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Abstract: In this paper, various bounds on maximum number of codeword’s for a given size and minimum distance is discussed.  
Then these bounds are studied with example and various types of upper bounds are calculated for size and distance. The 
comparison of these bounds have been done and the tighter bounds for (܌,ܖ)ܙۯ is discussed. 
Keywords: Error Correction, Binary Codes, Bounds, Hamming Bound, Plot kin Bound, Elias Bound 

I. INTRODUCTION 
For a given q-ary (n, M, d) error correcting code, n is the size of code, d is the minimum distance between codewords of the code 
and M is the maximum number of codewords in the code. The efficiency of error correcting code is measured by number of 
codewords M in the code and the d is the error correcting capability of the code[1, 5]. It is necessary to have maximum number of 
codewords M in code with minimum distance d as high as possible for a good error correcting code.  But in practice, for a code of 
given size n and minimum distance d, it is not always possible to obtain large M. So for given n, one has to negotiate between 
number of codewords M and Minimum distance d.  
For q> 1, Theܣ(݊,݀) is defined as the largest possible size M for which aq-ary code with size n, codeword’s and distance d exists.  

(݀,݊)ܣ = max { ܯ ∶ an(݊,ܯ,݀) code exists } 
So, the bound on maximum number of codewordsܣ(݊,݀)plays very important role in construction of codes in the Coding theory. 
To find ܣ(݊,݀) for given q, n and d is main coding theory problem.  In other words, the basic coding theory problem is to find 
such a code of size n for given minimum distance d, which has maximum number of codewords. Generally it is not easy to find 
,݊)ܣ ݀). To achieve the bounds ofܣ(݊,݀), a few basic theorems are used:  
A. For q> 1, ܣ(݊,݀) ≤ for all 1ݍ ≤ ݀ ≤ ݊ 
B. ܣ(݊, 1) =  ݍ
C. ܣ(݊, ݊) =  ݍ

II. SOME BASIC UPPER BOUNDS OF (܌,ܖ)ܙۯ 
In this paper, various basic upper bounds on size( or rate) of linear codes like Singleton bound, SpherePacking bound or Hamming 
Bound, Plotkin bound, Johnson upper bound, and Elias Upper bound are discussed. Then their bounds on various values of n and d 
are computed using their definitions. First the definitions of these upper bounds as follows: 

A. Singleton bound 
Singletonbound[1, 3, 5]is the one of the basic bound on the number of codewordsfrom the definition of codes. For integers݊ ≥ ݀ ≥
1, integer q > 1,  

,݊)ܣ ݀) ≤ ାଵିௗݍ  
For a parameter [݊, ݇, ݀] of linear code, when q is a prime power,then݇ + ݀ − 1 ≤ ݊. The codes[݊, ݇,݀]which satisfy this equality 
i.e.݇ + ݀ − ݊ = 1, are known as MDS Codes. Reed Solomon codes are good example of Maximum Distance Separable (MDS) 
codes. 

B. Hamming Bound or SpherePacking Bound 
For integer n,q > 1& integer d, 1 ≤ ݀ ≤ ݐ ,݊ = ቔௗିଵ

ଶ
ቕ 

(݀,݊)ܣ ≤
ݍ

∑ ቀ݊݅ ቁ ݍ) − 1)௧
ୀ

 

TheSpheres of radius twith centre as individualcodewords are disjoint. As there are ݑ = ∑ ቀ݊݅ ቁ ݍ) − 1)௧
ୀ  total vectors in any one 

of these Spheres. Then maximum number of codewordsMu cannot exceed the numberݍ. The codes(݊, ݀), which achieves the 
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Hamming or SpherePacking bound are known as Perfect codes[1, 5]. The (23, 12, 7)2and (11, 6, 5)3 are perfect codes as they satisfy 
the Hamming bound. 

