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Abstract: The optimization problem formulation for link shape synthesis for the optimally balanced simple and multiloop planar 
mechanisms is presented in this paper. The closed parametric curve is used to represent the link shape and its geometric and 
inertial properties are calculated using well known Green’s theorem. The proposed optimization problem includes the equality 
constraints to keep the resulting inertial properties same as the inertial properties of the optimally balanced mechanisms.      

I. INTRODUCTION 
In this paper, the link shapes are synthesized for optimally balanced mechanism for the given motion. The link shapes satisfying 
kinematic and dynamic requirements are very crucial for the design of a mechanism and its performance. The shape synthesis using 
parametric curves like Hermit, Bezier and B-spline curves leads to computer-aided design (CAD) and manufacturing of the 
mechanism links. Through CAD modeling of the links using these curves; the design, production and functional details can beeasily 
transmitted between engineering and manufacturing operations. The CAD modeling of the links is also useful in analyzing the static 
and dynamic response of the designed mechanism. The real-time behavior of the mechanism is evaluated through computer 
simulation and thus it eliminates the need of the experimental tests for the actual mechanism. Therefore, the cost and time are saved 
to a great extent and any possible error is realized before manufacturing of the mechanism links.  

II. LINK SHAPE 
The link shape is represented by the parametric curve, i.e., closed cubic B-spline curve as shown in Fig. 1. If the curve interpolates or 
approximates a set of n+1 control points, P0, P1,…,Pn(Zeid and Sivasubramanian, 2009; Mortenson, 2006) then the position of any 
point on the curve is defined as: 
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For a curve of degree (k-1), the B-spline function )(, uN ki  is computed iteratively as: 
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In Eq. (3), ,1iN is a unit step function and iu are known as parametric knots or knot values. These values form a sequence of 

nondecreasing integers called the knot vector. The parametric equation of ith curve segment of a cubic B-spline curve having 

control points Pi-1, Pi, Pi+1 and Pi+2 for  ii uuu  ,1-  is given as: 
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Fig. 1 Closed cubic B-spline curve and its control points 
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The control points form the vertices of the characteristic polygon of the B-spline curve as shown in Fig. 1. Note that the cubic B-
spline curve is a composite sequence of curve segments connected with C2 continuity which blends two curve segments with same 
curvature. The coordinates of any point on the ith segment of the curve are given by Eq. (4) as:  
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where the terms α1, α 2, α 3 and α 4are defined in Eqs. (5) – (8),and (xi-1 ,yi-1), (xi , yi), etc. are the coordinates of points Pi-1, Pi, etc. 
respectively.  The mass and inertia of the link that is synthesized using closed cubic B-spline curve can be calculated using Green’s 
theorem (Crisco et al., 1998; Brlek et al., 2005).For two functions P(x, y)and Q(x, y) over a closed region D in the plane with boundary

D , Green's theorem presents: 

  
















D
D

QdyPdxdxdy
y
P

x
Q

      
(11) 

The area of closed region D is calculated as: 
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This area is calculated using Green's theorem by taking   0yx,P and   xyx,Q   that gives: 
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For a plane curve specified parametrically as  )()( uy,ux for  10 u ,uu , Eq. (14) becomes: 
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Similarly, the moment about x-axis and y-axis of plane are computed as: 
using /2- 2yP  and 0Q  
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The geometric centroid ),( yx  of plane curve is given by AMx y / and AMy x/ . Finally, the area moments of inertia can be 

computed as: 
using /33yP  and 0Q  
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duyxdyxdxdyxI
u

uyy   1

0

332

3
1

3
1

     
(19) 

Hence,the area A, centroid (ݔ,ഥ -ത) and area moment of inertia about centroidal axes [Ixx, Iyy, Izz] of the closed curve made of n cubic Bݕ
spline segments are calculated as: 
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The first derivatives )(ux'
i and )(uy'

i of )(uxi and )(uyi with respect tou, respectively, in Eqs. (20) – (24) are given by: 
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For geometric properties defined in Eqs. (20) – (25), the mass and mass moment of inertia of a link with shape represented by the closed 
curve are calculated as: 

Atρm           (32) 

tρII zz          (33) 

wheret and ρ represent thickness and material density for the link, respectively.  

