuscation process that is carried out.

V. CONCLUSIONS

Obfuscation technique variations for FPGA-based system security cannot be fully implemented properly according to the
specifications and limitations of the system design. To prevent and anticipate security threat attacks on FPGA-based systems, a
performance analysis needs to be carried out to implement appropriate and effective techniques in system security. The higher the
level of implementation of the Obfuscation technique, the more significant the results of the structural transformation produced, but
the use of automatic EDA tools in the design flow can eliminate the obfuscation part in the optimization process. Collaboration of
Obfuscation Techniques with other security methods can optimize circuit security.

REFERENCES

[1] B. Olney and R. Karam, "WATERMARCH: IP Protection Through Authenticated Obfuscation in FPGA Bitstreams," in IEEE Embedded Systems Letters, vol.
13, no. 3, pp. 81-84, Sept. 2021, doi: 10.1109/LES.2020.3015092.

[2] A. Duncan, F. Rahman, A. Lukefahr, F. Farahmandi and M. Tehranipoor, "FPGA Bitstream Security: A Day in the Life," 2019 IEEE International Test
Conference (ITC), 2019, pp. 1-10, doi: 10.1109/ITC44170.2019.9000145.

[3] B. Olney. and R. Karam. 2020. Tunable FPGA Bitstream Obfuscation with Boolean Satisfability Attack Countermeasure. ACM Trans. Des. Autom. Electron.
Syst. 25, 2, Article 19 (January 2020), 22 pages. https://doi.org/10.1145/3373638

[4] J. Zhang and G. Qu. 2019. Recent Attacks and Defenses on FPGA-based Systems. ACM Trans. Reconfgurable Technol. Syst. 12, 3, Article 14 (August 2019),
24 pages. https://doi.org/10.1145/3340557

[5] S. Sunkavilli, Z. Zhang and Q. Yu, "New Security Threats on FPGAs: From FPGA Design Tools Perspective," 2021 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2021, pp. 278-283, doi: 10.1109/ISVLSI51109.2021.00058

[6] G. Skipper, C. Sozio, A. Duncan, A. Lukefahr and M. Swany, "ReCon: From the Bitstream to Piracy Detection," 2020 IEEE Physical Assurance and
Inspection of Electronics (PAINE), 2020, pp. 1-6, doi: 10.1109/PAINE49178.2020.9337563.

[7] S. Bhunia, M. Tehranipoor, 2019, “Hardware Security: A Hands-on Learning Approach”, Morgan Kaufmann, United States.
[8] S. Chhabra and K. Lata, "Design and Analysis of Logic Encryption Based 128-Bit AES Algorithm: A Case Study," 2018 15th IEEE India Council

International Conference (INDICON), 2018, pp. 1-6, doi: 10.1109/INDICON45594.2018.8987098.
[9] M. Labafniya,, & S. E. Borujeni, 2021. An obfuscation method based on CFGLUTs for security of FPGAs. ISeCure, 13(2), 157-162.

doi:10.22042/isecure.2021.234848.557
[10] N. Giri and N. N. Anandakumar, "Design and Analysis of Hardware Trojan Threats in Reconfigurable Hardware," 2020 International Conference on Emerging

Trends in Information Technology and Engineering (ic-ETITE), 2020, pp. 1-5, doi: 10.1109/ic ETITE47903.2020.227.
[11] Islam, S. A., Sah, L. K., & Katkoori, S. (2021). High-level synthesis of key-obfuscated RTL iP with design lockout and camouflaging. ACM Transactions on

Design Automation of Electronic Systems, 26(1) doi:10.1145/3410337
[12] Kolhe G, Sai M. PD, Rafatirad S, Mahmoodi H, Sasan A, and Homayoun H. 2019. On Custom LUT-based Obfuscation. In Proceedings of the 2019 Great

Lakes Symposium on VLSI (GLSVLSI '19). Association for Computing Machinery, New York, NY, USA, 477–482.
https://doi.org/10.1145/3299874.3319496

[13] M. Yasin, J. Rajendran, O. Sinanoglu, 2020, “Trustworthy Hardware Design: Combinational Logic Locking Techniques,“Springer : Switzerland.
[14] M Cho, J Jang, Y Seo, S Jeong, S Chung, T Kwon, Towards bidirectional LUT-level detection of hardware Trojans, Computers & Security, Volume 104, 2021
[15] T. Zhang, J. Wang, S. Guo and Z. Chen, "A Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code," in IEEE Access, vol. 7,

pp. 38379-38389, 2019
[16] K. Saravanan and N. Mohankumar, "Design of Logically Obfuscated n-bit ALU for Enhanced Security," 2019 3rd International conference on Electronics,

Communication and Aerospace Technology (ICECA), 2019, pp. 301-305, doi: 10.1109/ICECA.2019.8822129

