

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

5 Issue: XII **Month of publication:** December 2017 **Volume:** DOI:

www.ijraset.com

Call: 008813907089 E-mail ID: ijraset@gmail.com

Complementary Tree Domination number and Distance two Complementary Tree Domination number of Cartesian Product of Graphs

S. Muthammai¹, G. Ananthavalli²

¹Government Arts and Science College, Kadaladi,Ramanathapuram-623703, India. ² Government Arts College for Women (Autonomous),Pudukkottai-622001, India.

Abstract: A set D of a graph G = (V, E) is a dominating set, if every vertex in V(G) – D is adjacent to some vertex in D. The domination number γ *(G) of G is the minimum cardinality of a dominating set. A dominating set D* \subseteq *V(G) is said to be a complementary tree dominating set (ctd-set), if the induced subgraph<V(G) - D>is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by* $\gamma_{\text{cd}}(G)$. A dominating set D is called a distance two *complementary tree dominating set, if for each u* ∈*V*(G) – *D, there exists a vertex v* ∈ *D such that d(u,v)* ≤ 2 and also <*V*(G) – *D> is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by* $\gamma_{d2ctd}(G)$ *. In this paper, complementary tree domination numbers and distance two complementary tree domination number of cartesian product of some standard graphs are found. Key words: Domination number, complementary tree domination number, distance two complementary tree domination number, Cartesian product.*

I. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A graph G with p vertices and q edges is denoted by G(p, q). The concept of domination in graphs was introduced by Ore[5]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V(G) –D is adjacent to some vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by γ (G). Muthammai, Bhanumathi and Vidhya[5] introduced the concept of complementary tree dominating set. A dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set), if the induced subgraph $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{\text{ctd}}(G)$.

The cartesian product of two graphs G_1 and G_2 is the graph, denoted by $G_1 \times G_2$ with V $(G_1 \times G_2) = V(G_1) \times V(G_2)$ (where x denotes the cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in V $(G_1 \times G_2)$ are adjacent in $G_1 \times G_2$ whenever $[u_1 = v_1 \text{ and } (u_2, v_2) \in E(G_2)] \text{ or } [u_2 = v_2 \text{ and } (u_1, v_1) \in E(G_1)].$

The concept of distance two complementary tree dominating set is introduced in [4]. A dominating set D is called a distance two complementary tree dominating set, if for each u ∈V(G) – D, there exists a vertex $v \in D$ such that $d(u,v) \le 2$, and also <V(G) – D> is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{d2ctd}(G)$.

In this paper, complementary tree domination number and distance two complementary tree domination number of K_m x K_n , K_m x P_n , K_m x C_n , C_3 x P_n , C_4 x P_n , C_5 x C_n , C_5 x C_n , C_6 x C_n , C_5 x C_n and C_6 x C_n are found. Any undefined terms in this paper may be found in Harary[2].

II. COMPLEMENTARY TREE DOMINATION NUMBER OF CARTESIAN PRODUCT OF GRAPHS

A. Theorem 2.1

If $G \cong K_m x K_n(m, n \ge 3 \text{ and } m \le n)$, then $\gamma_{\text{ctd}}(G) = \begin{cases} m(n-2) + 1, \text{ if } m = n \\ m(n-2) & \text{ if } m < n \end{cases}$ m(n − 2), if m < n

B. Proof.

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)** *ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 Volume 5 Issue XII December 2017- Available at www.ijraset.com*

Let $G \cong K_m x K_n$.

Let V(G) $=U_{i=1}^m \{v_{i1}, v_{i2}, ..., v_{in}\}$ such that $\langle v_{i1}, v_{i2}, ..., v_{in}\rangle > \cong K_n^i$, $i = 1, 2, ..., m$ and $\langle v_{i1}, v_{i2}, ..., v_{mi}\rangle > \cong K_m^j$, $j = 1, 2, ...,$ n, where K_n^i is the ith copy of K_n and K_m^j is the jth copy of K_m in $K_m \times K_n$. $|V(G)| = mn$.

