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Abstract:Bessel Functions are series of solution to second order differential equation that arise in many diverse situations. This 
paper derives the Bessel functions through use of a series solution to differential equation, develops the different kinds of Bessel 
functions, and explores the topic of zeroes. Finally, Bessel functions are found to be the solution to the Schrödinger’s equations 
in situation with cylindrical symmetry.   
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I. INTRODUCTION 
This The boundary value problem (one dimensional heat equation) with cylindrical symmetry reduces to two ordinary differential 
equations by the separation of variable method. One of them is the most useful differential equation known as Bessel’s differential 
equation. 
equation was studied by Bessel with his work on planetary motion. Outside of planetary motion, the equation appears prominently 
in a wide range of applications such as steady and unsteady diffusion in cylindrical regions and one dimensional wave propagation 
etc. The subject of Bessel function and application is a very rich subject: nevertheless, due to space and time restrictions and interest 
of studying applications, the Bessel function shall be represented as a series solution to the second order differential equation, and 
then applied to a situation with cylindrical symmetry. Approximate development of zeroes, modified Bessel function and the 
application of boundary conditions will be briefly discussed.    

II. NOTATIONS AND DEFINITIONS 
An important differential equation which arises in mathematical physics is the Bessel equation 

ᇱᇱݕଶݔ + ᇱݕݔ + ଶݔ) − ݕ(ଶݒ = 0                                                                                                                                            (1) 
Where ݒ is a constant 

ᇱ(ᇱݕݔ)ݔ + ଶݔ) − ݕ(ଶݒ = 0                                                                                                                                                    (2) 
And employing the use of Frobenius method, we re-write the terms of (2) in the terms of the series:  

ݕ = ܽݔା௦
ஶ

ୀ

 

ᇱݕ = ܽ(݊ + ା௦ିଵݔ(ݏ
ஶ

ୀ

 

ᇱݕݔ = ܽ(݊ + ା௦ݔ(ݏ
ஶ

ୀ

 

ᇱ(ᇱݕݔ) = ܽ(݊ + ା௦ିଵݔଶ(ݏ
ஶ

ୀ

 

When the coefficients of the powers of ݔ are organized, we find that coefficient on  ݔ௦ gives the indicial equation  ݏଶ − ଶݒ = 0,⟹
ݏ =    :௦ା termsݔ we develop the general formula for the coefficient on the ,ݒ±

ܽ = −
ܽିଶ

(݊ + ଶ(ݏ − ଶݒ                                                                                                                                                             (3) 

 
In the case ݏ =  ݒ
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 ܽ = −
ܽିଶ

݊(݊ +    (4)                                                                                                                                                                  (ݒ2

And since ܽଵ= 0, ܽ = 0 for all ݊= odd integers. Coefficients for even powers of ݊ are found: 

ܽଶ = −
ܽଶିଶ

2ଶ݊(݊ +  (5)                                                                                                                                                               (ݒ

We can write the coefficient: 

ܽଶ = −
ܽ

2ଶ(ଵା௩) = −
Γ(1 + (ݒ

2ଶΓ(2 +  (ݒ

ܽଶ = −
ܽΓ(1 + (ݒ

݊! 2ଶΓ(݊ + 1 +  (ݒ

This allows us to write the terms of the series: 

ݕ = (ݔ)௩ܬ = 
(−1)

Γ(݊ + 1)Γ(݊ + 1 + (ݒ

ஶ

ୀ

ቀ
ݔ
2
ቁ
ଶା௩

                                                                                                            (6) 

Where ܬ௩(ݔ) is the Bessel function of the first kind of order ݒ. 
Bessel function of the second kind is known as Neumann functions, are developed as a linear combination of Bessel function of the 
first order described: 

௩ܰ(ݔ) =
cos (ݔ)௩ܬ ߨ ݒ − (ݔ)௩ିܬ

sinݒ ߨ                                                                                                                                            (7) 

For integral values of ݒ, the expression of ௩ܰ(ݔ) have a indeterminate form, and ௩ܰ(ݔ)|௫ୀ = ±∞ nevertheless the limit of this 
function for ݔ ≠ 0, the expression for ௩ܰ is valid for any value of v, allowing the general solution to Bessel’s equation to be written: 

ݕ = (ݔ)௩ܬܣ + ܤ ௩ܰ(ݔ)                                                                                                                                                             (8) 
With A and Barbitrary constants determined from boundary conditions 
Bessel functions of the first and second kind are the most commonly found forms of the Bessel function in applications. Many 
applications in hydrodynamics, pumps, turbines, hydropower, modulated radio transmission, elasticity, and oscillatory systems have 
solutions that are based on the Bessel functions. One such example is that of a uniform density chain fixed at one end undergoing 
small oscillations. The differential equation of this situation is: 
݀ଶݑ
ଶݖ݀ +

