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Abstract: A set D of a graph G = (V, E) is a dominating set, if every vertex in V(G) — D is adjacent to some vertex in D. The
domination number y (G) of G is the minimum cardinality of a dominating set. A dominating set D < V(G) is said to be a

complementary tree dominating set (ctd-set), if the induced subgraph<V(G) - D>is a tree. The minimum cardinality of a ctd-set is
called the complementary tree domination number of G and is denoted by y 4 (G).A dominating set D is called a distance two

complementary tree dominating set, if for each u eV(G) - D, there exists a vertex v € D such that d(u,v) < 2 and also <V(G) -
D> is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two
complementary tree domination number of G and is denoted by y42.:4(G).In this paper, complementary tree domination
numbers and distance two complementary tree domination number of cartesian product of some standard graphs are found.

Key words: Domination number, complementary tree domination number, distance two complementary tree domination number,
Cartesian product.

L. INTRODUCTION
Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph G, let V(G) and E(G) denote its
vertex set and edge set respectively. A graph G with p vertices and g edges is denoted by G(p, g). The concept of domination in
graphs was introduced by Ore[5]. A set D €V(G) is said to be a dominating set of G, if every vertex in V(G) —D is adjacent to some
vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by ¥ (G).
Muthammai, Bhanumathi and Vidhya[5] introduced the concept of complementary tree dominating set. A dominating set D < V(G)
is said to be a complementary tree dominating set (ctd-set), if the induced subgraph <V(G) - D >is a tree. The minimum cardinality

of a ctd-set is called the complementary tree domination number of G and is denoted by v, (G).

The cartesian product of two graphs G; and G, is the graph, denoted by G; x G, with V (G;x G,) =V (Gy) % V (G,) (where x
denotes the cartesian product of sets) and two vertices u = (ug, Uy) and v = (v, V,) in V (Gyx G,) are adjacent in G;x G, whenever
[up = vy and (uz, Vv2) € E(Gy)] or [u, = v, and (ug, vy) € E(Gy)].

The concept of distance two complementary tree dominating set is introduced in [4]. A dominating set D is called a distance two
complementary tree dominating set, if for each u eV(G) - D, there exists a vertex v € D such that d(u,v) < 2, and also <V(G) — D>
is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary
tree domination number of G and is denoted by v, .,(G).

In this paper, complementary tree domination number and distance two complementary tree domination number of Kn X Ky, Ky X
Pn K X Cy, C3 X Py Cy X Py, Cs X Py, Cg X Pp, C3x Cp, Cyx C, Csx C, and Cg X Chgre found.Any undefined terms in this paper may
be found in Harary[2].

1. COMPLEMENTARY TREE DOMINATION NUMBER OF CARTESIAN PRODUCT OF GRAPHS
A. Theorem 2.1
m(n—2)+ 1,ifm=n
~ > < =
If G = K x Ky(m, n =3 and m < n), theny_,(G) {m(n ~2). ifm<n

B. Proof.
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LetG= K, XKy,
Let V(G) =UR {Vi1, Vig, -, Vin} SUich that < {Vi, Vig, .., Vin} > = K, i 21,2, .., mand < {vy;, vy, .., Vi } > = K, =12, ..,
n, where K, is the i"" copy of K, and K/ is the j" copy of Kpin KnX K, [V(G)| = mn.

C. Casel:m=n.

etD = (URTHVvi Viis1}) U {Vinm} and D = V(G) -D'. Then V(G) - D =D'and |D'| = 2(m — 1) +1= 2m - 1. For i =1, 2,3, ..., m-1,
the verticesv;;, v;;4,1n V(G) — D are adjacent to v;;inD, and the vertex vy, is adjacent to vy in D. Therefore D is a dominating set of
G. <V(G) -D> = Py(m1y+1 = Pam-1 SinceD is a ctd-set of G. Hencey_,,(G)< [DI|=|V(G)| - D|=mn-2m-1)=mn-2)+1.

It is to be noted that, any tree in G is a path. Let D" be a Yeeq-SEL Of G. The longest path that can be obtained from the subgraph of G
induced by the vertices of V(G)-D'is Payq That is,<V(G)-D> = P,,_, D’ contains atleast mn — (2m — 1) = m(n — 2) + 1 vertices.
Thereforey_,(G) =|D'| =2m(n - 2) + 1.

Hence v, 4(G) =m(n-2) + 1.