C. Case 1: m = n.

et $D' = (U_{i=1}^{m-1} \{v_{ii}, v_{i,i+1}\}) \cup \{v_{m,m}\}$ and $D = V(G) - D'$. Then $V(G) - D = D'$ and $|D'| = 2(m-1) + 1 = 2m - 1$. For i =1, 2,3, ..., m-1, the vertices v_{ii} , $v_{i,i+1}$ in V(G) – D are adjacent to v_{i1} inD, and the vertex v_{mm} is adjacent to v_{m1} in D. Therefore D is a dominating set of G. $\langle V(G) - D \rangle \cong P_{2(m-1)+1} = P_{2m-1}$. Since D is a ctd-set of G. Hence $\gamma_{\text{ctd}}(G) \leq |D| = |V(G)| - |D'| = mn - (2m - 1) = m(n - 2) + 1$.

It is to be noted that, any tree in G is a path. Let D' be a γ_{ctd} -set of G. The longest path that can be obtained from the subgraph of G induced by the vertices of V(G)–D'is P_{2m-1} That is,<V(G)–D'> $\cong P_{2m-1}$,D' contains atleast mn – (2m – 1) = m(n – 2) + 1 vertices. Therefore $\gamma_{\text{ctd}}(G) = |D'| \ge m(n-2) + 1.$

Hence $\gamma_{\text{ctd}}(G) = m(n-2) + 1$.

D. Case 2: m < n.

Let $D' = \bigcup_{i=1}^{m} \{v_{ii}, v_{i,i+1}\}\$ and $D = V(G) - D'$. Then $V(G) - D = D'$ and $|D'| = 2m$. The vertices v_{11}, v_{12} are adjacent to v_{1n} and v_{ii} , $v_{i,i+1}$ (i = 2, 3, …, m) are adjacent to v_{i1} , (i = 2, 3, …, m) in D. Therefore D is a dominating set of G. Since <V (G) – D > $\cong P_{2m}$, D is a ctd-set of G. Therefore $\gamma_{\text{ctd}}(G) \le |V(G)| - |D'| = mn - 2m = m(n - 2)$.

As in case 1, any tree in G is a path. Let D' be γ_{ctd} -set of G. The longest path that can be obtained from the subgraph of G induced by the vertices of $V(G) - D'$ is P_{2m} .

That is $\langle V(G) - D' \rangle \cong P_{2m}$ Therefore D' contains at least mn $- 2m = m(n - 2)$ vertices. Therefore $\gamma_{\text{ctd}}(G) = |D'| \ge m(n - 2)$. Therefore $\gamma_{\text{ctd}}(G) = m(n-2)$.

Hence $\gamma_{\text{ctd}}(G) = \begin{cases} m(n-2) + 1, \text{ if } m = n \\ m(n-2) \quad \text{ if } m < n \end{cases}$ $m(n-2)$, if $m < n$

E. Remark 2.1

The set D defined in Case 1 and Case 2 is also a d2ctd-set of G. Since any vertex u in D which is at distance two from a vertex of D, $\langle (V(G)-D) \cup \{u\} \rangle$ either disconnected or contains cycle.

F. Example 2.1

For the graph G given in Figure 1.a and Figure 1.b, the set of vertices marked with is a minimum ctd-set of \mathbf{X}_m x K_n and $\gamma_{\text{ctd}}(K_4$ x K_4) = 9 and $\gamma_{ctd}(K_4 \times K_5)$ = 12.

G. Theorem 2.2. If $G \cong K_m$ x $P_n(4 \le m \le n)$, then $\gamma_{\text{ctd}}(G) = n (m - 2)$. *1) Proof***.** Let $G \cong K_m x P_n m, n \geq 4$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)** *ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887*

.

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let $V(G) = \bigcup_{i=1}^{m} \{v_{i1}, v_{i2}, \dots, v_{in}\}$ such that $\langle v_{i1}, v_{i2}, \dots, v_{in} \rangle > \cong K_n^i$, $i = 1, 2, \dots, m$ and $\langle v_{1j}, v_{2j}, \dots, v_{mj} \rangle > \cong P_m^j$, $j = 1, 2, \dots, m$ n, where K_n^i is the ith copy of K_n and P_m^j is the jth copy of P_m in $K_m x P_n$.

