

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: XII Month of publication: December 2017

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Complementary Tree Domination number and Distance two Complementary Tree Domination number of Cartesian Product of Graphs

S. Muthammai¹, G. Ananthavalli²

¹Government Arts and Science College, Kadaladi,Ramanathapuram-623703, India. ² Government Arts College for Women (Autonomous),Pudukkottai-622001, India.

Abstract: A set D of a graph G = (V, E) is a dominating set, if every vertex in V(G) - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set), if the induced subgraphV(G) - D is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$. A dominating set D is called a distance two complementary tree dominating set, if for each $u \in V(G) - D$, there exists a vertex $v \in D$ such that $d(u,v) \leq 2$ and also V(G) - D is a tree. The minimum cardinality of a distance two complementary tree domination set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{d2ctd}(G)$. In this paper, complementary tree domination numbers and distance two complementary tree domination number of cartesian product of some standard graphs are found. Key words: Domination number, complementary tree domination number, distance two complementary tree domination number, Cartesian product.

I. INTRODUCTION

Graphs discussed in this paper are finite, undirected and simple connected graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A graph G with p vertices and q edges is denoted by G(p, q). The concept of domination in graphs was introduced by O(F(G)). A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V(G) - D is adjacent to some vertex in D. The cardinality of a minimum dominating set in G is called the domination number of G and is denoted by $\gamma(G)$. Muthammai, Bhanumathi and V(G) introduced the concept of complementary tree dominating set. A dominating set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd-set), if the induced subgraph V(G) - D > 0 is a tree. The minimum cardinality of a ctd-set is called the complementary tree domination number of G and is denoted by $\gamma(G)$.

The cartesian product of two graphs G_1 and G_2 is the graph, denoted by $G_1 \times G_2$ with $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ (where x denotes the cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V(G_1 \times G_2)$ are adjacent in $G_1 \times G_2$ whenever $[u_1 = v_1 \text{ and } (u_2, v_2) \in E(G_2)]$ or $[u_2 = v_2 \text{ and } (u_1, v_1) \in E(G_1)]$.

The concept of distance two complementary tree dominating set is introduced in [4]. A dominating set D is called a distance two complementary tree dominating set, if for each $u \in V(G) - D$, there exists a vertex $v \in D$ such that $d(u,v) \le 2$, and also < V(G) - D > 0 is a tree. The minimum cardinality of a distance two complementary tree dominating set is said to be distance two complementary tree domination number of G and is denoted by $\gamma_{d2ctd}(G)$.

In this paper, complementary tree domination number and distance two complementary tree domination number of $K_m \times K_n$, $K_m \times P_n$,

II. COMPLEMENTARY TREE DOMINATION NUMBER OF CARTESIAN PRODUCT OF GRAPHS

A. Theorem 2.1

If
$$G \cong K_m \times K_n(m, n \ge 3 \text{ and } m \le n)$$
, then $\gamma_{ctd}(G) = \begin{cases} m(n-2) + 1, & \text{if } m = n \\ m(n-2), & \text{if } m < n \end{cases}$

B. Proof.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let $G \cong K_m \times K_n$.

Let $V(G) = \bigcup_{i=1}^{m} \{v_{i1}, v_{i2}, ..., v_{in}\}$ such that $\langle \{v_{i1}, v_{i2}, ..., v_{in}\} \rangle \cong K_n^i$, i = 1, 2, ..., m and $\langle \{v_{1j}, v_{2j}, ..., v_{mj}\} \rangle \cong K_m^j$, j = 1, 2, ..., m, where K_n^i is the i^{th} copy of K_n and K_m^j is the j^{th} copy of K_m in $K_m \times K_n$. |V(G)| = mn.

