

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

5 Issue: X **Month of publication:** October 2017 **Volume:**

http://doi.org/10.22214/ijraset.2017.10050DOI:

www.ijraset.com

Call: 008813907089 | E-mail ID: ijraset@gmail.com

Boundary Value Problem of Fractional Differential Equation

Rajesh Pandey¹

¹Maharishi University of Information Technology Lucknow 226013, India.

Abstract*: In this paper, we prove the existence of the solution for the boundary value problem of fractional differential equations of order* $q \in (2, 3]$. The Krasnoselskii's fixed point theorem is applied to establish the results. **Keywords***: Fractional differential equation, Krasnosels kii's fixed point theorem, Boundary value problem, Positive Solution, Gamma functions*

I. INTRODUCTION

Fractional differential equations are the generalization of ordinary equation to arbitrary non-integer order, and have received more and more interest due to their wide applications in various branch of science & engineering, such as physics, chemistry, biophysics, capacitor theory, blood flow phenomena, electrical circuits, control theory, etc , also recent investigations have demonstrated that the dynamics of many systems are described more accurately by using fractional differential equations.Nickolai was concerned with the nonlinear differential equation of fractional order

$$
D_{0+}^q u(t) = f(t, u(t), u'(t)) \quad a.e. t \in (0,1),
$$

Where D_{0+}^q is Riemann-Liouville (R-L) fractional order derivatives, subject to the boundary conditions $u(0) = u(1) = 0$. Zhang has given the existence of positive solution to the equations

$$
\begin{cases} ^cD^qu(t) + f(t, u(t)) = 0, 0 < t < 1, \\ u(0) + u'(0) = u(1) + u'(1) = 0, \end{cases}
$$

By the use of classical fixed point theorems, where ${}^cD^q$ denotes Caputo fractional derivative with $1 < q \leq 2$. Chen considered the existence of three positive solutions to three-point boundary value problem of the following fractional differential equation

$$
\begin{cases} D_{0+}^{q}u(t) + f(t, u(t) = 0, 0 < t < 1 \\ u(0) = 0, D_{0+}^{p}u(t) \Big|_{t=1} = \alpha D_{0+}^{p}u(t) \Big|_{t=\xi} \end{cases}
$$

Where $1 < q \le 2.0 < p < 1.1 + p \le q$, and D_{0+}^{α} is the R-L fractional order derivative. The multiplicity results of positive solutions to the equations are obtained by using the well-known Leggett-Williams fixed-point theorem on convex cone, we study the existence of positive solution to two point BVP of nonlinear fractional equation.

$$
\begin{cases} D_{0+}^{q}u(t) + \lambda f(t, u(t)) = 0, & 0 < t < 1, \\ u(0) = D_{0+}^{p}u(t) \Big|_{t=0} = D_{0+}^{p}u(t) \Big|_{t=1} = 0 \end{cases} \tag{1.1}
$$

Where $q, p \in R$, $2 < q \leq 3, 1 < p \leq 2, 1 + p \leq q$, D_{0+}^q is the R-L fractional order derivative, and $f \in C([0,1] \times [0,\infty), [0,\infty))$, $\lambda > 0$.

II. NOTATIONS AND DEFINITIONS

Definition 1. The R-L fractional integrals $I_{0+}^{p} f$ of order $p \in R(p > 0)$ defined by

$$
I_{0+}^p f(x) := \frac{1}{\Gamma(p)} \int_0^x \frac{f(t)dt}{(x-t)^{1-p}}, (x > 0).
$$

Here Γ (p) is the Gamma function.

Definition 2. The R-L fractional derivatives $D_{0+}^p f$ order $p \in R$ $(p > 0)$ is defined by

$$
D_{0+}^p f(x) = \left(\frac{d}{dx}\right)^n I_{0+}^{n-p} f(x)
$$

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue X, October 2017- Available at www.ijraset.com

$$
= \frac{1}{\Gamma(n-p)} \left(\frac{d}{dx}\right)^n \int_0^x \frac{f(t)dt}{(x-t)^{p-n+1}}, \quad (n=1[p]+1, x>0),
$$

Where p means the integral part of p .