Let D' =
\n
$$
\begin{cases}\n\{v_{1n}\} \cup [U_{i=1}^n \{v_{2i}\}] \cup [U_{i=1}^{\frac{n-1}{2}} \{v_{1,2i-1,} v_{3,2i}\}], \text{if n is odd} \\
[U_{i=1}^n \{v_{2,i}\}] \cup [U_{i=1}^{\frac{n}{2}} \{v_{1,2i-1,} v_{3,2i}\}], \text{if n is even}\n\end{cases}
$$

Then $|D'| = 2n$. If $D = V(G) - D'$, then D is a dominating set of G. Also <V(G) - $D > = \langle D' \rangle \cong P_n^{\circ}K_1$. Therefore D is a ctd-set of G and $\gamma_{\text{cd}}(G) \leq |D| = mn - 2n = n(m - 2)$.

Hence
$$
\gamma_{\text{ctd}}(G) \le n(m-2)
$$
.

Let D['] be a γ_{cd} -set of G. Since D['] is a ctd-set of G, D['] contains at least (m – 2) vertices in each of n copies of K_m. Hence D['] contains atleast $n(m-2)$ vertices. Therefore $\gamma_{\text{cd}}(G) = |D| \ge n(m-2)$. Hence $\gamma_{\text{ctd}}(G) = n (m - 2)$.

H. Example 2.2.

For the graph G given in Figure 2, the set of vertices marked with is a minimum ctd-set of $K_m x \mathbf{G}_n$ and $\gamma_{cd}(K_4 x K_9) = 18$.

I. Theorem 2.3.

 $G \cong C_3$ x P_n , then $\gamma_{\text{ctd}}(G) = n$, $n \ge 1$.

$$
I) \quad Proof.
$$

$$
Let\; G\cong C_3\; x\; P_n
$$

Let $V(G) = \bigcup_{i=1}^{n} \{v_{1i}, v_{2i}, v_{3i}\}$ such that $\langle v_{i1}, v_{i2}, \dots, v_{in} \rangle > \cong P_n^i$, $i = 1, 2, 3$ and $\langle v_{1j}, v_{2j}, v_{3j} \rangle > \cong C_3^j$, $j = 1, 2, \dots, n$, where P_n^i is the ith copy of P_n and C^j₃ is the jth copy of C₃ in C₃ x P_n.

Let D =
$$
\begin{cases} \{v_{1n}\} \cup [\bigcup_{i=1}^{\frac{n-1}{2}} \{v_{1,2i-1,} v_{3,2i}\}]\text{, if n is odd} \\ U_{i=1}^{\frac{n}{2}} \{v_{1,2i-1,} v_{3,2i}\} \text{, if n is even} \end{cases}
$$

Then D is a dominating set of G. Also <V (G) – D > \cong P_n \circ K₁. Therefore D is a ctd-set of G and $|D|$ ቐ $2\left(\frac{n-1}{2}\right)$ $\left(\frac{-1}{2}\right) + 1 = n$, if n is even $2\left(\frac{\mathsf{n}}{2}\right)$ $\frac{\pi}{2}$ = n, if n is odd and $\gamma_{\text{ctd}}(G) \leq |D|=n$.

Let D' be a γ_{cd} -set of G. Then D' contains atleast one vertex from each cycle. Since C₃ x P_n contains n copies of C₃, D' contains atleast n vertices. $\gamma_{\text{ctd}}(G) = |D'| \ge n$. Hence $\gamma_{\text{ctd}}(G) = n, n \ge 1$.

J. Theorem 2.4.

If $G \cong C_4$ x P_n , then $\gamma_{\text{ctd}}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor$ $\left[\frac{n+1}{2}\right], n \geq 1.$ Let $G \cong C_4$ x P_n and $V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\}$ such that $\langle v_{i1}, v_{i2}, \dots, v_{in} \rangle > \cong P_n^i$, $i = 1, 2, 3, 4$ and $\langle v_{1j}, v_{2j}, v_{3j}, v_{4j} \rangle > \cong C_4^j$, j=1,2, ..., n, where P_n^i is the ith copy of P_n and C_4^j is the jth copy of C_4 in C_4 x P_n and $|V(G)| = 4n$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let $D' = \{ v_{31} \} \cup [\bigcup_{i=1}^{2} \{ v_{1,2i,} \}$ $\frac{\frac{n-1}{2}}{\frac{1}{2} \{v_{1,2i}, v_{4,2i}, v_{3,2i+1}\}\}\cup \{U_{i=1}^n \{v_{2i}\}\}.$