C. Case 1: m = n.

et $D' = \left(\bigcup_{i=1}^{m-1} \left\{v_{ii}, v_{i,i+1}\right\}\right) \cup \left\{v_{m,m}\right\}$ and D = V(G) - D'. Then V(G) - D = D' and |D'| = 2(m-1) + 1 = 2m-1. For i = 1, 2, 3, ..., m-1, the vertices $V_{ii}, V_{i,i+1}$ in V(G) - D are adjacent to v_{i1} in D, and the vertex v_{mm} is adjacent to v_{m1} in D. Therefore D is a dominating set of G. $\langle V(G) - D \rangle \cong P_{2(m-1)+1} = P_{2m-1}$. Since D is a ctd-set of G. Hence $\gamma_{ctd}(G) \leq |D| = |V(G)| - |D'| = mn - (2m-1) = m(n-2) + 1$.

It is to be noted that, any tree in G is a path. Let D' be a γ_{ctd} -set of G. The longest path that can be obtained from the subgraph of G induced by the vertices of V(G)-D' is P_{2m-1} . That is, $\langle V(G)$ -D' $\rangle \cong P_{2m-1}$. P_{2m-1} contains at least P_{2m-1} contains P_{2m-1} contains at least P_{2m-1} contains P_{2m-1} contains P_{2m-1} contains P_{2m-1} contains $P_{$

Hence $\gamma_{ctd}(G) = m(n-2) + 1$.

D. Case 2: m < n.

Let $D' = \bigcup_{i=1}^m \{v_{ii}, v_{i,i+1}\}$ and D = V(G) - D'. Then V(G) - D = D' and |D'| = 2m. The vertices v_{11}, v_{12} are adjacent to v_{1n} and $v_{ii}, v_{i,i+1}$ (i = 2, 3, ..., m) are adjacent to v_{i1} , (i = 2, 3, ..., m) in D. Therefore D is a dominating set of G. Since $\langle V(G) - D \rangle \cong P_{2m}D$ is a ctd-set of G. Therefore $\gamma_{ctd}(G) \leq |V(G)| - |D'| = mn - 2m = m(n-2)$.

As in case 1, any tree in G is a path. Let D' be γ_{ctd} -set of G. The longest path that can be obtained from the subgraph of G induced by the vertices of V(G) - D' is P_{2m} .

That is < $V(G)-D'> \cong P_{2m}$. Therefore D' contains at least mn-2m=m(n-2) vertices. Therefore $\gamma_{ctd}(G)=|D'|\geq m(n-2)$.

Therefore $\gamma_{ctd}(G) = m(n-2)$.

Hence $\gamma_{ctd}(G) = \begin{cases} m(n-2) + 1, & \text{if } m = n \\ m(n-2), & \text{if } m < n \end{cases}$

E. Remark 2.1

The set D defined in Case 1 and Case 2 is also a d2ctd-set of G. Since any vertex u in D which is at distance two from a vertex of D, $\langle (V(G) - D) \cup \{u\} \rangle$ either disconnected or contains cycle.

F. Example 2.1

For the graph G given in Figure 1.a and Figure 1.b, the set of vertices marked with $is a minimum ctd-set of K_m x K_n and \gamma_{ctd}(K_4 x K_4) = 9$ and $\gamma_{ctd}(K_4 x K_5) = 12$.

Figure 1.b

G. Theorem 2.2.

If $G \cong K_m \times P_n (4 \le m \le n)$, then $\gamma_{ctd}(G) = n \ (m-2)$.

1) Proof.

Let $G \cong K_m \times P_n, m, n \geq 4$.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

 $\text{Let } V(G) = \bigcup_{i=1}^{m} \{ V_{i1}, V_{i2}, \dots, V_{in} \} \text{ such that } < \{ V_{i1}, V_{i2}, \dots, V_{in} \} > \\ \cong K_n^i, \ i = 1, \ 2, \ \dots, \ m \ \text{and} < \left\{ V_{1j}, V_{2j}, \dots, V_{mj} \right\} > \\ \cong P_m^j, \ j = 1, \ 2, \ \dots, \\ n, \ \text{where } K_n^i \ \text{ is the } i^{th} \ \text{copy of } K_n \ \text{and} \ P_m^j \ \text{ is the } j^{th} \ \text{copy of } P_m \ \text{in } K_m \ x \ P_n.$

