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Abstract: This study explores the complex interplay between economic growth, environmental preservation, and energy 
efficiency in the context of sustainable development. Leveraging analytical tools such as the OSeMOSYS model and Pearson 
correlation coefficient, the research investigates how economic decisions impact energy resource utilization and environmental 
quality. Key sustainability indicators, including Energy Payback Time (EPBT), Internal Rate of Return (ITR), and Climate 
Change Impact Mitigation (IMPcc), are analyzed within the framework of the Atlantis energy system. The study emphasizes the 
need to balance economic priorities with environmental considerations to achieve sustainability objectives effectively. 
Furthermore, the research evaluates the correlation between sustainability indicators when integrated into the optimization 
process of the OSeMOSYS energy modeling system. This approach, advocated in previous studies, underscores the importance of 
incorporating sustainability metrics into decision-making processes. In conclusion, the findings highlight the necessity of 
reevaluating the weighting of indicators within optimization functions to prioritize sustainability goals. By providing insights 
into the complex relationships between economic, energy, and environmental factors, the study contributes to advancing 
sustainable development practices for policymakers, businesses, and society as a whole. 
Keywords: Correlation matrix, OSeMOSYS, Sustainability indicators, Pearson correlation coefficients. 
 

I.      INTRODUCTION 
Sustainable development has emerged as a paramount global priority in recent decades, necessitating the harmonization of 
economic progress, environmental preservation, and energy efficiency, all while striving for social equity [1]. While these aspects 
may be tackled individually, their intricate interconnections underscore the interdependence of their impacts [2]. Economic 
decisions, for instance, wield considerable influence over both the environment and the energy landscape. Likewise, environmental 
degradation can cascade into economic ramifications and the availability of energy resources [3]. This study delves into these 
intricate dynamics, identifying pivotal correlations and their far-reaching implications. To gauge this interplay, it relies on analytical 
methodologies and statistical tools, notably leveraging the OSeMOSYS model alongside the Pearson correlation coefficient. 
OSeMOSYS, an open-source energy optimization model [4], assumes a central role in this endeavor, particularly in its extended 
version, which integrates sustainability indicators as critical facets of the objective function. These indicators encompass metrics 
such as Energy Payback Time (EPBT) for assessing energy sustainability, Internal Rate of Return (ITR) for gauging economic 
sustainability, and Climate Change Impact Mitigation (IMPcc) as an indicator of environmental sustainability [5], [6]. Employing 
ATLANTIS as a case study, chosen for its extensive dataset, proves instrumental in comprehending how economic decisions shape 
both energy resource utilization and environmental quality. 
Through the application of the Pearson correlation coefficient [7], this study scrutinizes linear relationships between pivotal 
variables, including in the breakdown of energy production, categorized into renewable energy, fossil fuels, and nuclear energy; the 
Economic costs encompass capital costs, fixed costs, and variable costs; and the Emissions output. The resultant insights offer a 
holistic understanding of how economic policies intricately influence energy and environmental sustainability. This holistic 
approach not only aids in identifying effective strategies to advance sustainable development but also underscores the imperative of 
balancing economic imperatives with environmental safeguards. 
Moreover, the practical interpretation of the identified correlations furnishes comprehensive insights into the intricate interplay 
among these dimensions, offering valuable guidance for policymakers, businesses, and society at large in their pursuit of sustainable 
development. 
 

II.      METHODOLOGY 
The purpose of this study is the evaluate the correlation between sustainability indicators when they are used as optimisation 
constraints in an energy modelling system using the OSeMOSYS code. Consideration has been given to the methodology advocated 
in [8], which emphasises the inclusion of sustainability indicators as an extra cost. The statistical correlation matrix is employed 
exclusively for this purpose. The Atlantis energy framework has been chosen as a case study to achieve the stated objectives.  
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The focus of this section is to provide a concise overview of the integration of sustainability indicators into OSeMOSYS, as 
developed in [8]. It also covers the concept of the statistical correlation matrix and the evaluation procedures used to determine the 
degree of correlation between sustainability indicators. 
 