Then $|D| = 1 + 3\left(\frac{n-1}{2}\right)$ $\frac{-1}{2}$ + n = $\frac{5n-1}{2}$ $2\frac{1}{2}$ and D = V(G) - D[']. Then D is a dominating set of G. Also <V (G) – D > = < D[']> is a tree obtained from the path $P_n = \langle \{v_{2,i} : i = 1,2,3,...,n\} \rangle$, $(n \ge 2)$ by attaching P_3 at each of the vertices $v_{22}, v_{24}, v_{26}, \dots, v_{2,n-1}$ and attaching a pendant edge at each of the vertices v_{21} , v_{23} ..., $v_{2,n}$. Therefore D is a ctd-set of G, and

$$
\gamma_{\text{cd}}(G) \le |D| = |V(G) - D'| = 4n - \left(\frac{5n-1}{2}\right) =
$$

\nHence $\gamma_{\text{cd}}(G) \le \frac{3n+1}{2} = \left|\frac{3n+1}{2}\right|$.

Let D['] be a γ_{cd} -set of G. The blocks A, B, A² and A²B are constructed as given below.

3n+1 2 .

G is obtained by concatenating the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}}$ B. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D'

Therefore D['] contains atleast 3 vertices from each block A of $A^{\frac{n-1}{2}}$ and atleast 2 vertices from block B.

Therefore
$$
\gamma_{\text{ctd}}(G) = |D'| \ge 2 + 3 \left(\frac{n-1}{2}\right) = \frac{3n+1}{2} = \left|\frac{3n+1}{2}\right|.
$$

Hence $\gamma_{\text{ctd}}(G) = \left|\frac{3n+1}{2}\right|, n \ge 1.$

, $v_{3,2i-1}$ }]∪ [U $_{i=1}^{n}$ { v_{2i} }] and D = V(G) –D[']. Then $|D'| = 3\left(\frac{n}{2}\right)$ $\binom{n}{2} + n = \frac{5n}{2}$ $\frac{2}{2}$. Then D is a dominating set of G. Also <V (G) – D > = < D > is a tree obtained from the path $P_n = \langle \{v_{2i}, i = 1, 2, 3, ..., n\} \rangle$, $(n \ge 2)$ by attaching P_3 at each of the vertices $v_{22}, v_{24}, v_{26}, ...,$ and $v_{2,n}$ and attaching a pendant edge at each of the vertices v_{21} , v_{23} ..., and $v_{2,n-1}$. Therefore D is a ctd-set of G and $\gamma_{\text{cd}}(G) \leq |D| = |V(G) - V(G)|$

 $|\mathbf{D}'| = 4n - \left(\frac{5n}{2}\right)$ $\left(\frac{5n}{2}\right) = \frac{3n}{2}$ $\frac{1}{2}$. Hence $\gamma_{\text{cd}}(G) \leq \frac{3n}{2}$ $\frac{3n}{2} = \frac{3n+1}{2}$ $\frac{1}{2}$. Let D['] be a γ_{cd} -set of G.The block A is constructed as in Case 1. Then $G \cong A^{\frac{n}{2}}$. The vertices with the symbol in each of the blogs represent the vertices that are to be included in D[']. Therefore D['] contains at least 3 vertices from each block A of $A^{\frac{1}{2}}$. Therefore $\gamma_{\text{cd}}(G) = |D'| \ge 3 \left(\frac{n}{2}\right)$ $\frac{\text{m}}{2}$ $\frac{3\text{m}}{2}$ $\frac{3n}{2} = \frac{3n+1}{2}$ $\frac{1}{2}$. Hence $\gamma_{\text{ctd}}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor$ $\left[\frac{n+1}{2}\right], n \geq 1.$