III.MAIN RESULTS

Lemma 1.If $q_1 > q_2 > 0$, then, for $f(x) \in L_p(0,1)$, $(1 \le p \le \infty)$ the relations $D_{0+}^{q_2}I_{0+}^{q_1}f(x) = I_{0+}^{q_1-q_2}f(x), I_{0+}^{q_1}I_{0+}^{q_2}f(x) = I_{0+}^{q_1+q_2}f(x)$ and $D_{0+}^{q_1}I_{0+}^{q_1}f(x) = f(x)$ holdae. on [0,1]. Lemma 2. Let $q > 0, n = [q] + 1, f(x) \in L_1(0,1)$, then the equality

$$
I_{0+}^{q}D_{0+}^{q}f(x) = f(x) + \sum_{i=1}^{n} C_{i} t^{q-n}.
$$

Lemma 3.Let $y \in C[0,1]$, $2 < q \leq 3, 1 < p \leq 2, 1 + p \leq q$, then the problem $D_{0+}^q u(t) + y(t) = 0, 0 < t < 1,$ (3.1)

subject to the boundary conditions

$$
u(0) = D_{0+}^p u(t) \Big|_{t=0} = D_{0+}^p u(t) \Big|_{t=1} = 0
$$
\n(3.2)

has the unique solution $u(t) = \int_0^1 G(t, s) ds$, $\int_0^1 G(t,s)ds$, where

$$
G(t,s) = \frac{1}{\Gamma(q)} \begin{cases} t^{q-1}(1-s)^{q-p-1} - (t-s)^{q-1}, & 0 \le s \le t \le 1\\ t^{q-1}(1-s)^{q-p-1} & 0 \le t \le s \le 1 \end{cases}
$$

And that $G(t, s)$ has the following properties

(i)
$$
G(t,s) \in C([0,1] \times [0,1])
$$
 and $G(t,s) > 0$ for $t, s(0,1)$, and
\n
$$
\max_{(ii) \text{There exists a positive function } \varphi \in C((0,1) \times (\tau, \infty)) \text{ such that } f
$$

$$
\min_{\frac{1}{4}\leq t\leq \frac{3}{4}} G(t,s)=\varphi(s)\widetilde{G}(s,s)\geq \inf_{0\leq s\leq 1}\varphi(s)\max_{0\leq t\leq 1}G(t,s)=\tau G(s,s),
$$

Where

$$
\widetilde{G}\left(s,s\right)=\frac{s^{q-p}(1-s)^{p-q-1}}{\Gamma(q)},s,\tau\in(0,1),\tau=\inf_{0
$$

Proof. Applying the operator I_{0+}^q to both sides of the equation (1.1), and using Lemma 2, we have

$$
u(t) = -I_{0+}^{q} y(t) + c_1 t^{q-1} + c_2 t^{q-2} + c_3 t^{q-3}
$$

In view of the boundary condition $u(0) = 0$, we find that $C_3 = 0$ hence

 $u(t) = -I_{0+}^q y(t) + C_1 t^{q-1} + C_2 t^{q-2},$

then, noting the relation $D_{0+}^{q_2}I_{0+}^{q_1}f(x) = I_{0+}^{q_1-q_2}f(x)$ in Lemma 1, we obtain

$$
D_{0+}^p u(t) = -I_{0+}^{q-p} y(t) + C_1 \frac{\Gamma(q)}{\Gamma(q-p)} t^{q-1-p} + C_2 \frac{\Gamma(q-1)}{\Gamma(q-p-1)} t^{q-p-2}.
$$

In accordance with the equation (2, 1) we can calculate out that

In accordance with the equation (3.1), we can calculate out that

$$
C_1 = \frac{1}{\Gamma(q)} \int_0^1 (1-s)^{q-p-1} y(s) ds, c_2 = 0.
$$

Substituting the vlues of C_1 , C_2 and C_3 in (3.2) we have

$$
u(t) = -\frac{1}{\Gamma(q)} \int_0^t (t-s)^{q-1} y(s) ds + \frac{t^{q-1}}{\Gamma(q)} \int_0^1 (1-s)^{q-p-1} y(s) ds
$$

= $\frac{1}{\Gamma(q)} \left\{ \int_0^t [t^{q-1}(1-s)^{q-p-1}y - (t-s)^{q-1}] y(s) ds + \int_t^1 [t^{q-1}(1-s)^{q-p-1}] y(s) ds \right\}$
= $\int_0^1 G(t,s)y(s) ds$

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue X, October 2017- Available at www.ijraset.com

Next we prove the properties of $G(t, s)$.

For a given $s \in (0,1)$, $G(s,t)$ is the decreasing with respect to t for $s \leq t$ while increasing for $t \leq s$. Thus, we have

$$
\max_{0 \leq t \leq 1} \, G(t,s) \, = \, G(s,s) \, = \frac{s^{q-1} \, (1-s)^{q-p-1}}{\Gamma(q)} \leq \frac{s^{q-p} \, (1-s)^{q-p-1}}{\Gamma(q)} = \, \widetilde{G} \, (s,s),
$$

for $s \in (0,1)$. Then we set

$$
g_1(t,s)=\frac{t^{q-1}(1-s)^{q-p-1}-(t-s)^{q-1}}{\Gamma(q)}, g_2(t,s)=\frac{t^{q-1}(1-s)^{q-p-1}}{\Gamma(q)}.
$$