1
ݖ
ݑ݀
ݖ݀ +

݇ଶݑ
ݖ = 0                                                                                                                                                           (9) 

Where ݖ refers to a point on the chain, ݇ଶ = మ


, with  as the frequency of small oscillation at that point, and ݃ the gravitational 

constant of acceleration. Eq. (9) is a form of eq. (1), and solution is: 

ݑ = ܬܣ ቀ2݇ݖ
భ
మቁ+ ܤ ܻ ቀ2݇ݖ

భ
మቁ,                                                                                                                                                 (10) 

Where A and B are determined by the boundary conditions. 
Modified Bessel functions are found as solution to the modified Bessel equation 
ᇱᇱݕଶݔ + ᇱݕݔ − ଶݔ) − ݕ(ଶݒ = 0                                                                                                                                                  (11) 
Which transforms into eq. (1) when ݔ is replaced with ݅ݔ. However; this leaves the general solution of eq. (1) a complex function 
of ݔ. To avoid dealing with complex solutions in the practical applications, the solutions to (11) are expressed in the form: 

(ݔ)௩ܫ = ݁
ೡ ഏ 
మ ௩ܬ ൬݁ݔ

 ഏ
మ ൰                                                                                                                                                                (12) 

The ܫ௩(ݔ) are set of functions known as the modified Bessel functions of the first kind. The general solutions of the modified Bessel 
function is expressed as a combination of ܫ௩(ݔ) and a function  ିܫ௩(ݔ) 
ݕ = (ݔ)௩ିܫܣ  (13)                                                                                                                                                               (ݔ)௩ିܫܤ−
Where again A and B are determined from the boundary conditions. 
 A solution for non-integer orders of ݒ is found: 

(ݔ)௩ܭ =
ߨ
2
−(ݔ)௩ିܫ (ݔ)௩ܫ

sinݒ ߨ                                                                                                                                                              (14) 

The functions ܭ௩(ݔ)are known as modified Bessel functions of the second kind. Modified Bessel functions appears less frequently 
in applications, but can be found in transmission line studies, non-uniform beams, and the statistical treatment of a relativistic gas in 
statistical machines.  
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Bessel functions of the first and second kind have an infinite number of zeroes as the value of ݔ goes to ∞ 
The modified Bessel function of the first kind  (ܫ௩(ݔ)) have only one zero at the point ݔ = 0, and the modified Bessel equation of 
the second kind (ܭ௩(ݔ)) functions do not have zeroes. 
Bessel function zeroes are exploited in frequency modulated (FM) radio transmission. FM transmission is mathematically 
represented by a harmonic distribution of sine wave carrier modulated by a sine wave signal which can be represented with Bessel 
Functions. The carried frequencies disappear when the modulation index (the peak frequency deviation divided by the modulation 
frequency) is equal to the zero crossing of the function for the  ݊௧ sideband.    

III. SOLUTION OF SCHRÖDINGER’S EQUATION IN A CYLINDRICAL WELL  
Consider a particle of mass ݉ placed into a two dimensional potential well, where the potential is zero inside the radius of the disk, 
infinite outside of the radius of the disk. In the polar coordinates using r, ߶ as representatives of the system, the Laplacian is written: 

ΔଶΨ =
1
ݎ
߲
ݎ߲
൬ݎ
߲Ψ
ݎ߲
൰ +

1
ଶݎ
߲ଶΨ
߲߶ଶ                                                                                                                                                    (15) 

This in the Schrödinger equation presents:  

−
ℏଶ

2݉
ቈ
1
ݎ
߲
ݎ߲
൬ݎ
߲Ψ
ݎ߲
൰+

1
ଶݎ
߲ଶΨ
߲ϕଶ =  Ψ                                                                                                                                      (16)ܧ

Using the method of separation of the variable with a proposed solution Ψ  = ܴ(ݎ)ܶ(߶) in (16), produces 

−
ℏଶ

2݉
ቈܶ(߶)

1
(ݎ)ܴ

߲
ݎ߲
ቆݎ
(ݎ)ܴ߲
ݎ߲

ቇ +
1
ଶݎ (ݎ)ܴ

߲ଶT
߲ϕଶ =  (߶)ܶ(ݎ)ܴܧ

                                                                                                                                                                                                          (17) 
and then dividing byΨ: 

ቈ
1
ܴ

1
ݎ
߲
ݎ߲
൬ݎ
߲ܴ
ݎ߲
൰ +

1
ଶݎ

1
ܶ
߲ଶT
߲ϕଶ =

ܧ2݉−
ℏଶ                                                                                                                                     (18) 

setting ଶ ா
ℏమ

= ݇ଶ and multiplying by ݎଶ produces  
ݎ
ܴ
݀
ݎ݀
൬ݎ 

ܴ݀
ݎ݀
൰ + ݇ଶݎଶ +

1
ܶ
݀ଶܶ
݀߶ଶ = 0                                                                                                                                         (19) 