A. Sustainability indicators integration into OSeMOSYS 
In prior research [8], a methodology was developed to integrate sustainability indicators into the optimization function of the Open-
Source Energy Modeling System (OSeMOSYS), aiming to bolster the software's sustainability capabilities. OSeMOSYS is a 
versatile open-source software package utilized for energy modeling and analysis, empowering policymakers, researchers, and 
energy experts to identify cost-effective energy mixes tailored to their specific requirements [4], [9]. 
To address this, sustainability indicators are incorporated into OSeMOSYS within the optimization function through a process akin 
to multi-objective optimization, delineated by correction factors linked to the various indicators. These indicators encompass 
energetic sustainability (EPBT), economic sustainability (ITR), environmental sustainability (IMPcc), and their convolution. 
Consequently, the optimization function transitions into a multi-objective framework, with each indicator serving as an additional 
cost factor. This introduction of supplementary costs enables the consideration of sustainability criteria during the optimization 
process, significantly influencing the overall optimization outcome, rather than being mere supplementary expenses. The extended 
optimization function, referred to as Sustainable Optimization Function (Sus_Op_index), is described in Equation 1. 

 y y y y
y

Sus_Op_index = Sus_EPBT  + FixCost + Sus_ITR + Sus_IMPcc                (1) 

With: 

 
ty y,t EPBTSus_EPBT  = VarCost 1 + F                                                  (2) 
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                                                                                    (3) 

 
ty y,t ITRSus_ITR = CapCost 1 + F                                                                (4) 
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                                                                                        (5) 

y t,y IMPcc
t

Sus_IMPcc = EmissionPenalty Emission × F                                             (6) 

t
IMPcc

EmissRateF  = 
MeErsEmissRate

                                                                          (7) 

Where: 
y: Indicates the year in the time frame. 
 t: Indicates the technology. 
Op_Standard: Corresponds to the Global costs integrated along the time interval under study,  
CapCosty,t [$/KW]: Capital investment cost of a technology, per unit of capacity. 
FixCosty,t [$/KW]: Fixed cost, O&M, of a technology, per unit of capacity. 
VarCosty,t [$/KWh]: Variable cost of a technology for a given mode of operation (cost of fuel), per unit of activity.  
EmissCosty [$/year]: Emission Cost, is entirely related to the penalties imposed for pollution 
In the equation, modulation weights, ܹj, ranging from zero to one has been introduced. This factor serves various purposes within 
OSeMOSYS: it enables the activation or deactivation of the incorporated correction and, based on the user's or client's 
expectations/needs, it can adjust the importance placed on energy sustainability within the optimization process, allowing for more 
flexibility. In this manner, if we set the weights to zero, we recover the standard optimization function of OSeMOSYS 
(Op_Standard) [10], as expressed in Equation 8. 

               y,t y,t y,t y
y,t

Op_Standard = CapCost + FixCost + VarCost  + EmissCost                                (8) 
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B. Definition of the framework application  
ATLANTIS, a fictional nation blending characteristics from both developing and developed countries, serves as a testing ground for 
the energy model developed by [11]. Within the OSeMOSYS framework, ATLANTIS is not merely a conceptual entity but rather 
an established experimental framework. It functions as a benchmark environment considered optimal by both users and developers 
of OSeMOSYS for new implementations, thereby enhancing result reproducibility. The energy matrix of ATLANTIS is 
comprehensive, encompassing a diverse array of technologies, ensuring the generation of representative results. The technical and 
economic data used in ATLANTIS are sourced from reports by the International Renewable Energy Agency and the IEA-Energy 
Systems Analysis Program – Technology briefs (E01, E02, E03, E06, E10, and E11). 
To maintain consistency with prior studies [8], [10], we utilize the same dataset for both costs and stability estimator values, with 
the exception of nuclear technology. In this context, our study advocates for adopting a pessimistic estimate for the Energy Payback 
Time (EPBT) and Internal Rate of Return (IRR) associated with cradle-to-cradle treatment of high-activity waste, estimated at 
approximately 80 and 75 years, respectively. Regarding the penalty imposed for CO2 emissions, we rely on emission costs 
calculated in [10], where $50 per ton of CO2 is deemed sufficient to facilitate decarbonization. To ensure reproducibility, Table 1 
summarizes the dataset utilized. 