K. Theorem 2.5 If $G \cong C_5$ x P_n , then $\gamma_{\text{ctd}}(G) = 2n$, $n \ge 3$.

L. Proof

Let $G \cong C_5$ x P_n and $V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}, v_{5i}\}$ such that $\langle v_{1i}, v_{12}, \dots, v_{in} \rangle > \cong P_n^i$, $i = 1, 2, 3, 4, 5$ and $\langle v_{1j}, v_{2j}, v_{3j}, v_{4j}, v_{5j} \rangle >$ $\cong C_5^j$, $j = 1, 2, ..., n$, where P_n^i is the ith copy of P_n and C_5^j is the jth copy of C_5 in $C_5 \times P_n$. $|V(G)| = 5n$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887 Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let D =
$$
\begin{cases} [\mathsf{U}_{i=1}^{\frac{n+1}{2}} \{v_{1,2i-1}, v_{5,2i-1}\}] \cup [\mathsf{U}_{i=2}^{\frac{n-1}{2}} \{v_{3,2i}, v_{4,2i}\}], \text{if n is odd} \\ \mathsf{U}_{i=2}^{\frac{n}{2}} \{v_{1,2i-1}, v_{3,2i}, v_{4,2i}, v_{5,2i-1}\}, \text{ if n is even.} \end{cases}
$$

Then D is a dominating set of G and also $\langle V(G) - D \rangle$ is a tree obtained from the path $P_n = \langle \{v_{2,i}, i = 1, 2, 3, ..., n\} \rangle$, $(n \geq n)$ 2) by attaching P_3 at each of the vertices v_{21} , v_{22} , v_{23} , ..., and $v_{2,n}$ Therefore D is a ctd-set of G.

and
$$
|D| = \begin{cases} 2\left(\frac{n+1}{2}\right) + 2\left(\frac{n-1}{2}\right) = 2n, & \text{if } n \text{ is even} \\ 4\left(\frac{n}{2}\right) = 2n, & \text{if } n \text{ is odd.} \end{cases}
$$

Therefore $\gamma_{\text{cd}}(G) \leq |D'| = 2n$.

Let D['] be a γ_{cd} -set of G. Since $\gamma(C_5) = 2$, D['] contains atleast 2 vertices from each of n cycles and hence D[']contains atleast 2n vertices. Therefore $\gamma_{\text{cd}}(G) = |D'| \ge 2n$. Hence $\gamma_{\text{ctd}}(G) = 2n, n \ge 1$.

M. Theorem 2.6

If $G \cong C_6$ x P_n , then $\gamma_{\text{ctd}}(G) = \left\lfloor \frac{5n}{2} \right\rfloor$ $\frac{\pi}{2}$, n ≥ 2 .

1) Proof: Let $G \cong C_6$ x P_n and $V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}, v_{5i}, v_{6i}\}$ such that $\langle v_{i1}, v_{i2}, \dots, v_{in} \rangle > \cong P_n^i$, i =1, 2, 3, 4,5,6 and $\langle v_{1j}, v_{2j}, v_{3j}, v_{4j}, v_{5j}, v_{6j} \rangle \ge \cong C_6^j$, $j = 1, 2, ..., n$, where P_n^i is the ith copy of P_n and C_6^j is the jth copy of C_6 in C_6 x P_n and $|V(G)|$ $= 6n$.

2) Case 1: n is odd.

Let $D = [U_{i=1}^{2} \{v_{1,2i-1}\}$ $\frac{\frac{n+1}{2}}{1}$ {v_{1,2i-1}, v_{5,2i-1}, v_{6,2i-1}}]∪ [U_{i=1}{v_{2i}}][U $\frac{\frac{n-1}{2}}{1}$ {v_{3,2i}, v_{4,2i}}] $\frac{\frac{n-1}{2}}{\frac{1}{2} \{v_{3,2i}, v_{4,2i}\}}$. Then $|D| = 3\left(\frac{n+1}{2}\right)$ $\frac{+1}{2}$ + n + 2 $\left(\frac{n-1}{2}\right)$ $\frac{-1}{2}$ = $\frac{7n+1}{2}$ $\frac{1+1}{2}$ and D = V(G) –D[']. Then D is a dominating set of G. Also <V (G) – D > = < D[']> is a tree obtained from the path $P_n = \{v_{2,i}, i = 1,2,3,...,n\} > (n \ge 2)$ by attaching P_4 at each of the vertices $v_{21}, v_{23}, v_{25}, ..., v_{2n}$ and attaching P_3 at each of the vertices v_{22} , v_{24} ..., $v_{2,n-1}$. Therefore D is a ctd-set of G.

$$
\gamma_{\text{ctd}}(G) \le |D| = |V(G) - D'| = 6n - \left(\frac{7n+1}{2}\right) = \frac{5n-1}{2}.
$$

Hence $\gamma_{\text{ctd}}(G) \le \frac{5n-1}{2}.$

Let D['] be a γ_{cd} -set of G. The blocks A,B, A² and A²B are constructed as given below.