$$\text{Let D}' = \begin{cases} \{v_{1n}\} \cup [\bigcup_{i=1}^n \{v_{2i}\}] \cup [\bigcup_{i=1}^{\frac{n-1}{2}} \{v_{1,2i-1,}v_{3,2i}\}], \text{if n is odd} \\ [\bigcup_{i=1}^n \{v_{2,i}\}] \cup [\bigcup_{i=1}^2 \{v_{1,2i-1,}v_{3,2i}\}], \text{if n is even} \end{cases}.$$

Then |D'| = 2n. If D = V(G) - D', then D is a dominating set of G. Also $< V(G) - D > = < D' > \cong P_n \circ K_1$. Therefore D is a ctd-set of G and $\gamma_{ctd}(G) \le |D| = mn - 2n = n(m-2)$.

Hence $\gamma_{ctd}(G) \le n(m-2)$.

Let $D^{'}$ be a γ_{ctd} -set of G. Since $D^{'}$ is a ctd-set of G, $D^{'}$ contains at least (m-2) vertices in each of n copies of K_{m} . Hence $D^{'}$ contains at least n(m-2) vertices. Therefore $\gamma_{ctd}(G) = |D^{'}| \ge n(m-2)$.

Hence $\gamma_{ctd}(G) = n \ (m-2)$.

H. Example 2.2.

For the graph G given in Figure 2, the set of vertices marked with is a minimum ctd-set of $K_m \times \mathfrak{G}_n$ and $\gamma_{ctd}(K_4 \times K_9) = 18$.

I. Theorem 2.3.

 $G\cong C_3$ x $P_n,$ then $\gamma_{ctd}(G)=n$, $n\geq 1.$

1) Proof.

Let $G \cong C_3 \times P_n$

Let $V(G) = \bigcup_{i=1}^{n} \{v_{1i}, v_{2i}, v_{3i}\}$ such that $\{v_{1i}, v_{i2}, ..., v_{in}\} > \cong P_n^i, i = 1, 2, 3$ and $\{v_{1j}, v_{2j}, v_{3j}\} > \cong C_3^j, j = 1, 2, ..., n$, where P_n^i is the i^{th} copy of P_n and C_3^i is the j^{th} copy of C_3 in C_3 x P_n .

$$Let \ D = \begin{cases} \{v_{1n}\} \cup [\bigcup_{i=1}^{\frac{n-1}{2}} \{v_{1,2i-1,}v_{3,2i}\}], \text{if n is odd} \\ \bigcup_{i=1}^{\frac{n}{2}} \{v_{1,2i-1,}v_{3,2i}\}, \text{if n is even} \end{cases}$$

Then D is a dominating set of G. Also <V (G) - D $> \cong P_n \circ K_1$. Therefore D is a ctd-set of G and $|D| = \begin{cases} 2\left(\frac{n-1}{2}\right) + 1 = n, & \text{if n is even} \\ 2\left(\frac{n}{2}\right) = n, & \text{if n is odd} \end{cases}$ and $\gamma_{ctd}(G) \le |D| = n$.

Let $D^{'}$ be a γ_{ctd} -set of G. Then D' contains at least one vertex from each cycle. Since C_3 x P_n contains n copies of C_3 , D' contains at least n vertices. $\gamma_{ctd}(G) = |D'| \ge n$.

Hence $\gamma_{ctd}(G) = n, n \ge 1$.

J. Theorem 2.4.

If $G \cong C_4 \times P_n$, then $\gamma_{ctd}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor, \, n \geq 1$.

