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Abstract: This research aims at studying the free vibration analysis of CNT reinforced functionally graded composite 
rectangular plate using higher order shear deformation theory. The equations of motion of the structural system are derived 
using the Hamilton’s principle. The vibration characteristics of the model in the closed form are obtained by using Navier’s 
method under simply supported boundary conditions. The fundamental frequency of FG-CNT reinforced composite rectangular 
plate under the given boundary conditions is presented for different aspect ratios. The present results are compared with the 
solutions of the other HSDTs available in the literature. It can be concluded that the proposed theory is accurate and efficient in 
predicting the vibration behaviour of FG-CNT plates. 
Keywords: Vibration Behavior, FG-CNT Plates, Effective Material Properties, HSDT, Navier’s Method. 

I. INTRODUCTION 
Functionally graded materials (FGMs) are multifunctional composites involving spatially varying volume fraction of constituent 
materials, thus providing a graded microstructure and macro-properties. CNT is an effective reinforcement material in the case of 
composite material developments, owing to its good physical and chemical properties. Guided by the concept of functionally graded 
(FG) materials, a class of new emerging composite materials, the FG-CNT reinforced composite, has been proposed making use of 
CNTs as the reinforcements in a functionally graded pattern. Using a powder metallurgy fabrication process, carbon-nanotube-
reinforced composites (CNTRCs) may be achieved with a non-uniform distribution of CNTs through the media. This type of 
reinforced composite media is known as functionally graded carbon-nanotube-reinforced composite (FG-CNTRC). This new type of 
FG-CNT reinforced composite will need further research so as to find out its mechanical properties. 
The advantages of FG-CNT include multi-functionality, ability to withstand at high pressures and in harsh environments, resistant to 
wear and tear and ability to remove stress concentrations. Using FG-CNT, intricate shapes can be easily produced and it has Cost-
effective manufacturing processes. FG-CNTs have wide applications in aerospace structures to withstand aero-thermal loads [4]. 
They are used as a reactor shield in nuclear reactors to reduce chemical corrosion and thermal stress and also as TBCs in 
combustion chambers. It is used in manufacturing the components of propulsion system, submarines, and for cutting tools. 

II. LITERATURE REVIEW 
The buckling, vibration, linear and nonlinear bending behaviours of FG-CNT reinforced composite structures have attracted much 
attention from researchers [7]. Using HSDT theory, L.W. Zhang et al.[3] studied the vibration analysis of FG-CNT reinforced 
composite plates subjected to in-plane loads based on State-space Levy method. Mohammad Rahim Nami et al.[7] investigated the 
free vibration of thick functionally graded carbon nanotube-reinforced rectangular composite plates based on three dimensional 
elasticity theory via differential quadrature method.Based on the first-order shear deformation plate theory, Zhu et al.[8] carried out 
bending and free vibration analyses of thin-to-moderately thick FG composite plates reinforced by single-walled carbon 
nanotubes.Results revealed the influences of the volume fractions of CNT and the edge -to- thickness ratios on the bending 
responses, natural frequencies and mode shapes of FG-CNTRC plates. A first known free vibration characteristics of functionally 
graded nano-composite triangular plates reinforced by single-walled carbon nanotubes (SWCNTs) is presented by L.W. Zhang et 
al.[9]. They studied the free vibration analysis of functionally graded carbon nanotube reinforced composite triangular plates using 
the FSDT and element-free IMLS-Ritz method. 
Liao-Liang Ke et al.[10] investigated the Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite 
beams. Based on Timoshenko beam theory and von Kármán geometric nonlinearity, the nonlinear free vibration of functionally 
graded nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) were studied. They also investigate the 
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effects of nanotube volume fraction, vibration amplitude, slenderness ratio, end supports and CNT distribution on the nonlinear free 
vibration characteristics of FGCNTRC beams. Yas et al. [11] investigated the three-dimensional vibration properties of FG-CNT 
reinforced composite cylindrical panels reinforced with single-walled carbon nanotubes. The results showed that the distribution and 
volume fractions of CNTs have a significant effect on normalized natural frequency. Heshmati et al. [12] studied the effects of 
carbon nanotube length, waviness, agglomeration and distribution on the vibration behaviour of functionally graded nano composite 
beams reinforced by carbon nanotubes. T. Kant and K. Swaminathan [13] presented the analytical formulations and solutions to the 
natural frequency analysis of simply supported composite and sandwich plates using higher order shear deformation theory. The 
equations are formulated using Hamilton’s principle and are solved by the Taylor’s series of Navier’s solution. 
The present paper deals with the analytical formulations and solutions for the vibration analysis of FG-CNT reinforced composite 
plate using higher order shear deformation theory (HSDT) without enforcing zero transverse shear stress on the top and bottom 
surfaces of the plate. The theoretical model presented herein incorporates the transverse extensibility which accounts for the 
transverse effects. Thus a shear correction factor is not required. The plate material is graded through the thickness direction. The 
plate’s governing equations and its boundary conditions are derived by employing the principle of virtual work. Solutions are 
obtained for FG-CNT reinforced composite plate in closed-form using Navier’s technique and solving the Eigen value equation. The 
present results are compared with the solutions of the other HSDTs available in the literature to verify the accuracy of the proposed 
theory in predicting the natural frequencies of FG-CNT reinforced composite plate. The effects of side-to-thickness ratios and 
volume fraction exponent on the natural frequencies are studied after establishing the accuracy of the present results for FG-CNT 
reinforced composite plate. 

