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Abstract: The automatic assessment of subjective replies necessitates the use of Natural Language Processing and automated 

assessment. Ontology, semantic similarity matching, and statistical approaches are among the strategies employed. But most of 

the methods are based on an unsupervised approach. The proposed system uses an unsupervised method and is divided into two 

modules. The first one is extracting the essential data through text summarization and the second is applying various Natural 

Language models to the text retrieved from the above step and giving marks to them. 
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I. INTRODUCTION 

Descriptive examinations are used to assess students’ comprehensive understanding of topics. This is in contrast to traditional types 

of answers, such as multiple-choice questions or fill-in-the-gap items, in which the student’s understanding is limited to the options 

presented and thus not thoroughly examined. Subjective answer evaluation can be challenging. Subjective answers necessitate a 

significant amount of time and effort on the part of the evaluator. Uniformity is achieved in assessing by using computers to perform 

evaluations, as the same mechanism is used for all responses. 

Automatic Response Grading is the process of grading essays without the use of humans, in which a student’s answer and a model 

answer created for a certain prompt are used as input, and the answer is given a numeric score based on its semantic similarity.  

Neural networks are used to train LMs in modern approaches. In the majority of natural language processing tasks, language models 

have proven to be effective. In a variety of ways, neural language models alleviate the shortcomings of traditional approaches. They 

broaden the context considered and demonstrate a high level of generalization across different contexts. The first neural models 

made use of recurrent neural networks, such as long short-term memory networks. The transformer architecture underwrites the 

most recently introduced neural models for language modeling, such as BERT and XLNET. The performance of several NLP tasks 

has been robustly increased with the implementation of these models.  

In this paper, a reference-based technique is used to train an NLP model on one of Hewlett Foundation’s most difficult datasets. On 

this dataset, two models based on BERT and XLNET are finetuned. The key benefit of the methodology given here is that, unlike 

most other approaches, grading is done without manually extracting features. 

II. MOTIVATION 

One of the most essential techniques for evaluating students’ academic success is subjective answers. Because the student-to-

evaluator ratio is so high, manually grading them becomes an extremely time-consuming operation for the evaluators. Consequently, 

manual grading becomes arduous and cost-ineffective. Furthermore, manual grading is a contentious matter due to divergent 

perspectives among evaluators, each of whom may favor a distinct voice or writing style. As a result, there is a need for an 

Automated Answer Scoring Methodology to facilitate and simplify the traditional system while reducing subjectivity. 

III. BACKGROUND WORK 

Most of the systems proposed before are suitable for short-length responses and do not work properly on responses having lengths 

greater than a certain limit. [5] In the Intelligent Essay Assessor, the LSA model is used. LSA creates a high-dimensional semantic 

representation of the information in the domain based on this training. Words from the text are represented as vectors in this 

semantic space, with the semantic similarity between words defined by the cosine of the angle between the vectors for those words. 

[6] In ETS, task-specific features like n-grams are combined with more general features like the semantic similarity of the response 

to model answers to create the proposed system. [3] In Fast and Easy Short Answer Grading with High Accuracy, their model uses 

features like alignment, semantic vector similarity, question demoting, term weighting, and length ratio to improve the similarity. 

But the drawback is, it works only on short-length responses. [4] Propose a method that combines token and sentence level 

characteristics for grading short responses.[1] They developed a broad framework for both abstractive and extractive summarization, 

as well as a novel document-level encoder based on pretrained BERT. Experiment findings across three datasets revealed that their 

model produces state-of-the-art outcomes under both automatic and human-based evaluation processes.  
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However, they do not have language generating skills. [14] They provided a Bayesian method to essay grading based on the well-

developed literature on text categorization. Their preliminary assessment of the technique based on one item, a sparse dataset, and 

just two classifications look promising. According to their research, scoring based on arguments outperforms scoring based on 

keywords or key phrases. The computer used brute force to identify arguments in their study.[18] It's an essay scoring model and 

restricted to a limited area of study based on dataset. 

IV. PROPOSED METHOD 

A. Dataset 

The William and Flora Hewlett Foundation used data from a competition held on kaggle.com. The data is made up of eight sets of 

essays written by students in grades 7 through 10. Each of the eight sets of essays has its own set of characteristics that are used to 

grade them. This ensures that the automated grader is well-versed in various types of essays. Each essay has a resolved score as well 

as one or more human scores. Each essay set has its own grading rubric, which is usually holistic but in one case is trait-based. Each 

essay ranges in length from 150 to 1200 words. Some essays are more reliant on secondary sources than others. 

B. Text Extraction 

Students’ answers can be in the written format on some piece of paper. We want this answer to be in string format in order to 

provide it as input for our model. A python class called pytesseract was used to extract text from a picture. The extracted text has 

been used for further processing. 