 $\text{Let } G \cong C_4 \text{ x } P_n \text{ and } V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}\} \text{ such that } < \{v_{i1}, v_{i2}, \dots, v_{in}\} > \\ \cong P_n^i, \text{ } i = 1, 2, 3, 4 \text{ and } < \left\{v_{1j}, v_{2j}, v_{3j}, v_{4j}\right\} > \\ \cong C_4^j, \\ j = 1, 2, \dots, n, \text{ where } P_n^i \text{ is the } i^{th} \text{ copy of } P_n \text{ and } C_4^j \text{ is the } j^{th} \text{ copy of } C_4 \text{ in } C_4 \text{ x } P_n \text{ and } |V(G)| = 4n.$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let $D^{'}=\{\ v_{31}\}\cup [\bigcup_{i=1}^{\frac{n-1}{2}}\{v_{1,2i,}v_{4,2i},v_{3,2i+1}\}]\cup [\bigcup_{i=1}^{n}\{v_{2i}\,\}].$

Then $|D^{'}|=1+3\left(\frac{n-1}{2}\right)+n=\frac{5n-1}{2}$ and D=V(G) - $D^{'}$. Then D is a dominating set of G. Also <V (G)-D>=<D $^{'}$ > is a tree obtained from the path $P_n=<\left\{v_{2,i}i=1,2,3,\ldots,n\right\}>,\ (n\geq 2)$ by attaching P_3 at each of the vertices $v_{22},v_{24},v_{26},\ldots,v_{2,n-1}$ and attaching a pendant edge at each of the vertices $v_{21},v_{23},\ldots,v_{2,n}$. Therefore D is a ctd-set of G, and

$$\gamma_{ctd}(G) \ \leq |D| = |V(G) - D^{'}| = 4n - \left(\frac{5n-1}{2}\right) = \frac{3n+1}{2}.$$

Hence
$$\gamma_{\text{ctd}}(G) \leq \frac{3n+1}{2} = \left\lfloor \frac{3n+1}{2} \right\rfloor$$
.

Let D $^{'}$ be a $\gamma_{ctd}\text{-set}$ of G. The blocks A, B, A^2 and A^2B are constructed as given below.

G is obtained by concatenating the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}}$ B. The vertices with the symbol in each of the blocks represent the vertices to be included in D'

Therefore $D^{'}$ contains at least 3 vertices from each block A of $A^{\frac{n-1}{2}}$ and at least 2 vertices from block B.

Therefore
$$\gamma_{ctd}(G) = |D^{'}| \geq 2 + 3\left(\frac{n-1}{2}\right) = \frac{3n+1}{2} = \left\lfloor \frac{3n+1}{2} \right\rfloor$$

Hence
$$\gamma_{ctd}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor, n \ge 1.$$

 $\{v_{3,2i-1}\}\}\cup [\bigcup_{i=1}^n \{v_{2i}\}]$ and D=V(G)-D'. Then $|D'|=3\left(\frac{n}{2}\right)+n=\frac{5n}{2}$. Then D is a dominating set of G. Also $\{v_{2i}\}=v_{2i}=v$

$$D' = 4n - \left(\frac{5n}{2}\right) = \frac{3n}{2}.$$

Hence
$$\gamma_{\text{ctd}}(G) \leq \frac{3n}{2} = \left\lfloor \frac{3n+1}{2} \right\rfloor$$
.

Let $D^{'}$ be a γ_{ctd} -set of G.The block A is constructed as in Case 1.

Then $G \cong A^{\frac{n}{2}}$. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D'.

Therefore D' contains at least 3 vertices from each block A of $A^{\frac{n}{2}}$. Therefore $\gamma_{ctd}(G) = |D'| \ge 3\left(\frac{n}{2}\right) = \frac{3n}{2} = \left|\frac{3n+1}{2}\right|$.

Hence
$$\gamma_{ctd}(G) = \left\lfloor \frac{3n+1}{2} \right\rfloor, n \ge 1.$$

K. Theorem 2.5

If
$$G \cong C_5 \times P_n$$
, then $\gamma_{ctd}(G) = 2n$, $n \ge 3$.