D. Case2:m<n.
Let D' = U™, {v;;, Viis1} and D = V(G) - D". Then V(G) - D =D'and |D'| = 2m. The vertices vy,,V,, are adjacent to vy, and
Vii, Vii+1 (1 =2, 3, ..., m) are adjacent to vi;, (i=2, 3, ..., m) in D. Therefore D is a dominating set of G. Since <V (G) — D > = Py, D
is a ctd-set of G. Therefore y_,(G)< [V(G)| - ID'|=mn-2m=m(n - 2).
As in case 1, any tree in G is a path. Let D' be Yeq-SEL Of G. The longest path that can be obtained from the subgraph of G induced
by the vertices of V(G) — D' is Pap,
That is<V (G) -D'> = P,, Therefore D' contains atleast mn — 2m = m(n — 2) vertices. Thereforey ., ,(G) = ID'| =m(n - 2).
Thereforey_,(G) =m(n-2).

_(m(h—=2)+ 1,ifm=n
Hence v.4(G) = {m(n -2), ifm<n’

E. Remark2.1
The set D defined in Case 1 and Case 2 is also a d2ctd-set of G. Since any vertex u in D which is at distance two from a vertex of D,
<(V (G) — D) U {u}> either disconnected or contains cycle.

F. Example 2.1
For the graph G given in Figure 1.a and Figure 1.b, the set of vertices marked with is a minimum ctd-set ofgK, x Kand y
K4) =9and thd(K4 X K5) =12.

(K4 X

ctd

GEK4XK4 GEK4XK5

Figure 1.a Figure 1.b

G. Theorem2.2.

If G = K X Py(4<m <n), theny_,(G) =n (m -2).
1) Proof.

Let G = Ky xP, m,n > 4.
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Let V(G) = U {Viy, Viz, ..., Vin} SUCh that < iy, Vig, .. Vin} == K&, 1 =1, 2, ..., mand < {vy;, Vyj, oo Vi } > = PLLi=1,2, .o,
n, where K, is the i"" copy of K, and P is the j ™ copy of Pp,in Ky X Py,

n—-1

LetD = {Vin U [UL{v,i H U [UE{V1,21—1,V3,21 }ifnisodd

[UR (V2 U [UZ V121 Vi M if s even
Then |D'| = 2n. If D = V(G) - D', then D is a dominating set of G. Also <V(G) - D > = <D'> = P,°K; Therefore D is a ctd-set of G
and y,(G) <[D| =mn - 2n = n(m - 2).
Hence y,(G) < n(m - 2).
Let D' be ay4-Set of G. Since D'is a ctd-set of G, D' contains atleast (m — 2) vertices in each of n copies of K, Hence D’ contains
atleast n(m — 2) vertices. Therefore v ,(G) =D | =n(m - 2).
Hence y,4(G) =n (m - 2).

H. Example 2.2.
For the graph G given in Figure 2, the set of vertices marked with is a minimum ctd-set of K, x@nand v, (Ks x Kg) = 18.

Gz K4X Pg

a0 0004

Fiaure 2
I. Theorem 2.3.
G = Cyx Py, theny,(G)=n,n=1.
1) Proof.

Let G=C3x P,
Let V(G) = UL 1{Vyj, Vi, Vgi} such that < {Vig, Vi, ..., Vip} > = Phi =1,2,3 and < {vy;, vy, v5} > = C}, j=1,2, ..., n, where P} is the
i copy of P, and C., is the j " copy of Cyin C; x Py,

n-1

Lot b = ) Vi U TUZ {Vazio1 Vs 1] if nis odd

U?=1{V1,2i—1,V3,zi }ifniseven
Then D is a dominating set of G. Also <V (G) — D >= P,° K,Therefore D is a ctd-set of G and |D|=
2(n;1)+1 =n, ifniseven
2

n\ _ . .
2(5) =n, ifnisodd
Let D be ay,y-set of G. Then D’ contains atleast one vertex from each cycle. Since C; x P, contains n copies of C; D' contains
atleast n vertices. y,,,(G) =|D'| = n.

Hence y,,(G) =n,n= 1.

andy,(G) <[D|=n.