III. OPTIMIZATION PROBLEM FORMULATION 
In this section, an optimization problem is formulated to find the optimum link shapes corresponding to the inertial parameters of the 
optimally balanced mechanisms. To formulate the optimization problem, the Cartesian coordinates of control points of cubic B-spline 
curve are taken as design variables as shown in Fig. 2.  
For a binary link, Fig. 2 (a), the link length,ai, between joint origins Oi to Oi+1 is divided into equal parts. Hence, the x-coordinates of 
the control points lying between Oi and Oi+1 are fixed according to the link length. Now, the y-coordinates are taken as the design 
variables. Furthermore, the extension of link beyond Oi and Oi+1 is controlled by points P0, P1, Pn-1 at one end and by points Pn/2-1, 
Pn/2, Pn/2+1 at other end. Hence, x-coordinate of P0, y-coordinates of P1 and Pn-1 are chosen as the design variables at the right end and 
same is done at left end. Finally, the design vector is proposed as:   
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1-1/2/21-/210 ] ...    ...  [ nnnn yyxyyx x       (34) 

The conditions for symmetrical and non-symmetrical shapes are imposed by controlling coordinates of the opposite points as 
y y j i and y yj i , respectively. In addition to manufacturing benefits, the symmetrical shapes have zero products of inertia. 

For a ternary link having joint origins as Oi,Oi+1 and Oi+2 shown in Fig. 2(b), the link length, ai, can be defined as summation of the 
distances between joints, i.e., ai = ai1 + ai2 + ai3. The number of control points between two joints can be decided according to the 
distance between them. 
 

 

(a) Binary link 

 
(b) Ternary link 

Fig. 2 Closed cubic B-spline curve representing link shape and its control points where Pi and Pj are two opposite points about x-axis 

If n1, n2, and n3 are number of control points for lengths ai1, ai2, and ai3, respectively, then total number of control points is the sum 
of n1, n2, and n3. At each joint, two points coincide and their y-coordinate can be determined by considering the local coordinate 
frame in the link as shown in Fig. 2 (b). The design vector in this case can be defined as: 

1 2 3

T
11 1 21 2 31 3[  ... ... ... ]x n n ny y  y y  y y       (35) 

Note that for the link having three or more joints, the shapes can be synthesized by selecting y-coordinates for each segment of the 
length between joints.The inertial properties of resulting shapes are constrained by the optimal properties. These constraints ensure 
that the links with optimum shapes have the same inertial properties as that of the optimally balanced mechanism links. The 
objective function is formulated to minimize the percentage error in resulting links inertia values as: 
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y y j i  (for symmetrical binary link); y yj i  (for non-symmetrical binary link) 
here parameters with superscript ‘*’ represent parameters obtained for the optimally balanced mechanism and subscript ‘i’ is used 
for ith link of mechanism. The teaching-learning-based optimization (TLBO) algorithm is used to solve this optimization problem. It 
is advantageous to use TLBO as compared to the other evolutionary optimization algorithms, as (1)it doesn’t requireany algorithm 
specific parameters to be defined to start the optimization procedure and (2) it converges to the optimum solution faster than other 
evolutionary optimization algorithms. Also, the initial values of the design variables are not required to start searching the optimum 
solution and hence no initial shape is required.The thickness of mechanism links is taken as 10 percent of the driving link length and 
the link material is chosen as the mild steel (density = 7850 kg/m3) for deciding the density and maximum permissible stress. 
Furthermore, the thickness of the link is taken uniform normal to the plane of motion and can be different for different link in the 
mechanism considered. The stress at the weakest section in each link is calculated for the maximum joint force occurred during the 
complete cycle of operation. Moreover, the von mises stresses for the peak load is considered to determine minimum cross-section 
of each link. The inertial properties of links are calculated using Eqs. (32) – (33) and verified by CAD models developed using 
Autodesk Inventor software. The flow chart shown in Fig. 4 illustrates the two-stage optimization method proposed for the optimum 
design of the planar mechanisms.    

IV. PLANAR MECHANISMS 
In this section, the effectiveness of the proposed optimization method for link shape synthesis is shown for a optimally balanced 
planar mechanism. Based on the design variables defined in Fig. 2, total 28 design variables, namely, x0, x13, y1…y26 are now 
considered for the optimum link shape synthesis for the planar mechanisms (Fig. 3).  
 