Which is fully separated in ݎ and  ߶. To solve, the ߶ dependent portion is set to−݉ଶ, yielding the harmonic oscillator equation 
in  ܶ(߶), which presents the solution: 
ܶ(߶) = థ݁ܣ                                                                                                                                                                                 (20) 
Where A is a constant determined via proper normalization in ߶: 

න ߶݀(߶)ܶ(߶)ଶܶܣ = 1 ⇒ ܣ = ඨ 1
ߨ2

ଶగ


                                                                                                                                    (21) 

Leaving the ߶ dependent portion ܶ(߶) = ට ଵ
ଶగ
݁థ 

Work now with the r dependent portion of the separated equation, multiplying the r dependent portion of (19) byݎଶ, and setting 
equal to ݉ଶ one obtains: 
ଶݎ

ܴ
݀ଶܴ
ଶݎ݀ +

ݎ
ܴ
ܴ݀
ݎ݀ + ݇ଶݎଶ = ݉ଶ                                                                                                                                                    (22) 

Which when rearranged: 

ଶݎ
݀ଶܴ
ଶݎ݀ + ݎ

ܴ݀
ݎ݀ + (݇ଶݎଶ −݉ଶ)ܴ = 0                                                                                                                                       (23) 

This is one the same form as Eq. (1), Bessel differential equation. The general solution to Eq. (23) is the form of Eq. (8), and we 
write that general solution:  
(ݎ)ܴ = (ݎ݇)ܬܣ +  (24)                                                                                                                                                    ,(ݎ݇)ܰܤ
Where ܬ (ݎ݇)and ܰ (ݎ݇)   are respectively the Bessel and Neumann function of order m, and A and B are constants to by 
determined via application of the boundary conditions. As the solution must be finite at ݔ = 0 and as ܰ(݇ݎ) → ∞ as ݔ → 0, this 
means that the coefficient of ܰ(݇ݎ) = ܤ = 0, leaving ܴ(ݎ) to be expressed: 
(ݎ)ܴ =  (25)                                                                                                                                                                            (ݎ݇)ܬܣ
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Using the boundary conditions Ψ = 0 at the radius of the disk, we have the condition that  ܬ(݇ݎ) = 0, which implicitly requires 
the argument ܬ  to be a zero of the Bessel function. As noted earlier, these zeroes must be so that 
ݎ݇ =  , inߙ  ,, which is the ݊௧ zero of the ݉௧order Bessel function the energy system is solved by expressing ݇ in terms ofߙ

ቆ݁ݍ. ݇ = ටଶ ா
ℏమ
ቇ, arriving at:    

,ܧ =
,ଶ݉ߙ ݊ ℏଶ

ଶݎ2݉
ℎ                                                                                                                                                                       (26) 

The full solution for Ψ is thus:  

Ψ(ݎ,߶) = ܬܣ ൬
,ೝߙ

ݎ
൰ ݁థ                                                                                                                                                    (27) 

Because the Bessel function zeroes cannot be determined apriori, it is difficult to find a closed situation to express the normalization 
constant A. We select an order for m to continue with the determination of the normalization constant, and arbitrarily choose ݉ = 2, 
which has a zero at ݎ = 5.13562, which we will set to be the radius of the circle. Given the preceding, the normalization can be for 
݉ = 2,݊ = 1 case can be found:  

න ଶܬଶܣ
್ೠೌೝ


൬
ݎ ଶ,ଵߙ
ݎ

൰ ଶܬ ൬
ݎ ଶ,ଵߙ
ݎ

൰݀ݎ = 1                                                                                                                            (28) 

Which for  ݎ௨ௗ௬ = 5.13562 ⇒ ܣ = ට ଵ
.ହଵଷଷ

, 

 (Numerical values obtained using numerical integration). Thus we can express the full express the full solution for ݉ = 2 scenario: 

Ψ(ݎ,߶) = ඨ 1
0.51377

ඨ 1
ߨ 2 ଶܬ

൬
ݎ ଶ,ଵߙ
ݎ

൰ ݁థ                                                                                                                          (29) 

And since we have effectively set ܽ, =  ,ݎ

Ψ(ݎ,߶) = ඨ 1
0.51377

ඨ 1
ߨ 2 ଶܬ

థ݁(ݎ)                                                                                                                                    (30) 

Admittedly, this solution is somewhat contrived, but it shows the importance of working with the zeroes of the Bessel function to 
generate the particular solution using the boundary conditions.  

IV. CONCLUSIONS 
The Bessel function appears in many diverse scenarios, particularly situations involving cylindrical symmetry. The most difficult 
aspect of working with the Bessel functions is first, determining that they can be applied through reductions of the system equation 
to Bessel’s differential or modified equation, and then manipulating boundary conditions with appropriate applications of zeroes, 
and the coefficient values in the augment of the Bessel function. 
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