C. Pre-processing 

The Summarized text contains some words which carry less important information and can be ignored to facilitate further text 

processing tasks. After the extraction of each answer, all the non-useful contents such as links, symbols, extra spaces are removed. 

For this, a python library called regex is used. Removal of stopword and lemmatization is not used here, as it leads to loss of 

information. After this, the dataset is split into train and test datasets using the scikit learns train test split module in the ratio of 9: 1 

respectively. The dataset contains 8 sets of essays on eight different sets of topics making a total of 12978 essays. Each essay is 

graded by at least two graders. Some set of essays is graded by more than two raters, so for these essays scores from only the first 

two graders is considered for consistency. The average of both the scores is taken and converted such that the score falls in the range 

from 0 − 5. In this dataset, no model or reference answer is provided. So the set of answers with the max score from both the raters 

is considered as the reference answers. Later for a particular set, instead of keeping the same model answers for all the other 

answers, random answers are taken from the created pool of model answers. Most of the transformer-based models have limitations 

for the length of the input sequence, which is around 512 tokens. As we are dealing with long answers rather than short ones, the 

length of the answer will be mostly greater than 512 words. For this problem, the input sequence is stirred into sequences of smaller 

lengths. For a particular instance, both the student’s answer and the model answer are stirred into equal no of parts. 

D. Generating the Score 

ASAG employing transformer-based architectures may be thought of as learning the textual entailment between a student response 

and a model answer. In what follows, the model architecture and input representation for both BERT and XLNET is briefly present. 

For this experiment both BERT Base and XLNET Base are used. There are 12 layers, 12 attention heads and 768 neurons for these 

two models. The number of total parameters is 110 million. For BERT, cased and uncased versions are trained and released. 

However, only the cased version is released with XLNET 

 

The hyperparameters for all the grading were experimentally selected and are as follows both BERT and XLNET:  

1) Epochs = 4  

2) Batch Size = 6 

3) Dropout probability for all the layers = 0.1  

4) Learning rate = 3e-5  

To avoid overfitting/underfitting, one of the most common regularization techniques is employed, which is to stop the training 

process on a set of initial epochs before full convergence. This is done in combination with the dropout technique. We set the 

number of epochs to 4 experimentally and trained our model for the full number of epochs. Then, we analysed the flow of loss 

change per epoch to control the overfitting and underfitting. In the end, models are evaluated on the validation sets and stopped the 

training process before the occurrence of any of these two problems. The training at is stopped the 2-4 epoch for all the mode 
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E. System Design 

 
Fig. 1 Architecture Diagram 

 

 
Fig. 2 Activity Diagram 
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V. RESULTS 

A. Evaluation Metrics 

1) Accuracy:  Proportion of correctly graded answers. 

2) Macro Average F1 score:  Precision, recall and F1 scores are calculated independently for each grade label and then averaged 

over all grade labels 

 

Results 

Models Dataset Acc M-F1 

ETS (Heilman and 

Madnani, 2013) 

Beetle And 

SciEntsBank 

0.643 0.478 

Sultan et, al. (Sultan 

et al., 2016 

Mohler Dataset 0.489 0.3298 

MEAD(Ramachandra

n and Foltz, 2015) 

ASAP-SAS, 2012 - 0.379 

Mavarniya 

(Mavarniya et al., 

2018) 

Beetle and 

SciEntsBank 

- 0.579 

BERT Base uncased ASAP-SAS, 2012 0.66 0.484 

XLNET Base cased ASAP-SAS, 2012 0.658 0.47 

 

BERT Base uncased achieved the top values for all the evaluation measures in terms of accuracy. Close to BERT Base uncased, it is 

XLNET and BERT Base cased. Most of the other dataset consist of instances of relatively small when compared to the instance 

length in ASAP-AES dataset. Although both the transformer-based models performs well and gives promising results.  

However, one possible reason for overall lower classification results is the limitation of the input length of the transformer models. 

Because of low input length, the dataset was needed to be stirred and by doing so the model may interpret the stirred sequences as 

individual answers, consequently giving overall less accuracy. 

VI. CONCLUSION 

An Automatic Subjective Answer Grading system using modern language models such as BERT and XLNet was proposed. Overall, 

the approaches can be considered good enough for the long answers. These language model results appear to indicate that modern 

language models are successful in creating a semantic representation of student and model answers and correctly classifying them. 

In this approach, for handling a large size of answers extractive text summarization using a text rank algorithm was used. Further for 

generating the score, transformer-based models BERT and XLNET were implemented on the ASAP-AES Kaggle dataset. BERT 

and XLNet seem to either equal or outperform the results obtained with human-engineered features. 
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