Table 1. Main power generation technologies input characteristics parameters [10] 

 
 
 

Technologies 

Economic Costs 
Useful 

Lifetime 
(Year) 

Capacity 
Factor 
(CF) 

Sustainability Estimators 

Fixed 
Cost 

(M$/GW) 

Capital 
Cost 

(M$/GW
) 

Variable 
Cost 

(M$/PJ) 

EPBT 
(Year

) 

IRR 
(Year

) 

CO2 emission 
activity ratio 

(Mt/PJ) 

Natural Gas (NGSC) 44 2300 24.05 30 1 8.17 11.7 0.132 
Diesel Generator 

(DSGC) 
36 900 22.49 30 1 12.68 14.7 0.193 

Integrated Gasification 
Coal (IGCC) 148 3700 11.58 30 1 12.93 30 0.268 

Heavy oïl (HFSC) 50 2300 30.23 35 1 29.33 14.7 0.203 
Large Hydro (Hydro 

Dam) 
60 4000 1.39 35 0.45 7.2 84 0 

Mini Hydro 
(Hydro_Min) 

65 4500 1.39 50 0.4 3.63 35 0 

Distributed Diesel 
(Diesel_Gen) 55 1070 22.48 40 1 12.68 14.8 0.193 

Photovoltaic Utility Grid 
(PV_UTL) 0 2000 1.39 25 

0.35 
Day 

0 Night 
3 2 0,003 

Wind 0 1845 2.69 25 0.25 10.32 10 0,006 
NEW Combined Cycle 

Gas Turbine (NGCC) 44 1100 16.17 35 1 8.17 11.9 0.101 

Nuclear 0 3000 6.12 50 1 80 75 0.004 
 
C. Correlation Matrix Based on Constraints   
In this study, we'll utilize the Pearson method [7], [12] to gauge the correlation among various variables pertaining to both the 
energy-economic and environmental facets of sustainable development. To achieve this, we'll construct correlation matrices 
illustrating the linear connections among all variables under consideration. These matrices will unveil patterns and connections 
between the energy-economic and environmental dimensions of sustainable development, offering a deeper insight into their 
interplay within the realm of sustainability. 
However, in a multidimensional study like ours, where numerous variables are at play, the correlation matrix isn't a static, single 
entity [12]. Instead, it serves as a tool to evaluate the strength and direction of relationships among multiple variables concurrently, 
within a defined set of relevant constraints [12], [13], [14].  
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In this context, we've identified different constraint sets, based on merit variables, which can be applied either individually or 
collectively during the analysis. By employing constraint sets, we can refine datasets to create subsets that adhere to specific 
conditions or criteria. These subsets can then be analyzed independently, allowing us to focus on particular aspects or relationships 
within the data. 
In our study, we'll generate a correlation matrix for each subset, resulting in a distinct matrix for each set of constrains. In the 
present study, the set of constraints is derived from the output results of the simulations carried out with OSeMOSYS, which 
consists of energy production, economic costs, and output emissions. 
The Energy production feature covers the energetic production set of different types of energy systems, subset into renewable 
energy, fossil fuels and nuclear energy. These quantities represent the output levels of different energy sources generated within the 
OSeMOSYS simulation. With respect of economic costs  includes the OSeMOSYS cost component, which consists of capital costs, 
fixed costs, and variable costs. Economic costs provide insights into the financial implications associated with different  scenarios 
simulated by OSeMOSYS. And the output emissions refer to the emissions generated by the energy-producing activities included in 
the OSeMOSYS simulation. Output emissions represent the environmental impact of different energy production pathways and are 
crucial for assessing the sustainability of energy systems. 
Named as SI_CorrMtxSet, the correlation matrix for sustainability indicators is depicted in Equation 9, where correlation 
coefficients are linearly applied among the indicators. 

Set Set Set
EPBT_EPBT EPBT_ITR EPBT_IMPcc

Set Set Set Set
ITR_EPBT ITR_ITR ITR_IMPcc

Set Set Set
IMPcc_EPBT IMPcc_ITR IMPcc_IMPcc

Cc Cc Cc
SI_CorrMtx  = Cc Cc Cc

Cc Cc Cc

 
 
 
  

                                     (9) 

Where: 
Set: Represents the set of constrain defined. It indicates the output data variables that make up the dataset for analysis; in 
OSeMOSYS this can include costs, emissions, and energetic production among others. 
CcSet

EPBT_EPBT: The correlation coefficient between the indicator EPBT and EPBT. 
CcSet

ITR_ITR: The correlation coefficient between the indicator ITR and ITR. 
CcSet

IMPcc_IMPcc: The correlation coefficient between the indicator IMPcc and IMPcc. 
CcSet