G is obtained by compatenating the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}}$ B. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D['].

Therefore D['] contains atleast 5 vertices from each block A of $A^{\frac{n-1}{2}}$ and atleast 2 vertices from block B. Therefore $\gamma_{cd}(G) = |D'| \ge 5$ $\left(\frac{n-1}{2}\right)$ $\left(\frac{-1}{2}\right) + 2 = \frac{5n-1}{2}$ and hence $\gamma_{\text{ctd}}(G) = \frac{5n-1}{2}$ $\frac{1}{2} = \frac{5n}{2}$ $\frac{1}{2}$. Case 2: n is even.

International Journal for Research in Applied Science & Engineering Technology (IJRASET**)**

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let
$$
D^{'}\!\!=\! \ [U^{\frac{n}{2}}_{i=1}\{v_{1,2i-1,}\,v_{5,2i-1},\,v_{6,2i-1}\}]\cup\ [U^{n}_{i=1}\{v_{2i,}\}]\ [U^{\frac{n}{2}}_{i=1}\{v_{3,2i}\,,v_{4,2i}\}].
$$

Then $|\mathbf{D}'| = 3\left(\frac{\mathbf{n}}{2}\right)$ $\binom{n}{2}$ + n +2 $\left(\frac{n}{2}\right)$ $\left(\frac{\mathsf{n}}{2}\right) = \frac{7\mathsf{n}}{2}$ $\frac{2}{2}$ and D = V(G) - D[']. Then D is a dominating set of G. Also <V (G) – D > = < D['] > is a tree obtained from the path $P_n = \langle v_{2,i}, i = 1,2,3,...,n \rangle >$, $(n \ge 2)$ by attaching P_4 at each of the vertices $v_{21}, v_{23}, v_{25}, ..., v_{2,n-1}$ and attaching P_3 at each of the vertices v_{22} , v_{24} ..., v_{2n} . Therefore D is a ctd-set of G.

 $\gamma_{\text{cd}}(G) \leq |D| = |V(G) - D| = 6n - \left(\frac{7n}{2}\right)$ $\frac{\pi}{2}$ = $\frac{5n}{2}$ $\frac{1}{2}$. Hence $\gamma_{\text{ctd}}(G) \leq \frac{5n}{2}$ $\frac{1}{2}$. Let D['] be a γ_{cd} -set of G. The block A is constructed as in Case 1. Then $G \cong A^{\frac{n}{2}}$. The vertices with the symbol in each **o**the blocks represent the vertices that are to be included in D[']. Therefore D['] contains at least 5 vertices from each block A of $A^{\frac{n}{2}}$. Therefore $\gamma_{\text{ctd}}(G) = |D'| \ge 5 \left(\frac{n}{2}\right)$ $\frac{\text{m}}{2}$ = $\frac{5\text{m}}{2}$ $\frac{5n}{2}$ and hence $\gamma_{\text{ctd}}(G) = \frac{5n}{2}$ $\frac{5n}{2} = \frac{5n}{2}$ $\frac{1}{2}$. Hence $\gamma_{\text{ctd}}(G) = \left[\frac{5n}{2}\right]$ $\frac{1}{2}$, n ≥ 1 .

N. Remark 2.2.

In view of Theorem 2.4, Theorem 2.5, Theorem 2.6, and Theorem 2.7,

- *1*) $\gamma_{\text{ctd}}(C_3 \times C_n) = n+1, n \ge 2.$
- 2) $\gamma_{\text{ctd}}(C_4 \times C_n) = \left| \frac{3n+1}{2} \right|$ $\frac{1}{2} + I$

3)
$$
\gamma_{\text{ctd}}(C_5 \times C_n) = \begin{cases} 2n + 1, & \text{if } n \text{ is even} \\ 2n, & \text{if } n \text{ is odd.} \end{cases}
$$

- 2n, if n is odd.
- *4*) $\gamma_{\text{cd}}(C_6 \times C_n) = \frac{5n}{2}$ $\frac{2^{n}}{2}$ + 1.