L. Proof

Let $G \cong C_5 \times P_n$ and $V(G) = \bigcup_{i=1}^n \left\{ v_{1i}, v_{2i}, v_{3i}, v_{4i}, v_{5i} \right\}$ such that $\langle \{v_{i1}, v_{i2}, \dots, v_{in}\} \rangle \cong P_n^i$, i = 1, 2, 3, 4, 5 and $\langle \{v_{1j}, v_{2j}, v_{3j}, v_{4j}, v_{5j}\} \rangle \cong C_5^j$, $j = 1, 2, \dots, n$, where P_n^i is the i^{th} copy of P_n and C_5^j is the j^{th} copy of C_5 in $C_5 \times P_n$. |V(G)| = 5n.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

$$Let \; D = \begin{cases} [\bigcup_{i=1}^{\frac{n+1}{2}} \{v_{1,2i-1,} \, v_{5,2i-1}\}] \, \cup \, [\bigcup_{i=2}^{\frac{n-1}{2}} \{v_{3,2i,} v_{4,2i,}\}], \text{ if } n \text{ is odd} \\ \bigcup_{i=2}^{\frac{n}{2}} \{v_{1,2i-1,} \, v_{3,2i,} v_{4,2i,} \, v_{5,2i-1}\}, \; \text{ if } n \text{ is even}. \end{cases}$$

Then D is a dominating set of G and also <V(G) - D> is a tree obtained from the path $P_n = < \{v_{2,i}, i = 1, 2, 3, ..., n\} >$, $(n \ge 2)$ by attaching P_3 at each of the vertices $v_{21}, v_{22}, v_{23}, ..., and <math>v_{2,n}$ Therefore D is a ctd-set of G.

$$and \ |D| = \begin{cases} 2\left(\frac{n+1}{2}\right) + 2\left(\frac{n-1}{2}\right) = 2n, \ \text{if n is even} \\ 4\left(\frac{n}{2}\right) = 2n, & \text{if n is odd.} \end{cases}$$

Therefore $\gamma_{ctd}(G) \leq |D'| = 2n$.

Let $D^{'}$ be a γ_{ctd} -set of G. Since $\gamma(C_5)=2$, $D^{'}$ contains at least 2 vertices from each of n cycles and hence $D^{'}$ contains at least 2 n vertices. Therefore $\gamma_{ctd}(G)=|D^{'}|\geq 2n$.

Hence $\gamma_{ctd}(G) = 2n, n \ge 1$.

M. Theorem 2.6

If $G \cong C_6 \times P_n$, then $\gamma_{ctd}(G) = \left[\frac{5n}{2}\right]$, $n \ge 2$.

- 1) Proof.: Let $G \cong C_6 \times P_n$ and $V(G) = \bigcup_{i=1}^n \{v_{1i}, v_{2i}, v_{3i}, v_{4i}, v_{5i}, v_{6i}\}$ such that $\langle \{v_{i1}, v_{i2}, \dots, v_{in}\} \rangle \cong P_n^i$, i = 1, 2, 3, 4, 5, 6 and $\langle \{v_{1j}, v_{2j}, v_{3j}, v_{4j}, v_{5j}, v_{6j}\} \rangle \cong C_6^j$, $j = 1, 2, \dots, n$, where P_n^i is the i^{th} copy of P_n and C_6^j is the j^{th} copy of C_6 in $C_6 \times P_n$ and |V(G)| = 6n.
- 2) Case 1: n is odd.

 $LetD^{'} = [\bigcup_{i=1}^{\frac{n+1}{2}} \{v_{1,2i-1}, v_{5,2i-1}, v_{6,2i-1}\}] \cup [\bigcup_{i=1}^{n} \{v_{2i}\}] [\bigcup_{i=1}^{\frac{n-1}{2}} \{v_{3,2i}, v_{4,2i}\}].$