EPBT_ITR: The correlation coefficient between the indicator EPBT and ITR. 
CcSet

EPBT_IMPcc: The correlation coefficient between the indicator EPBT and IMPcc. 
CcSet

IMPcc_ITR: The correlation coefficient between the indicator IMPcc and ITR. 
Each cell within this matrix will denote the Pearson correlation coefficient (Cc) between two specific variables, delineating the 
magnitude and direction of their linear relationship. The Pearson coefficient is derived by dividing the covariance of the two 
variables by the product of their standard deviations. Renowned for its intuitive interpretation and capacity to capture linear 
associations between variables, a value of r nearing 1 signifies a robust positive correlation, while near -1 indicates a strong negative 
correlation. Conversely, a value approximating 0 implies an absence of correlation altogether [14]. Prior to computing the Pearson 
coefficients, data preprocessing is crucial for standardizing/normalizing units and potentially transforming variables to adhere to a 
normal distribution [15]. The correlation coefficient for a pair of sustainability indicators under defined constraints can be computed 
using Equation 10. 

   

   

SetNr XY X YSetCc
X_Y 2 2Set 2 Set 2Nr X X Nr Y Y

  


        
  

                      (10) 

Where: 
CcSet

X_Y: correlation coefficient between parameters X and Y 
Σxy: sum of the product of each pair of corresponding sets of constraints of the two variables 
Σx: sum of the sets of constraints of the first parameter 
Σy: sum of the sets of constraints of the second parameter 
NrSet: Number of sets of constraints  defined before that are applied.  
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III.      RESULTS AND DISCUSSIONS 
In the framework of the Atlantis energy scenario, sustainability indicator objective functions have been optimized to infer the output 
variable constraints crucial for computing the correlation coefficients. Three key optimization functions utilize single estimators as 
the main variable in constructing the appropriate matrix. These single optimization functions are as follows: 
i) energetic sustainability indicator optimization (Op_EPBT). 
ii) Economic sustainability indicator optimization (Op_ITR). 
iii) Environmental sustainability indicator optimization (Op_IMPcc). 
To further enhance the discussion of results, additional optimization functions as a convolution of each sustainability indicator pair 
are considered. These include: 
i) Energetic and Economic indicators optimization (Op_EPBT_ITR). 
ii) Economic and Environmental indicator optimization (Op_ITR_IMPcc). 
iii) Environmental and Energetic sustainability indicators optimization (Op_IMPcc_EPBT). 
For each optimization function, the considered output parameters in their global values integrated over the studied period are shown 
in Table 2. 
Upon analysing each indicator separately, it is evident that EPBT and IMPcc exhibit a more aligned behaviour, making them well-
suited for decarbonization However, the importance of environmental sustainability has surpassed that of the energy sustainability 
indicator. This is evidenced by the paired optimisation trend between them which leans towards a consensus trend in renewable 
energy, emphasising the significant importance of both indicators. Meanwhile, emissions, fossil fuel production and costs have 
continued their path towards environmental sustainability. Broadly the pattern of IMPcc and EPBT is in sharp contrast to that of 
ITR, which promotes counter-decarbonisation outcomes.  
Based on the findings presented in Table 2, two types of analyses have been conducted: Initially, the study evaluates the diverse 
effects linked to the application of individual and collective sustainability estimators. Subsequently, the corresponding correlation 
coefficients are computed. The merit variables associated with energy transition have been considered in both instances. 

Table 2. Global output of the considered observable for each sustainable optimisation function. 

Optimization Function 

Energy Production Sources 
(%) 

Economic Costs Emissions 
(Ton CO2 

/MWh) Renewable 
Fossi

l 
Nuclea

r 
Variabl
e (M$) 

Capital 
(M$) 

Fixed 
(M$) 

Single Optimization 
Function 

Op_EPBT 77 23 0 
1607.4

5 
3530.0

2 
1465.

41 
0.13 

Op_ITR 31 69 0 2859 1967.3
7 

926.5
0 

0.32 

Op_IMPcc 72 6 22 
1379.4

1 4201 1108 0.03 

Pairing Optimisation 
Function. 