J. Theorem 2.4.
If G = C, X Py, then y,,,(G) = |

3n+1
2

Let G = Cy X Py and V(G) = U {vy;, Vi, Vs, Vygi} SUch that < {viy, Vi, ..., Vin} > = Py, i =1,2,3,4 and < {vy, Vyj, Vg, Vyj} > = ch,

J,nzl.

i=1,2, ..., n, where P!, is the i copy of P, and CJ, is the j " copy of C,in C, x P,and [V(G)| = 4n.
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LetD' ={vy}U [U. Va0 Vaais Vagien 31 U [UTL1{V2i 1]

Then D| =1+ 3( 5 )+ n -5"2—1 and D = V(G) -D". Then D is a dominating set of G. Also <V (G) - D > = <D> is a tree

obtained from the path P, =< {szill =123.. ,n} >, (n= 2) by attaching P; at each of the vertices vy, Vy4, Va5, ..., Vo -y and

attaching a pendant edge at each of the vertices vy, V,3 ..., V.. Therefore D is a ctd-set of G, and

(G) <ID|=V(G)-D|=4n-(2) =22,

thd 2

Hence v,,,(G) < ﬁ IS"H

Let D bea Y g SEL of G. The blocks A, B, A? and A?B are constructed as given below.

A B AZ A’B
Figure 3

n-1 n-1
G is obtained by concatenating the blocks A2 and B. That is, G = A2 B. The vertices with the symbol  in each of the blocks
represent the verticeg@hat are to be included in D
' n-1
Therefore D contains atleast 3 vertices from each block A of A"z and atleast 2 vertices from block B.

Therefore y,,,(G) =|D| = 2+ 3 (n;_l)z snz_H: l%]

Hence v, (G) = [3"+1J n>1.

Vazi-1 U [UILi{V5i }] and D = V(G) -D'. Then D' = 3(3) +n = Then D is a dominating set of G. Also <V (G) - D >=<D’>

is a tree obtained from the path P,= < {vy,i =1,23,...,n} >, (n > 2) by attaching P;at each of the vertices Vy,, Va4, Vo5, ... ,and vy,
and attaching a pendant edge at each of the vertices Vy;, Vp3 ... ,and v, ,_;. Therefore D is a ctd-set of G andy_,(G) < |D| = |V(G) -

D|=4n-(¥)=2

2
3n+1
Hence y,(G) < 3= ["TJ

Let D bea Y g SEL of G.The block A is constructed as in Case 1.

ThenG = Az. The vertices with the symbol in each of the blggks represent the vertices that are to be included in D.
Therefore D' contains atleast 3 vertices from each block A of Az. Therefore ym(©) =D| >3 ( ) IS"H

Hence v, (G) = [3"+1J n>1.

K. Theorem 2.5
If G = Csx Py, theny,(G) =2n,n=3.

L. Proof
Let G = Cs x Py and V(G) = Uy {Vi;, Vi, Vi, Vi Vi } such that < {Vig, Vig, ..., Vin} > = Py, i =1, 2, 3, 4, 5 and < {vy;, Vy}, Vgj, Va;, Vsj} >
= CL j=12 ..., n, where P} is the i" copy of P, and C. is the | copy of Csin Cs X Py. [V(G)| =
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n+l n-1
LetD = [Uiil{vl,zi—l, Vs2i-1}] U [Uiiz{vs,zi,v4,2i,}]v if nisodd
UZ_ V1211, VaaiVaai, Vg _,}r i DTS €ven.
Then D is a dominating set of G and also <V(G) — D> is a tree obtained from the path P,= < {vzyi,i =123, .., n} > (n=

2) by attaching P5 at each of the vertices vy, Vy,, Vo3 ..., and v, , Therefore D is a ctd-set of G.
2 (";'—1) +2 (";—1) =2n, ifniseven
4(%) = 2?, if n is odd.
Thereforey ,,(G) < [D|=2n.
Let D' be ay4-Set of G. Since y(Cs) = 2, D' contains atleast 2 vertices from each of n cycles and hence D contains atleast
2n vertices. Therefore v ,(G) =D| = 2n.
Hence y,,(G) =2n,n=1.

and |D| =

M. Theorem 2.6
If G = Cs x Py, then v, (G) = [2],n>2.

1) Proof.: Let G = Cg x P, and V(G) = UL {V;, Vai, Vai, Vai, Vi, Vi } SUch that < {vig, Vi, ..., i} > = P}, i =1, 2, 3, 45,6 and
< {Vyj, Vg, Vg, Vg, Vi, Vg } > = CL,j=1,2, ..., n, where P} is the i" copy of P, and C4 is the j " copy of Csin Cs x P, and |V(G)|
=o6n.