Then $|D^{'}| = 3\left(\frac{n+1}{2}\right) + n + 2\left(\frac{n-1}{2}\right) = \frac{7n+1}{2}$ and $D = V(G) - D^{'}$. Then D is a dominating set of G. Also $< V(G) - D > = < D^{'}>$ is a tree obtained from the path $P_n = < \left\{v_{2,i}, \ i = 1,2,3,\ldots,n\right\} >_i (n \ge 2)$ by attaching P_4 at each of the vertices $v_{21}, v_{23}, v_{25},\ldots,v_{2n}$ and attaching P_3 at each of the vertices $v_{22}, v_{24},\ldots,v_{2n-1}$. Therefore D is a ctd-set of G.

$$\gamma_{ctd}\big(G\big) \ \leq |D| = |V(G) - D^{'}| = 6n - \left(\frac{7n+1}{2}\right) = \frac{5n-1}{2}.$$

Hence $\gamma_{ctd}(G) \leq \frac{5n-1}{2}$.

Let D be a γ_{ctd} -set of G. The blocks A,B, A^2 and A^2B are constructed as given below.

Figure 4

G is obtained by coexatenating the blocks $A^{\frac{n-1}{2}}$ and B. That is, $G \cong A^{\frac{n-1}{2}}$ B. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D'.

Therefore $D^{'}$ contains at least 5 vertices from each block A of $A^{\frac{n-1}{2}}$ and at least 2 vertices from block B. Therefore $\gamma_{ctd}(G) = |D^{'}| \ge 5$ $\left(\frac{n-1}{2}\right) + 2 = \frac{5n-1}{2}$ and hence $\gamma_{ctd}(G) = \frac{5n-1}{2} = \left\lfloor \frac{5n}{2} \right\rfloor$.

Case 2: n is even.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

Let
$$D' = [\bigcup_{i=1}^{\frac{n}{2}} \{v_{1,2i-1}, v_{5,2i-1}, v_{6,2i-1}\}] \cup [\bigcup_{i=1}^{n} \{v_{2i},\}] [\bigcup_{i=1}^{\frac{n}{2}} \{v_{3,2i}, v_{4,2i}\}].$$

Then $|D^{'}| = 3\left(\frac{n}{2}\right) + n + 2\left(\frac{n}{2}\right) = \frac{7n}{2}$ and $D = V(G) - D^{'}$. Then D is a dominating set of G. Also $< V(G) - D > = < D^{'}>$ is a tree obtained from the path $P_n = < \left\{v_{2,i}, \ i = 1, 2, 3, ..., n\right\} >$, $(n \ge 2)$ by attaching P_4 at each of the vertices $v_{21}, v_{23}, v_{25}, ..., v_{2,n-1}$ and attaching P_3 at each of the vertices $v_{22}, v_{24}, ..., v_{2n}$. Therefore D is a ctd-set of G.

$$\gamma_{ctd}(G) \le |D| = |V(G) - D'| = 6n - \left(\frac{7n}{2}\right) = \frac{5n}{2}.$$

Hence
$$\gamma_{ctd}(G) \leq \frac{5n}{2}$$
.

Let D' be a γ_{ctd} -set of G. The block A is constructed as in Case 1.

Then $G \cong A^{\frac{n}{2}}$. The vertices with the symbol in each of the blocks represent the vertices that are to be included in D'.

Therefore D contains at least 5 vertices from each block A of $A^{\frac{n}{2}}$.

Therefore
$$\gamma_{ctd}(G) = |D'| \ge 5\left(\frac{n}{2}\right) = \frac{5n}{2}$$
 and hence $\gamma_{ctd}(G) = \frac{5n}{2} = \left|\frac{5n}{2}\right|$.