C. Plotkin Bound 
The Plotkin Bound[1, 2, 5] is an improvement of the SpherePacking Bound on ܣ(݊,݀). Plotkin bounds gives more tightly bounds 
than singleton bounds,SpherePacking bounds or hamming bounds for linear codes. It uses Cauchy Schwarz inequality to prove 
Plotkin bounds. Plotkin bounds holds for minimum distance d is close to size n. 
For integer n,q > 1, integer dandݎ = 1− ଵ


, if ݊ <  ݎ/݀

,݊)ܣ ݀) ≤ ඌ
݀

݀ − ݎ݊
ඐ 

So, For binary codes, q = 2, Plotkin bounds becomes 

≤  

⎩
⎪⎪
⎨

⎪⎪
⎧2 ඌ

݀
2݀ − ݊

ඐ            when ݀ is even

4݀

 ݊ < 2݀
            ݊ = 2݀

2 ඌ
݀ + 1

2݀ + 1 − ݊
ඐ    when ݀ is odd ݊ < 2݀ + 1

      4݀ + 4            ݊ = 2݀ + 1 ⎭
⎪⎪
⎬

⎪⎪
⎫

 

D. Johnson Upper Bound 
The constant weight codes are used to understand Johnson’s upper bound[1, 4, 5]on ܣ(݊,݀). If Cis codewordwith weight w then 
,݊)ܣ  is defined as themaximum of the number of codewordswith size n and distance dof a constant weight w. Then the(ݓ,݀
bounds on ܣ(݊,  : (݀,݊)ܣ (݊,݀).The following theorems are used to findܣ is used to find the upper bounds on (ݓ,݀

1) For Upper bound onܣ(݊,݀,ݓ): 

i. If ݀ ≤ ݁ and define , ݓ2  = ቐ
ௗ
ଶ

if ݀ is even
ௗାଵ
ଶ

if ݀ is odd
 

,݊)ܣ (ݓ,݀ ≤  ቨ
ݍ)݊ − 1)

ݓ
ඍ
(݊ − ݍ)(1 − 1)

ݓ − 1
ඌ… ඌ

(݊ ݓ− + ݍ)(݁ − 1)
݁

ඐ… ඐඑቩ 

ii. If ݀ > (ݓ,݀,݊)ܣ , ݓ2  = 1 
2)  Johnson Upper bound on ܣ(݊,݀) is defined as:  

Let ݐ = ቔௗିଵ
ଶ
ቕ, 

If ݀ is odd 

(݀,݊)ܣ ≤
ݍ

∑ ቀ݊݅ ቁ ݍ) − 1)௧
ୀ +

ቀ 
௧ାଵቁ(ିଵ)శభିቀௗ௧

ቁ(,ௗ,ௗ)

(,ௗ,௧ାଵ)

 

If ݀ is even  

,݊)ܣ ݀) ≤
ݍ

∑ ቀ݊݅ ቁ ݍ) − 1)௧
ୀ +

ቀ 
௧ାଵቁ(ିଵ)శభ

(,ௗ,௧ାଵ)

 

E. Elias Upper Bound 
Elias Upper bound is applied for constant weight error correcting codes. For a given n and d, Elias bound is weaker bound than 
Plotkin’s bound, Hamming Bound and Johnson upper bound.[1, 5]. 
For integer n>1, integer q > 1, integer d, ݊ ≥ ݀ ≥ 1, integer w < r nforݎ = 1− ଵ


ଶݓ& , − ݓ݊ݎ2 + ݀݊ݎ > 0, then 

(݀,݊)ܣ ≤
݀݊ݎ

ଶݓ − ݓ݊ݎ2 + ݀݊ݎ
ݍ

 (ݓ,݊)ܪ
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Where ܪ(݊,ݓ) = ∑ ቀ݊݅ ቁ ݍ) − 1)௪
ୀ  

III. AN EXAMPLE 
To understand the concept of various upper bounds, we take the examples of bounds on ܣଶ(8, 4) are as follows: 