Op_EPBT_ITR 45 55 0 
3319.7

9 
2158.0

9 
994.1

7 0.28 

Op_EPBT_IMP
cc 

81 6 13 1177.0
5 

3761.0
0 

1443.
93 

0.03 

Op_ITR_IMPcc 44 39 17 3122.6
1 

2267.6
0 

939.1
6 

0.16 

 
A. Direct evaluation 
The comparison between a single and convoluted indicator has been calculated to assess constructive or non-constructive 
interactions between the effects of applying different indicators. This comparison has been evaluated for each merit variable. 
Starting with both energetic and environmental sustainability indicators, Fig. 1 plots the distribution of energy production categories, 
variable and capital costs, and emissions of Op_EPBT and Op_IMPcc against the paired convolution (Op_EPBT_IMPcc). The 
paired convolution ensures a similar level of decarbonisation to the IMPcc, with an 80% boost compared to the EPBT, which is tied 
to restrictions on nuclear energy (13% reduction) in exchange for a 16% increase in fossil technologies, the use of which leads to an 
increase in variable costs of almost a third compared to the paired convolution (Op_EPBT_IMPcc).  
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As far as IMPcc is concerned, the comparison also shows an increase in the variable cost because of the Nuclear fuel cost, but 12% 
less than the comparison between (Op_EPBT versus Op_EPBT_IMPcc), as IMPcc tends to mitigate more polluting technologies, 
being 30% more than EPBT. In terms of capital investment, Op_EPBT_IMPcc, which incorporates more renewable energy features, 
incurs an almost 10% higher capital cost compared to both EPBT and IMPcc single optimizations, which exhibit similar behaviour 
in terms of their renewable energy deployment and thus their corresponding capital costs. 

 
Fig 1. Share of the energy production categories, costs, and emissions of Op_EPBT and Op_IMPcc against Op_EPBT_IMPcc 

 
The impacts of ITR don't seem to align with those of the other individually applied indicators across any of the merit variables. 
There is a bias towards ITR in both Op_EPBT_ITR and Op_IMPcc_ITR. For Op_EPBT_ITR, considering both indicators 
simultaneously results in a 30% increase in fossil fuel dependency and a burden on nuclear energy production. This is shown in Fig. 
2, which illustrates the distribution of energy production categories, costs, and emissions for Op_EPBT and Op_ITR compared to 
Op_EPBT_ITR. As emissions follow the trend of ITR, Variable costs also correspondingly increase.  

 
         Fig 2. Share of the energy production categories, costs, and emissions of Op_EPBT and Op_ITR against Op_EPBT_ITR 
 
Op_ITR_IMPcc, as opposed to Op_IMPcc, reduces renewable energy production by 30% and tends to encourage the growth of 
polluting technologies by at least 30%, thereby resulting in 40% more emissions. In all relevant trends, the paired analysis places 
economic sustainability ahead of environmental sustainability. This is evidenced in Fig. 3, depicting the allocation of energy 
production categories, costs, and emissions for Op_ITR and Op_IMPcc in comparison to Op_ITR_IMPcc. 
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Fig. 3 Share of the energy production categories, costs, and emissions of Op_ITR and Op_IMPcc against Op_ITR_IMPcc 

 
B. Correlation matrix coefficients associated with selected constraint sets. 
A more detailed evaluation will be performed based on the results obtained using the correlation matrix approach. Various sets of 
constraints have been considered, including: i) Eps (categorised energy production sources, which comprise renewable, fossil, and 
nuclear), ii) EC (economic cost, which encompasses capital investment, fixed and variable costs), and iii) Em (emissions). 
In the assessment of the level of correlation between the sustainability indicators, it has been found that the response is different 
depending on the merit variables being considered. To improve clarity, an analytical evaluation is proposed by constructing 
correlation matrices, where the variables under study define the set of constraints. 
For a primary analysis, Equation 11 represents the correlation matrix, where the set of constraints applied includes EC (capital cost, 
variable cost, fixed cost), EP (renewable energy, fossil energy, nuclear energy) and EM (emissions). It's noteworthy that there is no 
correlation between economic and energy sustainability criteria, while environmental sustainability demonstrates a clear negative 
correlation with economic sustainability. However, energy and environmental sustainability display a correlation exceeding 80%. 