Hence
$$\gamma_{ctd}(G) = \left|\frac{5n}{2}\right|, n \ge 1.$$

N. Remark 2.2.

In view of Theorem 2.4, Theorem 2.5, Theorem 2.6, and Theorem 2.7,

1)
$$\gamma_{ctd}(C_3 \times C_n) = n+1, n \ge 2.$$

2)
$$\gamma_{\text{ctd}}(C_4 \times C_n) = \left\lfloor \frac{3n+1}{2} \right\rfloor + 1$$

3)
$$\gamma_{ctd}(C_5 \times C_n) = \begin{cases} 2n + 1, & \text{if n is even} \\ 2n, & \text{if n is odd.} \end{cases}$$

4)
$$\gamma_{ctd}(C_6 \times C_n) = \left\lfloor \frac{5n}{2} \right\rfloor + 1.$$

O. Remark 2.3.

- 1) If $G_1 \cong K_m$ and $G_2 \cong K_n$, then $\gamma_{ctd}(G_1 + G_2) = m + n-2$.
- 2) If G_1 and G_2 are any two noncomplete connected graphs of order m and n respectively, with minimum degree atleast two, then $\gamma_{ctd}(G_1+G_2) \leq m+n-4$. Equality holds, if $G_1 \cong K_m-e$, $G_2 \cong K_n-e$.
- For any two connected graphs G_1 and G_2 of order m and n respectively, $\gamma_{ctd}(G_1 \circ G_2) \le m + n 4$. Equality holds, if $G_1 \cong P_2$ and $G_2 \cong C_3$.

P. Distance Two Complementary tree domination number of Cartesian product of graphs

In the following, distance two complementary tree domination number of $K_m \times K_n$, $K_m \times P_n$

$$I) \quad \text{If } G \cong K_m \text{ x } K_n(m,n \geq 3 \text{ and } m \leq n), \text{ then } \gamma_{d2ctd}(G) = \begin{cases} m(n-2) + 1, \text{ if } m = n \\ m(n-2), & \text{ if } m < n \end{cases}$$

2) If
$$G\cong K_m$$
 x P_n ($4\leq m\leq n$), then $\gamma_{d2ctd}(G)=n$ $(m-2)$.

$$3) \quad \gamma_{d2ctd}(\ K_m\,x\ C_n) = n(m-2) + 1.$$

$$4) \quad \text{If $G\cong C_3$ x P_n, then $\gamma_{d2ctd}(G)=n$, $n\geq 1$.}$$

5) If
$$G \cong C_4 \times P_n$$
, then $\gamma_{d2ctd}(G) = \left| \frac{3n+1}{2} \right|, n \ge 1$.

$$6) \quad \text{ If } G\cong C_5 \text{ x } P_n \text{, then } \gamma_{d2ctd}(G)=2n, \, n\geq 3.$$

7) If
$$G\cong C_6$$
 x $P_n,$ then $\gamma_{d2ctd}(G)=\left|\frac{5n}{2}\right|,$ $n\geq 1.$

8)
$$\gamma_{d2ctd}(C_3 \times C_n) = n+1, n \ge 2.$$

9)
$$\gamma_{\text{d2ctd}}(C_4 \times C_n) = \left\lfloor \frac{3n+1}{2} \right\rfloor + 1$$

$$\label{eq:gamma_d2ctd} \textit{10)} \ \gamma_{d2ctd}(C_5\,x\,\,C_n) = \left\{ \begin{aligned} &2n\,+\,1, \ \ \text{if } n \ \text{is even} \\ &2n, \text{if } n \ \text{is odd.} \end{aligned} \right.$$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor :6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

11)
$$\gamma_{d2ctd}(C_6 x | C_n) = \left\lfloor \frac{5n}{2} \right\rfloor + 1, n \ge 2.$$

REFERENCES

- [1] M. El-Zahav and C.M. Pareek, Domination number of products of graphs, Ars Combin., 31 (1991),223–227.
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1972.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination ingraphs, Marcel Dekker Inc., New York, 1998.
- [4] S. Muthammai and G. Ananthavalli, Distance Two Complementary Tree Domination Number of a graph, International Journal For Research in Applied Science and Engineering Technology. (submitted
- [5] S. Muthammai and G. Ananthavalli, Complementary Tree Nil Domination Number of cartesian product of Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology.(submitted
- [6] S. Muthammai, P. Vidhya, Complementary tree domination in grid graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology, 2(3) (2011), 118–129
- [7] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publication, 38, 1962.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)