III. FORMULATION OF THE EQUATIONS OF MOTION 
The FG-CNT reinforced composite plate shown in Fig.2 is studied in this investigation. The plate is subjected to simply supported 
boundary conditions. The length, width and thickness of the FG-CNT reinforced composite plate are a, band h respectively.Two 
types of distributions for the CNTs in the FG-CNT reinforced composite plates are studied, and these CNT configurations are 
displayed in Fig.1, where the uniform distribution and the other CNT distribution are denoted by UD and FGX respectively. In 
FGX, both the top and bottom surfaces of the plate are CNT-rich.  
The volume fractions of the three distribution types are expressed as follows: 

஼ܸே்(ݖ) =  ஼ܸே்
∗  , (UD)              

஼ܸே்(ݖ) =  ସ|௭|
ℎ ஼ܸே்

∗ ,(FGX)         

where ஼ܸே்
∗  =  ௠಴ಿ೅

௠಴ಿ೅ା(ఘ಴ಿ೅ ఘ೘)ି(ఘ಴ಿ೅ ఘ೘)௠಴ಿ೅⁄⁄  

in which ݉஼ே் is the fraction of mass of the CNTs, and ߩ௠ and ߩ஼ே் are densities of the matrix and CNTs. 

 
Fig.1 Schematic diagram of the two distributions of CNT. 

  
The effective Young's moduli and Poisson's ratio are calculated by 

ଵଵܧ = ଵߟ  ஼ܸே்( ݖ )ܧଵଵ஼ே் + ௠ܸ( ݖ )ܧ௠ 

.......... (1) 
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   .......... (2)  

ଵ߭ଶ =  ஼ܸே்
∗

ଵ߭ଶ
஼ே் +  ௠ܸ߭௠ 

߭ଶଵ =  ଵ߭ଶܧଶଶ ⁄ଵଵܧ  

where ܧଵଵ஼ே் , ܧଶଶ஼ே் and ܩଵଶ஼ே் are the elastic and shear moduli of the CNT. ܧ௠andܩ௠ are the corresponding properties of the 
isotropic matrix. Since the load transfer between the CNT and matrix is less than perfect, the CNT efficiency parameters 
ଷ are introduced to account for load transfer between the CNT and polymeric phases. ஼ܸே்ߟ ݀݊ܽ ଶߟ, ଵߟ  ܽ݊݀ ௠ܸare the volume 
fractions of the CNT and matrix, and their sum must be equal to 1, that is ஼ܸே் +  ௠ܸ = 1. 

A.Displacement model 
In formulating the higher-order shear deformation theory, a plate of  0 x  a ; 0  y  b and − ℎ

ଶ
 z  ୦

ଶ
  is considered as shown in 

the Fig.2.  

 
Fig.2Functionally graded plate with coordinates. 