EP& EC& EM

1 0.05 0.82
SI_CorrMtx  = 0.05 1 - 0.42

0.82 - 0.42 1

 
 
 
  

                                                           (11) 

The mutual dependencies between the set of constraints significantly impact the level of correlation among the sustainability criteria. 
As a first remark, there is a fivefold interrelation between the variables set, including renewable and fossil fuel production, 
emissions, variable costs, and investment costs. For instance, CO2 emissions are not only tied to the share of renewable energy 
sources or fossil fuels in the energy path but also to the investment in terms of capital costs. The fact is that the Op_IMPcc trend 
displays a lesser CO2 emission including a significant proportion of renewable sources, thus making a higher investment cost. 
Whereas Op_ITR is seeking a quick investment payback time, renewable energy is often penalised in favour of fossil fuels, which 
do not require significant capital investment but are extremely polluting. 
In summary, not all constraints can be fulfilled simultaneously. Additionally, there appears to be interdependence among the various 
options. To delve deeper into this matter, we'll evaluate correlation matrices with a more straightforward set selection. 
1) Correlations matrix coefficients associated with energetic production constraint set: From the perspective of energy production, 

a clear directional relationship between sustainability indicators is noticeable, whether correlated or not (see Table 3). This can 
be further underscored by examining the correlation matrix, where the set of constraints utilized consists of the three defined 
energy production categories: renewable energy, fossil energy, and nuclear energy. Equation 12 shows the obtained results. 

EP

1 0.23 0.86
SI_CorrMtx  = 0.23 1 - 0.29

0.86 - 0.29 1

 
 
 
  

                                                                    (12) 

A robust correlation of at least 86% between energetic and environmental sustainability indicators is observed. This correlation 
stems from both indicators promoting the extensive adoption of renewable energy production.  
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Despite their intermittent nature due to a low-capacity factor, renewable technologies stand out from fossil fuel technologies thanks 
to their swift energy payback on a cradle-to-cradle basis. Renewable energy sources are cost-effective as they are free, unlike fossil 
fuel and nuclear technologies, which have variable fuel costs that make them less competitive. 
However, the correlation between ITR and EPBT is weak at 23%. This weak correlation can be attributed to their differing 
approaches to energy production, except for fossil fuel category production. Moreover, in both cases, there is very little reliance on 
nuclear energy compared to fossil fuels and renewables, making them similar in that regard. Op_ITR relies more heavily on fossil 
fuels compared to Op_EPBT, which uses fossil fuels as a 20% backup to compensate for renewable energy intermittency. 
Additionally, the minimal correlation can be linked to the availability of energy sources, where the indicators are highly 
interdependent. ITR is closely linked to technology efficiency, favouring quick returns on investment. This bias leads to prioritizing 
fossil-fuelled facilities over widespread renewable energy technologies. 
Economic and environmental sustainability indicators are anticorrelated by 29%. This divergence can be explained by the 
significant differences in renewable and fossil production between these indicators. Op_IMPcc limits polluting technology 
alternatives to a mere 6% of the energy mix, while the higher incorporation of renewable energy increases capital investment costs. 
This contrasts with Op_ITR, where half of the generation is from fossil fuels, favouring quicker economic returns. 
 
2) Correlation matrix associated with energy production and emission constraint sets: Another aspect under evaluation is the 

impact of the proportion of polluting technologies included in the energy mix on emission levels. Fig. 4 illustrates the emission 
trends for each optimization function based on sustainability criteria and the distribution of energy generation categories. 
Specifically, Op_IMPcc demonstrates the lowest emission level per unit of production. In contrast, Op_ITR stands out as the 
highest polluter, emitting 90% more CO2 than Op_IMPcc. Similarly, Op_EPBT emits 75% more emissions than Op_IMPcc. 

The inclusion of emissions in the set of constraints alongside energy production categories significantly impacts the correlation 
matrix SI_CorrMtxEP&EM, as demonstrated in Equation 13. Notably, the correlation coefficient associated with ITR undergoes a 
fundamental change. This alteration arises from each trend aligning with the triangular interrelation between emissions performance 
and the dependency on fossil fuels and renewable energy sources. 