from the two equation above we have

4 3 4 $\min_{1 \leq i \leq 3}$ *t* $G(t, s) = \frac{1}{R}$ $\frac{1}{\Gamma(q)}$ (0.75^{*q*-1}(1 - *s*)^{*q*-*p*-1} - (0.75 - *s*)^{*q*-1}, 0 < *s* ≤ *r*
 $\frac{\Gamma(q)}{1 - s}$ (0.25^{*q*-1}(1 - *s*)^{*q*-*p*-1} The d (e, s) $-\frac{1}{3} \Gamma(q)$ (0.25^{*a*-1}(1 – s)^{*a-p-*1} $r \leq s < 1$
 $\frac{1}{4} \Gamma(\frac{3}{2}) = 3 \Gamma(q)$ (0.25^{*a*-1}(1 – s)^{*a-p-*1} $r \leq s < 1$ $\frac{3}{4}$ is the unique solution of the equation. $0.75^{q-1}(1-s)^{q-p-1} - (0.75-s)^{q-1} = 0.25^{q-1}(1-s)^{q-p-1}$ Finally, we consider a function $\varphi(s)$ defined by

$$
\varphi(s) = \frac{\min_{\frac{1}{4} \leq t \leq \frac{3}{4}} G(t,s)}{\widetilde{G}(s,s)} = \begin{cases} \frac{0.75^{q-1} (1-s)^{q-p-1} - (0.75-s)^{q-1}}{s^{q-p} (1-s)^{q-p-1}} , & 0 < s \leq r, \\ \frac{0.25^{q-1}}{s^{q-p}} , & 0 \leq s < 1. \end{cases}
$$

when $p > q - 1$ we find from the continuity of $\varphi(s)$ and $\lim_{s \to 0^+} = +\infty$ that there exists \tilde{r} small enough such that $\varphi'(s) < 0$ for 0 *s* $s \in (0, \tilde{r}]$ hence, we set

$$
0 < r = \inf_{0 < s < 1} \varphi(s) = \min \left\{ \varphi(\widetilde{r}), m, \frac{1}{4^{q-1}} \right\} < 1,
$$

here, $m = \min_{\tilde{r} \leq s \leq r} \varphi(s)$.

when $q = p - 1$, we have $\lim \varphi(s), \frac{1}{2}(q-1)$, 3 $\lim_{s \to 0^+} \varphi(s), \frac{4}{3}(q-1)$, then we set

$$
0 < \tau = \inf_{0 < s < 1} \varphi(s) = \min \left\{ \inf_{0 < s \le r} \varphi(s), \frac{3}{4} (q - 1), \frac{1}{4^{q-1}} \right\} < 1.
$$

Thus

$$
\min_{\frac{1}{4}\leq t\leq \frac{3}{4}} G(t,s) \geq \varphi(s)\widetilde{G}(s,s) \geq \inf_{0
$$

This completes the proof. Therefore the solution $u \in C_{[0,1]}$ of the problem (1.1) can be written by

$$
u(t) = \lambda \int_0^1 G(t,s) f(s,u(s)) ds.
$$

IV.CONCLUSIONS

The paper proves the existence of the solution for boundary value problem of fractional differential equations of the order $q \in$ (2,3]. and three Lemmas are established.

V. ACKNOWLEDGMENT

My thanks are due to Dr. G.C Chaubey Ex Associate Professor & Head department of Mathematics TDPG College Jaunpur and Professor B. Kunwar Department of Mathematics IET, Lucknow for their encouragement and for providing necessary support. I am extremely grateful for their constructive support.

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887

Volume 5 Issue X, October 2017- Available at www.ijraset.com

REFERENCES

- [1] S.Q. Zhang, Existence results of positive solutions to the boundary value problem for fractional differential equation, Positivity 13 (2009), 583-599.
- [2] A.A. Kilbsa, H.M. Srivastava , J.J. Trujillo. Theory and Applications of Fractional Differential Equation, Elsevier, Amsterdam, 2006.
- [3] S. Zhang, Positive solutions solution for some class of the nonlinear, J. Math. Anal. Appl. 278(2003), 136-148.
- [4] Y. Zhang, Z. Bai : Existence of solutions for nonlinear fractional three point boundary value problems at resonance. J. Appl. Math. Comput. 36, 417-440 (2011).
- [5] A.P Chen, Y.S. Tian, Existence of Three Positive Solutions to Three Point Boundary Value Problem of Nonlinear Fractional Differential Equation, Differ. Equ. Dyn. Syst. 18 (2010), 327-339.
- [6] Yi Chen, Xianhua Tang: Positive solutions of fractional differential equations at resonance on the half-line. Boundary Value Problems (2012). doi: 10.1186/1687-2770-2012-64.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 (24*7 Support on Whatsapp)