O. Remark 2.3.

- *1*) If $G_1 \cong K_m$ and $G_2 \cong K_n$, then $\gamma_{\text{cd}}(G_1 + G_2) = m + n-2$.
- 2) If G_1 and G_2 are any two noncomplete connected graphs of order m and n respectively, with minimum degree atleast two, then $\gamma_{\text{ctd}}(G_1 + G_2) \le m + n - 4$. Equality holds, if $G_1 \cong K_m - e$, $G_2 \cong K_n - e$.
- *3*) For any two connected graphs G_1 and G_2 of order m and n respectively, $\gamma_{\text{ctd}}(G_1 \circ G_2) \le m + n 4$. Equality holds, if $G_1 \cong$ P_2 and $G_2 \cong C_3$.

P. Distance Two Complementary tree domination number of Cartesian product of graphs

In the following, distance two complementary tree domination number of K_m x K_n , K_m x R_n , K_m x C_n , C_3 x P_n , C_4 x P_n , C_5 x P_n , C_6 x P_n , C_3 x C_n , C_4 x C_n , C_5 x C_n and C_6 x C_n are given

- *1*) If $G \cong K_m \times K_n(m, n \ge 3 \text{ and } m \le n)$, then $\gamma_{d2ctd}(G) = \begin{cases} m(n-2) + 1, \text{ if } m = n \\ m(n-2) & \text{ if } m < n \end{cases}$ $m(n-2)$, if $m < n$
- 2) If $G \cong K_m x P_n (4 \le m \le n)$, then $\gamma_{d2cd}(G) = n (m-2)$.

$$
3)\quad \gamma_{d2ctd}(\ K_m\,x\ C_n)=n(m-2)+1.
$$

- *4*) If $G \cong C_3$ x P_n , then $\gamma_{d2cd}(G) = n, n \ge 1$.
- 5) If $G \cong C_4$ x P_n , then $\gamma_{d2cd}(G) = \frac{3n+1}{2}$ $\left[\frac{n+1}{2}\right], n \geq 1.$
- 6) If $G \cong C_5$ x P_n , then $\gamma_{d2cd}(G) = 2n$, $n \ge 3$.
- *7*) If $G \cong C_6$ x P_n , then $\gamma_{d2cd}(G) = \frac{5n}{2}$ $\frac{\pi}{2}$, n ≥ 1 .
- *8*) $\gamma_{d2ctd}(C_3 \times C_n) = n+1, n \ge 2.$

9)
$$
\gamma_{d2ctd}(C_4 \times C_n) = \left[\frac{3n+1}{2}\right] + 1
$$

10)
$$
\gamma_{d2cd}(C_5 \times C_n) = \begin{cases} 2n + 1, & \text{if } n \text{ is even} \\ 2n, & \text{if } n \text{ is odd.} \end{cases}
$$

Volume 5 Issue XII December 2017- Available at www.ijraset.com

11) $\gamma_{d2ctd}(C_6 \times C_n) = \frac{5n}{2}$ $\frac{\pi}{2}$ +1, n \geq 2.

REFERENCES

- [1] M. El-Zahav and C.M. Pareek, Domination number of products of graphs, Ars Combin., 31 (1991),223–227.
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination ingraphs, Marcel Dekker Inc., New York, 1998.
- [4] S. Muthammai and G. Ananthavalli, Distance Two Complementary Tree Domination Number of a graph, International Journal For Research in Applied Science and Engineering Technology. (submitted
- [5] S. Muthammai and G. Ananthavalli, Complementary Tree Nil Domination Number of cartesian product of Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology.(submitted
- [6] S. Muthammai, P. Vidhya, Complementary tree domination in grid graphs,International Journalof Engineering Science, Advanced Computing and Bio-Technology, 2(3) (2011), 118–129
- [7] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publication, 38, 1962.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 (24*7 Support on Whatsapp)