In order to approximate 3D-elasticity plate problem to a 2D one, the displacement components   u (x, y, z), v (x, y, z) and w (x, y, z) 
at any point in the plate are expanded in terms of the thickness coordinate. The elasticity solution indicates that the transverse shear 
stress varies parabolically through the plate thickness. This requires the use of a displacement field, in which the in-plane 
displacements are expanded as cubic functions of the thickness coordinate. The displacement field which assumes w (x, y, z) 
constant through the plate thickness thus setting ߝ௭ = 0 is expressed as: 
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where, the parameters ݑ଴, ݒ଴, ݓ଴  denote the displacements of a point (x, y) on the mid-plane. The functions ߠ௫,ߠ௬ are rotations of 
the normal to the mid-plane about y and x axes, respectively. The parameters ݑ଴∗ , ,∗௢ݒ ,∗௫ߠ  ௬∗are the corresponding higher-orderߠ
deformation terms. 
In present work, analytical formulation and solution were obtained without enforcing zero transverse shear stress conditions on the 
top and bottom surfaces of the plate. In formulating the theory, the following assumptions are considered: 
1) The layers are perfectly bonded together. 
2) The material of each layer is linearly elastic and Orthotropic. 
3) Each layer is of uniform thickness.  

........ (3) 
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4) The strains and displacements are small. 

B. Strain- displacement Relations 
The higher-order theories introduce additional unknowns that are often difficult to interpret in physical terms. The third order theory 
with transverse inextensibility based on the displacement field is shown in Eq.(3). 
By substitution of the displacement relations in Eq.(3) in to strain displacement equations of the classical theory of elasticity the 
following relations are obtained: 
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C. Constitutive Relations 
Since ߝ௭ = 0, the transverse normal stress ߪ௭, although not zero identically, does not appear in the virtual work statement and hence 
in the equations of motion. Consequently, it amounts to neglecting the transverse normal stress. Thus we have, in theory, a case of 
plane stress. For an FG-CNT reinforced composite plate, the plane stress reduced elastic constants and the transformed plane stress 
reduced elastic constants will be same i.e., ܥ௜௝ =  ܳ௜௝. The linear constitutive relations for the coordinates (x-y-z)  are: 

   ൝
௫ߪ
௬ߪ
߬௫௬

ൡ
௅

=  ൥
ܳଵଵ ܳଵଶ 0
ܳଵଶ ܳଶଶ 0
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  ..........(3.b) 

   ቄ
߬௬௭
߬௫௭ቅ

௅
=  ൤ܳସସ 0

0 ܳହହ
൨
௅
ቄ
௬௭ߛ
௫௭ቅߛ

௅
 

whereߪ௫ ௬ߪ,  , ߬௫௬ , ߬௬௭ , ߬௫௭ are the stresses and ߝ௫  , ௬ߝ , ௬௭ߛ, ௫௬ߛ,  .௫௭ are the linear strains with respect to the local reference axesߛ
ܳ௜௝are the transformed plane stress reduced elastic constants in the plate axes of the composite plate.

 
 ܳଵଵ =  ாభభ

(ଵିజభమజమభ)
 ,   ܳଶଶ =  ாమమ

(ଵିజభమజమభ)
 ,  ܳଵଶ =  జమభாభభ

(ଵିజభమజమభ)
 , 

 ܳଷଷ = ଵଶ ,ܳସସܩ  = ଶଷ ,ܳହହܩ  =  ଵଷܩ 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                                        ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 

   Volume 5 Issue XI November 2017- Available at www.ijraset.com 
     

 
 

1412 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

where,  
 .௜௜ = Young’s modulus of elasticity in the i directionܧ
߭௜௝  = Poisson’s ratios that give strain in the j direction due to stress in the i direction. 
 .௜௝ = shear moduliܩ
 
D. Equations of motion 
The work done by actual forces in moving through virtual displacements, that are consistent with the geometric constraints of a 
body is set to zero to obtain the equations of motion and this is known as energy principle. It is useful in deriving governing 
equations, boundary conditions and obtaining approximate solutions by virtual methods. 
Governing equations of higher-order theory for Eq.(3) will be derived using the dynamic version of the principle of virtual 
displacements, i.e. 