                     EP& EM

1 - 0.01 0.74
SI_CorrMtx  = - 0.01 1 - 0.67

0.74 - 0.67 1

 
 
 
  

                                                    (13)                            

 

 
Figure 4. Emission trend by share of energy production categories for each optimisation function 

 
EPBT and IMPcc exhibit a strong correlation, propelled by their joint emphasis on promoting renewable energy production (refer to 
Fig. 4 for further details). Moreover, their respective emissions trends align with the triangular interrelation among emissions, 
renewable energies, and fossil fuels. Despite noticeable disparities in emissions rankings, this triangular relationship yields a 
positive yet weak correlation between the economic indicator and the energy ones. It's crucial to note that Op_EPBT's reliance on 
fossil fuels in its energy mix contributes to its elevated pollution levels. Consequently, the correlation coefficient increases to 12%. 
Regarding the anticorrelation between the economic and environmental indicators, it stands as the highest calculated thus far (0.73). 
The rationale is clear: the most polluting energy sources tend to have the shortest economic return times. 
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3) Correlations matrix coefficients associated with the economic constraint set: The main cost component, encompassing variable, 
capital, and fixed costs, has been evaluated and presented in Table 3. Fig. 5 shows the cost trends for each of the optimisation 
sustainability indicators, highlighting the trend in cost components. Notably, the energy and environmental indicators exhibit 
the same cost trend, while the economic indicator demonstrates the opposite trend. Due to the significant penetration of 
renewable technologies, investment costs were approximately 44% higher for both Op_IMPCC and Op_EPBT compared to 
Op_ITR. Conversely, as anticipated, Op_ITR incurs the highest fuel cost, being twice as expensive as Op_IMPCC and 
Op_EPBT. 

 
Fig.5 Costs components trend for each optimisation function 

 
The correlation matrix, SI_CorrMtxEC, related to the cost component set, as shown in Equation 14, confirms the relationship among 
the indicators, as evident in Figure 5. As expected, there is a strong correlation between EPBT and IMPcc, with the correlation 
coefficient reaching its maximum value, signifying similar economic and energy trends. However, due to the contrasting trends 
exhibited by the ITR indicator, practically no correlated with both IMPcc, and EPBT. 

           EC

1 0.14 1
SI_CorrMtx  = 0.14 1 0.08

1 0.08 1

 
 
 
  

                                                                   (14)          

                                  
C. Comparison and Decision table. 
Based on the results obtained, Fig. 6 provides a visual representation of the Pearson coefficient values between sustainability 
indicators, categorized based on the variables utilized as constraints. This depiction allows for an insightful observation of the 
behavioural trends among the indicators. Notably, the strongest correlation emerges between EPBT and IMPcc, underscoring their 
closely aligned trajectories. Conversely, the association between ITR and EPBT reveals a weaker correlation, while the relationship 
between ITR and IMPcc demonstrates the strongest anticorrelation. 
From the analysis presented in Fig. 6, significant insights emerge regarding the prioritization of sustainability indicators based on 
specific decision-making objectives. For instance, when the correlation coefficient between two sustainability indicators attains an 
absolute value (Cc = 1) for a particular set of decision objectives, it implies redundancy when these indicators are used in 
conjunction. In such scenarios, it is prudent to avoid their combined usage to prevent redundancy. This suggests that a single 
indicator can be sufficient to meet the corresponding decision goals effectively. 
The observed redundancy between certain sustainability indicators, such as environmental and energetic sustainability, particularly 
in the context of economic cost constraints, underscores this point. When the correlation coefficient reaches unity, selecting either 
the energetic or environmental sustainability criterion alone is adequate to achieve the desired objectives. This approach ensures that 
decision-making remains efficient and avoids the unnecessary complexity and potential cost duplication associated with using 
multiple, redundant indicators. 
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Fig. 6 Comparison of the person correlation coefficient for each set of constraint between the sustainability indicators 

 
Still in the context of both energetic and environmental sustainability criteria, it is evident from Figure 3.7 that their correlation is 
not absolute across decision-making constraints, such as “energy production-emissions”. Additionally, when addressing multiple 
objectives (e.g., cost, emissions, and energy production), both energetic and environmental sustainability indicators must be 
considered in tandem convolution. This necessity arises because no single criterion achieves perfect correlation with the others. 
Focusing on economic sustainability criteria maintains its distinctiveness and relevance across various decision-making scenarios 
therefore it is crucial to pair it with either energetic or environmental sustainability indicators, regardless of the specific decision-
making constraints. This approach ensures a comprehensive evaluation, as economic sustainability does not fully correlate with the 
other two criteria. In fact, economic sustainability criteria slightly positively correlate with energetic sustainability and negatively 
correlate with environmental sustainability (Figure 5). This nuanced interplay highlights the importance of a consideration of the 
economic sustainability-based decision making in convolution with at least another sustainability criteria to achieve well-rounded 
and effective decision-making. 
Building upon these observed trends, Table 3.8 presents a decision table outlining the behaviour of each indicator concerning the 
considered output variables, which encompass energy production sources categorized according to economic costs (specifically, 
capital investment and variable costs) and emissions. These findings furnish valuable insights into the nuanced dynamics between 
sustainability indicators, thereby affording decision-makers the opportunity to tailor their prioritization based on specific objectives 
and requirements. 
The obtained results provide the opportunity to adjust the importance of each sustainability criterion according to the objectives and 
needs of decision-makers. This can be achieved through modulation factors incorporated into the optimization function (denoted as 
Wj in Equation 1). 
 