2) Case 1: nisodd.

n+l n-1

LEtDlz[Uz{Vl,Zi—l, Vs.2i-1, Ve 2i-1 U [UiL1{V2i}] [Uz{Vs,Zi Va2itl:

Then |D| = 3(”;'—1) +n + 2(”;—1) = 7"2—+1 and D = V(G) -D. Then D isa dominating set of G. Also <V (G) - D >=<D"> is a tree
obtained from the path P,= < {Vz,i, i=123.., n} >, (n = 2) by attaching P, at each of the vertices vy, Vp3, Vo5 ..., V5, and attaching
P3 at each of the vertices Vy,, Vy, ...,V ,_1. Therefore D is a ctd-set of G.

7n+1) - 5n—-1

Y4q(G) <ID|=|V(G)-D]|=6n- (T

2

il
>
Let D bea Yq-S€t of G. The blocks A,B, A? and AB are constructed as given below.

— N /1 7 7

Hencey ,(G) <

. \ L3\
NG\ S\ N G B

A B A? A%B

Figure 4

n-1 n-1
G is obtained by co@atenating the blocks A2 and B. That is, G = A2 B. The vertices with the symbol in each of the blocks
represent the vertices that are to be included in D'.
' n_l '
Therefore D contains atleast 5 vertices from each block A of A2 and atleast 2 vertices from block B. Thereforey ,,(G) = [D|=5
n-1 _5n-1 _ 5n=1_ |5n
(T) +2 = and hence thd(G) =5 l?J
Case 2: n is even.
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LetD'= [U?=1{V1,2i—1, Vs 2i—1, Vg 2i—1}]U [UP=1{V2i,}][Ui§=1{V3,2i Va2i}]-

Then D| = 3(2) +n +2(g) =72—" and D = V(G) - D". Then D is a dominating set of G. Also <V (G) — D > = <D'> is a tree obtained
from the path P,= < {Vz,i, i=123.., n} >, (n = 2) by attaching P, at each of the vertices vy, Vp3, Vo5 ..., V, 1 and attaching P at
each of the vertices v,,,V,, ..., Vo,. Therefore D is a ctd-set of G.

: N .
Vea(G) S|D|=|V(G)-D|=6n-(?”) =

Hence v ,(G) < 52—"
Let D bea Y4q-S€t of G. The block A is constructed as in Case 1.
ThenG = Az. The vertices with the symbol in each @)the blocks represent the vertices that are to be included in D.

Therefore D' contains atleast 5 vertices from each block A of Az.
Therefore y(G) = [D|>5 (g)z 52—" and hencey,,(G) = 52—"= lsz—"J .
Hence y_,(G) = [Z—"J n=1

N. Remark 2.2.
In view of Theorem 2.4, Theorem 2.5, Theorem 2.6, and Theorem 2.7,
1) (CsxCp)=n+l,n>2.

D) ey CaxC =[] 1
_(2n+1, ifniseven
3) Yyg(CsxCn) = { 2n,if n is odd.

5
4) y4q(Cox Gy =[F+1.

thd

thd

O. Remark 2.3.
1) If G, = Kyand G, = K, then thd(Gl +Gy)=m +n-2.
2) If Gy and G; are any two noncomplete connected graphs of order m and n respectively, with minimum degree atleast two, then
thd(Gl + Gy) < m+n-4. Equality holds, if G;= K, —e, G,= K, —e.
3) For any two connected graphs G; and G, of order m and n respectively, y,,(G1° G;) < m + n — 4. Equality holds, if G;=
P, and G,= C;.

p. Distance Two Complementary tree domination number of Cartesian product of graphs
In the following, distance two complementary tree domination number of K, X K, Kpn X Py Ky X C,, C3 X P, C4 X Py, Cs X Py, Cg X
Pn, C3x C,, Cyx Cn' CsX Cnand Ce X Cnare given
m(n—2)+ 1,ifm=n
= > < —
1) G =KpxKy(mn=3andm<n), theny,, ,(G) {m(n _2), ifm <n
2) IfG=KpXxPy(4=m<n), theny,, ,(G)=n(m-2).
3) Ygpeg( KmX Cp) =n(m-2) + 1.
4) 1fG=CyxPytheny, (G)=nn=1
- _|3n+1
5) 1f G = Cy x Py, thenv,0,(G) =225, n 2 1.
6) 1fG=CsxPptheny,, (G)=2n,n=3.
~ _|5n
7) 1fG = CoxPy, then vy, (G) =2 n= 1.

8) ’YdZCtd(ng Cn) =n+l,n=> 2.

3n+1

9) Yapg(Cax Co) = [22] + 1

_(2n+1, ifniseven
10) Yty (C X Cn) = { 2n,if nis odd.
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11) Ygoeq(Ce X Co) =l52—nJ+1, n>2.
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