0dt)KVU(
T

0

     .........(3.c) 

where, 
U = Virtual strain energy  
V = Virtual work done by applied forces  
K = Virtual kinetic energy 
U+V=total potential energy 
The virtual strain energy, work done and kinetic energy are given by 
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where, 
q = distributed load over the surface of the plate. 
0 = Density of plate material  

0u = u0 / t, 0v = v0 / t etc. indicates the time derivatives 

On substituting for U, V and K from Eq. (3.d) in to the virtual work statement in Eq. (3.c) and integrating through the thickness 
of the plate and rewriting in a matrix form which defines the stress/strain relations of the plate are given by:  
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Where, the in-plane force and moment resultants are defined as:  
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Transverse force resultants and the inertias are given by: 
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IV. ANALYTICAL SOLUTIONS 
Composite rectangular plates are generally classified by referring to the type of support used. The analytical solutions of the Eq. (7)  
(12) for simply supported FG-CNT plates are dealt here. Assuming that the plate is simply supported in such a manner that normal 
displacement is admissible, but the tangential displacement is not, solution functions that completely satisfy the boundary conditions 
in the equations below are assumed as follows:   
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for૙ ≤ ࢞ ≤ ૙; ࢇ ≤ ࢟ ≤  ࢈

The mechanical load is expanded in double Fourier sine series as: 

yxQyxq mn
nm

 sinsin),(
11









    ………. (5)
  

Where, 

a
m  and

b
n  andm and n are modes numbers, and ω is the natural frequency of the system. 

We may obtain the natural frequencies and vibration modes for the plate by solving the Eigen value problem ([S] – ω2[M]) X= 0, 
where X are the modes of vibration associated with the natural frequencies defined as ω. 

V. RESULTS AND DISCUSSIONS 
A. Comparative Study 
In this section, in order to validate the accuracy of the present higher-order shear deformation theory in predicting the frequencies of 
a simply supported functionally graded CNT reinforced composite plates, examples are presented and discussed. 
Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]} referred as PmPV  is selected as the matrix. The material 
properties of which are as follows: 

௠ܧ = ௠ߩ, ܽܲܩ 2.1 = 1.15
݃
ܿ݉ଷ ௠ߴ, = 0.34 

SWCNT (single-walled carbon nanotubes) are taken as the reinforcements and its properties are: 
ଵଵ஼ே்ܧ = ଶଶ஼ே்ܧ ,ܽܲܶ 5.6466 = 7.0800ܶܲܽ,  
ଵଶ஼ே்ܩ = 1.9445 ܶܲܽ, ଵ߭ଶ

஼ே் = 0.175 
andߩ஼ே் = 1400 ݇݃/݉ଷ  [15]. 
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The CNT efficiency parameters for different volume fractions are presented in TABLE I. It is assumed that the effective shear 
moduli ܩଵଷ = ଶଷܩ  = ଷߟ ݀݊ܽ ଵଶܩ  =  .ଶߟ 

TABLE I 
EFFICIENCY PARAMETERS OF SWCNTS [17] 
V*CNT η1 η2 η3 

0.11 0.149 0.934 0.934 
0.14 0.150 0.941 0.941 
0.17 0.149 1.381 1.381 

Presently computed results for different values of volume fraction and side-to-thickness ratios (a/h) are compared with those of 
L.W.Zhang et al.[3] (here considered to be the exact solution) and presented in Table II. 

For convenience, natural frequency ω has been non-dimensional zed as ഥ߱ =  ߱ℎටߩ௠ ௠ൗܧ . 

From Table II, it can be observed that the values are in agreement with L.W.Zhang et al.[3] in which the Reddy’s third order theory 
was used for the analysis purpose. 
 

TABLE II 

COMPARISON OF NON-DIMENSIONAL NATURAL FREQUENCY ( ഥ߱ =  ߱ℎටߩ௠ ௠ൗܧ ) SUBJECTED TO SINUSOIDAL 

LOADING 

Volume Fraction =0.11 
a/h = 5 a/h  = 10 

Present 
L.W.Zhang et 

al.[3] Present 
L.W.Zhang et 

al.[3] 
UD 0.886 0.890 1.372 1.373 

FG-X 0.906 0.923 1.487 1.489 
 

B. Parametric Study 
The variation of Fundamental frequency with the change in side-to-thickness ratio and for different CNT distributions at various 
volume fractions are presented in TABLE III. These results are plotted and compared with the standard values. 