Table 3. Decision table detailing the behaviour of each indicator across various sets of constraints. (The upward arrows indicate a 
high influence of the indicators on achieving the proposed goals, whereas the downward arrows suggest the opposite. In the case of 

slanted arrows, the influence is not definitive and should be analysed in each specific case). 
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IV.      CONCLUSIONS 
In the current global paradigm, the significance of sustainability in the long-term energy transition cannot be overstated. Addressing 
challenges related to energy production and consumption, encompassing environmental, social, and economic impacts, is imperative. 
While multi-criteria Optimization modelling tools like OSeMOSYS provide valuable insights into energy systems, primarily 
focused on economic optimization, there's a growing consensus on the need to explicitly integrate sustainability considerations. 
Delving into sustainability indicators within OSeMOSYS reveals intricate interdependencies that significantly influence energy 
system planning and decision-making toward specific sustainability objectives. Among these indicators, Energy Payback Time 
(EPBT), Investment Payback Time (ITR), and Climate Change Mitigation Impacts (IMPcc) have been evaluated within the "cradle 
to cradle" philosophy. 
The assessment of correlation matrices, employing the Pearson method, offers a quantitative analysis of these dependencies across 
various boundary conditions. Merit variables, such as energy production categorized into renewable, fossil fuels, and nuclear; 
economic costs including capital, fixed, and variable costs; and emissions, serve as constraints for calculating correlation 
coefficients. These constraints can be applied individually or collectively, refining multidimensional datasets to focus on specific 
conditions or criteria. 
However, the efficacy of correlating sustainability indicators cannot be solely attributed to applying a set of constraints 
simultaneously. This arises due to trade-offs among various technical factors in the optimization process, leading to 
interdependencies between certain sets of output constraints. For example, this study identifies a fivefold interrelation among the 
merit variables, including emissions, renewable energy, fossil fuels, capital, and variable costs, aligning with sustainability 
optimization. Utilizing these variables to construct a correlation matrix may result in a biased interpretation, potentially skewing 
towards an ambiguously positive absolute correlation between sustainability indicators. 
Furthermore, correlation matrices evaluated using simpler selection criteria demonstrate an inverse correlation between economic 
sustainability optimization criteria and environmental sustainability indicators. However, the latter positively correlates with the 
energy sustainability indicator, unless economic constraints are explicitly considered. 
While economic sustainability indicators may yield rapid returns on investment and cost reduction, they may also lead to increased 
fossil fuel usage, higher variable costs, and elevated pollutant emissions. Consequently, economic sustainability indicators may not 
be suitable when primary objectives align with decarbonization efforts. This highlights a significant inherent dichotomy between 
economic and environmental sustainability goals, especially concerning carbon emissions reduction and climate change mitigation, 
alongside an increasing reliance on renewable attributes and associated investment costs. 
Addressing the challenge of decarbonization requires considering both economic and environmental factors. This may entail 
integrating environmental sustainability criteria into economic decision-making processes using energy sustainability indicators. 
Although energy sustainability indicators exhibit stronger correlation with environmental sustainability, their characteristic within 
the cradle-to-cradle paradigm presents a balanced approach between economic and environmental factors. 
   In conclusion, fostering stronger alignment among economic, energy, and environmental sustainability goals often entails 
reevaluating the weighting assigned to different indicators within optimization functions. Explicitly prioritizing optimization 
objectives that promote sustainability is essential. The insights gained from the results facilitate this prioritization, allowing it to be 
directly incorporated into the optimization function of modeling tools. This enables decision-making that aligns more closely with 
the objectives of decision-makers, providing a comprehensive understanding of each indicator's behaviour concerning the 
considered output variables, such as energy production sources categorized by economic costs and emissions.   
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