 
 
 
 

Fig. 3 Design variables to find optimum link shape of planar mechanisms 

Here, ai represents the link length between joints Oi and Oi+1. The design variables x0 and x13 are representing link lengths beyond 
the joints Oi+1 and Oi, respectively. 
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Fig. 4 Two stage optimization scheme to balance mechanism and shape synthesis 

The lengths ai, x0 and x13 are divided each into equal parts which decide the x-coordinates of control points. So, these x-coordinates 
are given as follows: 

Solution using GA and TLBO in MATLAB 
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x1= ai+ x0;  x2 = ai+ 0.75x0;  x3 = ai+ 0.50x0; x4 = ai+ 0.25x0; x5 = ai;  
x6= 0.75ai; x7 = 0.50ai; x8 = 0.25ai; x9 =0;  
x10= -0.25x13;  x11 =-0.50x13;  x12 = -0.75x13;  x13 = -x13;  
x14= -x13; x15 = -0.75x13; x16 = -0.50x13; x17 = -0.25x13;  
x18= 0; x19 = 0.25ai; x20 = 0.50ai; x21 = 0.75ai;  
x22= ai; x23 = ai+ 0.25x0; x24 = ai+ 0.50x0;x25 = ai+ 0.75x0; x26 = ai+ x0. 
Moreover, the symmetrical link shapes can be obtained by controlling the y-coordinates as: 

y14  = -y13 y21  = -y6 

y15  = -y12 y22  = -y5 

y16  = -y11 y23  = -y4 

y17  = -y10 y24  = -y3 

y18  = -y9 y25  = -y2 

y19  = -y8 y26  = -y1 

y20  = -y7  

Note that lengths x0 and x13 are variables while ai is the length of the ith link. 

V. CONCLUSIONS 
The physically possible shapes are constructed for the optimal inertial parameters of the mechanism links and the given kinematic 
structure. The percentage error of resulting link inertia values defined as the objective function was found within ± 5 percent. Thus, 
the two-stage optimization formulation including the dynamic balancing and the dynamics of mechanism has been brought in shape 
synthesis of links.The benefit associated with the proposed method is that the links of balanced mechanism are of the uniform 
thickness while the force and inertia counterweights added to the original mechanisms in traditional methods (Berkof, 1973; 
Farmani et al., 2011; Berkof and Lowen, 1969)are of large thickness and radius compared to the original link parameters. Also, the 
proposed method doesn’t require any pre-defined shapes or design domain to start withas suggested in (Farmani et al., 2011; 
Verschuure et al., 2007).The resulting stresses for links of the balanced mechanism can be calculated at the weakest sections under 
external loads.    

REFERENCES 
[1] Berkof, R.S., 1973, “Complete Force and Moment Balancing of Inline Four-bar Linkage”, Mechanism and Machine Theory”, 8, pp. 397-410.  
[2] Berkof, R.S., and Lowen, G.G., 1969, “A New Method For Completely Force Balancing Simple Linkages”, ASME Journal of Engineering for Industry, 91(1), pp. 21-

26.  
[3] Crisco, J.J., and McGovern, R.D., 1998, “Effective Calculation of Mass Moments of Inertia For Segmented Homogenous Three-Dimensional Objects”, Journal of 

Biomechanics, 31, pp. 97-101. 
[4] Farmani, M.R., Jaamialahmadi, A., and Babaie, M., 2011, “Multiobjective Optimization For Force and Moment Balance of A Four-bar Linkage Using Evolutionary 

Algorithms”, Journal of Mechanical Science and Technology, 25 (12), pp. 2971-2977.  
[5] Verschuure, M., Demeulenaere, B., Swevers, J., and Schutter, J.D., 2007, “On the Benefits of Partial Shaking Force Balance in Six-bar Linkages”, Proc. of 

12thIFToMM World Congress, June 18-21, Besancon.  
[6] Zeid, I., and Sivasubramanian, R., 2009, CAD/CAM – Theory and Practice, Tata McGraw-Hill, New Delhi, India. 
 
 
 
 
 



 