A. Singleton Bound 
Forݍ = 2,݊ = 8, ݀ = 4 

,ଶ(8ܣ 4) ≤ 2଼ାଵିସ = 32 

B. Hamming Bound or Sphere Packing Bound    
Forݍ = 2,݊ = 8, ݀ = 4 

,ଶ(8ܣ 4) ≤
2଼

∑ ቀ8
݅
ቁ (2− 1)

ቔరషభమ ቕ
ୀ

=
2଼

∑ ቀ8
݅ ቁ

ଵ
ୀ

=
2଼

ቀ8
0ቁ+ ቀ8

1ቁ
=

2଼

9 ≈ 28 

C. Plotkin Bound 
Forݍ = 2,݊ = 8, ݀ = 4      as here n = 2d 

ଶ(8,4)ܣ ≤ 4 (4) = 16 

D. Johnson Bound 

Forݍ = 2,݊ = 8, ݀ = 4 
Here d is even, therefore Forݐ = ቔସିଵ

ଶ
ቕ = 1 

 

ଶ(8,4)ܣ ≤
2଼

∑ ቀ8
݅ ቁ (2− 1)ଶ

ୀ +
ቀ଼ଷቁ(ଶିଵ)శభ

మ(଼,ସ,ଷ)

=
2଼

∑ ቀ8
݅ ቁ

ଶ
ୀ +

ቀ଼ଷቁ

మ(଼,ସ,ଷ)

 =
256

9 + ଶ଼
మ(଼,ସ,ଶ)

 

 
Now, for ݍ = 2,݊ = 8, ݀ = ݓ,4 = 2, As ݀ is even, therefore ݁ = ݀/2 = 4 

ଶ(8,4,2)ܣ ≤  ቨ
ݍ)݊ − 1)

ݓ
ඍ
(݊ − ݍ)(1 − 1)

ݓ − 1
ඌ… ඌ

(݊ ݓ− + ݍ)(݁ − 1)
݁

ඐ… ඐඑቩ 

ଶ(8,4,2)ܣ ≤  ඌ
8
2
ඐ = 4 

So, ܣଶ(8, 4) ≤ ଶହ

ଽା మఴ
ಲమ(ఴ,ర,మ)

= ଶହ

ଽାమఴర
= ଶହ

ଵ
= 16 

TABLE I 
 VARIOUS BOUNDS ON Aଶ(8, 4) 

 
Singleton 

Bound 

Sphere 
Packing or 
Hamming 

Bound 

Plotkin 
Bound 

Johnson 
Bound Elias Bound 

A2(8, 4) 32 28 16 16 
w = 1 w = 2 w = 3 

50 27 44 

 
E. Elias Bound ݍ = 2, ݊ = 8,݀ = 4 
Forݎ = ଵ

ଶ
, integerݓ < ଵ

ଶ
 8 = 4,Andݓଶ − ݓ8 + 16 > 0, So ݓ = 1, 2, 3 then 

(݀,݊)ܣ ≤
݀݊ݎ

ଶݓ − ݓ݊ݎ2 + ݀݊ݎ
ݍ

 (ݓ,݊)ܪ
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So,ܣଶ(8,4) ≤
16

ଶݓ − ݓ8 + 16
2଼

 (ݓ,8)ଶܪ

Now,ܪ(݊,ݓ) = ቀ݊݅ ቁ ݍ) − 1)


ୀ

 