 

Fig.3 Effect of aspect ratios on the non-dimensional natural frequency ( ഥ࣓ = ࢓ට࣋ࢎ࣓  ൗ࢓ࡱ ) of a FG-CNT plate at different volume 

fractions 

Fig.3 shows the variation of the non-dimensional natural frequency with respect to side-to-thickness ratios (a/h) for various 
distributions of CNT, according to present higher-order shear deformation theory. From this, it is clear that the effect of decreasing 
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frequencies is felt with the increase in a/h ratio for simply supported boundary conditions. The effect of shear deformation decreases 
with the increasing values of a/h and decreasing values of volume fractions. 

TABLE III 

NON-DIMENSIONAL NATURAL FREQUENCY ( ഥ࣓ = ࢓ට࣋ࢎ࣓  ൗ࢓ࡱ ) OF FG-CNT COMPOSITE PLATE FOR VARIOUS 

DISTRIBUTIONS AT DIFFERENT ASPECT RATIOS SUBJECTED TO SINUSOIDAL LOADING 
Side-to-thickness 

ratio 
Type of Distribution V = 0.11 V = 0.14 V = 0.17 

5 
UD 0.349878 0.361866 0.436903 

FG-X 0.361422 0.372078 0.449779 

10 
UD 0.135422 0.143636 0.168278 

FG-X 0.146744 0.153848 0.181821 

20 
UD 0.043290 0.047286 0.053502 

FG-X 0.049728 0.053946 0.061495 

50 
UD 0.007548 0.008436 0.009324 

FG-X 0.009341 0.001021 0.011100 

100 
UD 0.001998 0.002220 0.002442 

FG-X 0.002442 0.002664 0.002886 
 

 

Fig.4Comparison of non-dimensional natural frequency ( ഥ࣓ = ࢓ට࣋ࢎ࣓  ൗ࢓ࡱ ) of FG-CNT plate for different distributions at ࢀࡺ࡯ࢂ 
∗ =

૙.૚૚ and ࢀࡺ࡯ࢂ 
∗ = ૙.૚૝ 

 

Fig.5Comparison of non-dimensional natural frequency ( ഥ࣓ = ࢓ට࣋ࢎ࣓  ൗ࢓ࡱ ) of FG-CNT plate for different distributions atࢀࡺ࡯ࢂ 
∗ =

૙.૚ૠ 
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Fig.4 and Fig.5 shows the comparison of ഥ߱of FG-CNT plate for different distributions at various volume fractions. It is clear from 
these plots that X-distribution is more effective than the uniform distribution of CNT as the variation of ഥ߱ is consistent for FG-X. 

 

Fig.6Effect of volume fractions on the non-dimensional natural frequency ( ഥ߱ =  ߱ℎටߩ௠ ௠ൗܧ ) of a uniformly distributed FG-CNT 

plate for different values of aspect ratios 
 

In Fig.6 and Fig.7, it is observed that with the increase in a/h ratio, the value of fundamental frequency decreases and for a particular 
a/h value, with the increase in volume fraction of CNT, the value of fundamental frequency increases. 

 

Fig.7 Effect of volume fractions on the non-dimensional natural frequency ( ഥ߱ =  ߱ℎටߩ௠ ௠ൗܧ ) of a FG-X CNT reinforced 

composite plate for different values of aspect ratios 
 

It is also clear from the graph that the effect of side-to-thickness ratio increases the change in fundamental frequency. That is, the 
rate of change in fundamental frequency increases when we go to the higher values of a/h values. 
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VI. CONCLUSIONS 
Formulations and solutions for free vibration behaviour of FG-CNT reinforced composite plate is developed using the higher-order 
shear deformation theory considering the which account for transverse extensibility and without enforcing zero shear on the top and 
bottom of the FG-CNT plates. Hamilton’s principle is used in deriving the equations of motion. Closed form solutions are obtained 
for simply supported boundary conditions using Naviers method and solving the eigen value problem. The accuracy and efficiency 
of the present theory have been demonstrated in the results and discussions of the FG-CNT plates. The results are compared with the 
other higher order shear deformation theory and are in good agreement with those L.W. Zhang et al.[3] which are validated and 
confirmed to be accurate. Hence, the present results which are obtained using this theory can be used as reference for further studies. 
From the above, it can be concluded that the proposed theory is simple and accurate in analyzing the free vibration behavior of FG-
CNT composite plates. 
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