For ݓ = ,ଶ(8ܪ ,1 1) = ∑ ቀ8
݅ ቁ (2 − 1)ଵ

ୀ = ∑ ቀ8
݅ ቁ =ଵ

ୀ ቀ8
0ቁ+ ቀ8

1ቁ = 9 

For ݓ = ,ଶ(8ܪ ,2 2) = ∑ ቀ8
݅ ቁ (2 − 1)ଶ

ୀ = ∑ ቀ8
݅ ቁ =ଶ

ୀ ቀ8
0ቁ+ ቀ8

1ቁ + ቀ8
2ቁ = 37 

For ݓ = ,ଶ(8ܪ ,3 3) = ∑ ቀ8
݅ ቁ (2 − 1)ଷ

ୀ = ∑ ቀ8
݅ ቁ =ଷ

ୀ ቀ8
0ቁ+ ቀ8

1ቁ + ቀ8
2ቁ+ ቀ8

3ቁ = 93 

So, For ݓ = 1, ,ଶ(8ܣ 4) ≤
16

ଶݓ − ݓ8 + 16
2଼

(ݓ,8)ଶܪ =
16
9

2଼

9 ≈ 50 

So, For ݓ = 2, ,ଶ(8ܣ 4) ≤
16

ଶݓ − ݓ8 + 16
2଼

(ݓ,8)ଶܪ =
16
4

2଼

37 ≈ 27 

So, For ݓ = 3, ,ଶ(8ܣ 4) ≤
16

ଶݓ − ݓ8 + 16
2଼

(ݓ,8)ଶܪ =
16
1

2଼

93 ≈ 44 

 

IV. CONCLUSION 
After applying the above defined upper bounds on ܣ(݊,݀), the following table is obtained. From tableII, it is observed that Plotkin 
bound is much tighter bound on than Hamming bound and Singleton bound. For n= 8, d=4, Plotkin bound and Johnson bound gives 
the value 16 which is much tighter than singleton bound and hamming bound which are 32 and 28 respectively. But the drawback of 
Plotkin bound is that it is valid only for minimum distance d near to the size n.Due to which Plotkin bound is not defined large 
values of size of code as compared to minimum distance d. Also it can be seen from table II that Johnson bound is much tighter 
bound that Singleton bound, SpherePacking bound and Plotkin Bound, whereas Elias bound are very weak bound defined on 
constant weight codes. As for n= 10, d=4, Johnson bound gives the value 51 which is much tighter than singleton bound and 
hamming bound which are 128 and 93 respectively and Plotkin bound is not defined. Also it can be seen from Table Ithat Elias 
bound for w = 1, 2, 3 are much higher than other bounds discussed here. So it is concluded that for construction of linear binary 
codes, researcher should keep in mind of Johnson bounds on linear binary codes than other bounds discussed here. 

TABLE II 
 SINGLETON BOUND, SPHERE PACKING BOUND, PLOTKIN BOUND AND JOHNSON BOUNDS ON Aଶ(N, D) 

Singleton Bound 
Size → 

 distance  ↓ 
3 4 5 6 7 8 9 10 11 12 

3 2 4 8 16 32 64 128 256 512 1024 
4 --- 2 4 8 16 32 64 128 256 512 
5 --- --- 2 4 8 16 32 64 128 256 
7 --- --- --- --- 2 4 8 16 32 64 

Sphere Packing Bound 
Size → 

 distance  ↓ 
3 4 5 6 7 8 9 10 11 12 

3 2 3 5 9 16 28 51 93 170 315 
4 --- 3 5 9 16 28 51 93 170 315 
5 --- --- 2 2 4 6 11 18 30 51 
7 --- --- --- --- 2 2 3 5 8 13 

Plotkin Bound 
Size → 

 distance  ↓ 
3 4 5 6 7 8 9 10 11 12 

3 2 2 4 8 16 --- --- --- --- --- 
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4 --- 2 2 4 8 16 20 --- --- --- 
5 --- --- 2 2 2 4 6 12 24 --- 
7 --- --- --- --- 2 2 2 2 4 4 

Johnson Bound 
Size → 

 distance  ↓ 
3 4 5 6 7 8 9 10 11 12 

3 2 2 4 8 16 25 51 83 167 292 
4 --- 2 2 5 8 16 26 51 89 170 
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