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Abstract: We consider M/M/1 queue with single vacation and multiple working vacation. We derive the stochastic decomposition 
structures of the stationary queue length and waiting time, and obtain the distribution of additional queue length and additional 
delay by using quasi birth and death process and matrix-geometric solution method. 
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I. INTRODUCTION 
In this paper, we consider M/M/1 queue with two vacation policies i.e single vacation and multiple working vacation. As a regular 
busy period ends, a vacation is taken, during which the server completely stops the service to any of the new arrivals. The server 
will enter into a working vacation if there are still no customers in the system when the vacation ends. During the working vacation, 
the server operates with variation in service rate but does not completely halts the service. On returning of the server from his 
working vacation and finds the system non-empty, the system will be resumed to a regular busy period, otherwise the server 
immediately goes for another working vacation. 
Queuing systems with vacations have been studied by various researchers for their profound applications in many real life situations 
such as telecommunication, computer networks, production systems, and so on. The survey papers of Doshi[1] and Teghem[2] the 
monograph of Takagi [3] and Tian and Zhang [4] acts as a reference for the readers. In these studies, it is assumed that the server 
completely ceases service during a vacation. However, there are many situations where the server does not remain completely 
inactive during a vacation. But provides service to the queue at a lower rate. This idea was first utilized by Servi and Finn [5] and 
introduced a class of semi vacation polices. This type of vacation is called a working vacation (WV). Servi and Finn [5]  analyzed 
M/M/1 queue with multiple working vacations policy and derived the PGF for the number of customers in the system and LST for 
waiting time distributions and utilized results to analyze the system performance of gateway router in fiber communication 
networks. Later M/M/1 with multiple working vacation model was also studied by Liu, Xu and Tian[6] to obtain explicit 
expressions of the performance measures and their stochastic decomposition by using the matrix-geometric method. Subsequently, 
by applying the same method, M/M/1 queue with single working vacation was analyzed by Tian and Zhao [7] and obtained various 
steady state indicators. Moreover, Kim, Choi and Chae [8], Wu and Takagi [9] and  Li et al. [10] extended the work of Finn [5] to an 
M/G/1/WV queue . Baba [11] first analyzed the GI/M/1 queue with general arrival process and multiple working vacations by 
utilizing the matrix-geometric solution method. Later, Li and Tian [12] investigated the GI/M/1 queue with single working vacation. 
Banik et al. [13] analyzed a GI/M/1/N queuing system with limited waiting space and working vacation. 
The model in this paper can be utilized for building server maintenance model. When the regular busy period ends, the server goes 
for a vacation in order to make the server maintenance. After the vacation period, if there are customers staying in the system, the 
server may resume to the regular service period for the more benefits. Otherwise, the server goes for the working vacation waiting 
for the arriving works, in which the server operates on the customers with a lower service rate in order to economize operation cost 
and energy consumption. The rest of the paper is organized as follows. In section 2, we provide the description of the model as a 
quasi-birth-death process and establish the rate matrix to ensure the existence of analytic solutions in various systems. In section 3, 
stationary queue length is obtained. Section 4 presents the stochastic decomposition structures for the queue length and waiting time 
of the customer. Finally the numerical examples are presented in section 5. 

II. MODEL DESCRIPTION 
A. The queuing system we consider here is described explicitly as follows 
1) Customer’s arrival to the system occurs according to the Poisson process with rate , and service times during a regular service 

period follow the exponential distribution with rate b . 
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2) The service times during a working vacation is exponentially distribution with rate v  ( v b  ).The durations of the 

vacation period and working vacation period are exponential distributed with mean  and ,respectively. 
3) The two vacation terminologies are described as follows: After a regular service period, the server goes for a vacation. If there 

are customers in the system at a vacation completion instant, the server immediately serve the customers i.e. it changes its 

service rate from v to b , and new regular busy period starts. Otherwise, the system enters into a working vacation. The 

server continues to take working vacation till it finds atleast one customer waiting in the queue at a vacation completion epoch, 
and another regular service period will start. 

4) We assume that the inter-arrival times, service times during a service period, service times during a working vacation Period, 
working vacation times and vacation times are mutually independent.In addition, the service discipline is First in First out. 

Let L(t) denote the number of customers in the system at  time t and 

0 the server is in the vacation period at time t,
( ) 1 the server is in the working vacation period at time t,

2 the server is in the regular service period at time t.
J t


 



 

Clearly the process  ( ( ), ( )), 0L t J t t   is a Markov chain with state space 

    (0,0)(0,1) ( , ) , 1, 2,..., 0,1, 2S k j k j    

Using the lexicographical order for the states, the infinitesimal generator for the Markov process can be written as a block-
partitioned matrix 

0,0 01

1,0 1 0

2 1 0

2 1 0

A A
A A A

Q A A A
A A A

 
 
 
 
 
 
 
   

 

where 

0,0

( )
0

A
  


  

   
, 0,1

0 0
0 0

A



 

  
 

, 10

0 0
0

0
v

b

A 


 
   
 
 

 

0A





 
   
 
 

, 1

( )
( )

( )b

A
  

   
 

  
     
   

 

2

0

v

b

A 


 
   
 
 

 

The matrix structure of Q indicates that the Markov Chain ( ( ), ( )), 0L t J t t   is a quasi birth and death process. To analyze the 

QBD process, we first need to get the rate matrix, denoted by R, which is the minimal non-negative solution of the matrix quadratic 
equation 

2
2 1 0 0R A RA A   (1)      

The following lemma presents the explicit soluion of R. 
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Lemma 1.If 1
b




 , the minimal non-negative solution of matrix equation (1) has the following expression: 

0

(1 )b

rR r
r

 





 
 
 
 
  
 

(2) 

 21 ) 4
2 v v v

v

r       


        (3) 

,      
b

 
 

  
 


 (4) 

Proof. Since the matrices 0A , 1A  and 2A  of (1) are all upper triangular, therefore the matrix R is upper triangular. Hence, we can 

consider that the matrix R has the same structure as 

11 12 13

22 23

33

r r r
R r r

r

 
   
 
 

 

Substituting 2R  and R into (1), we get  

11( ) 0r       

11 12 12 22 12( ) ( ) 0v vr r r r r         

11 13 12 23 13 33 11 12 13( ) ( ) 0b br r r r r r r r r                                      (5) 
2

22 22( ) 0v vr r          

22 23 23 33 22 23( ) ( ) 0b br r r r r r         
2

33 22( ) 0b br r        

From the above set of equations, we can obtain the minimal non-negative solution of (1) by using the fact that 
2 ( ) 0v vz z          has a unique root 

 21 ) 4
2 v v v

v

r       


        

in interval (0,1). Substituting 22r r  and 33r   into the fifth equation of (5), we get 23 (1 )b

rr
r







. From the first equation, 

we get 11r  
 

 


.Also from the third equation, we get 13r  by 11r  , 12 0r  and 33r  , then the proof is 

complete. 
Lemma 2.r satisfies the following expression 

(1 )
1v vr

r r
         


                        (6) 

Proof. From (5), rsatisfies the following equation  
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2 ( ) 0v vz z          

   Equivalently, we get  

1v r r
   


 

which completes the proof. Based on the modified method in section 1.5 of Neuts[14], for the infinitesimal generator Q, the QBD 

process  ( ( ), ( )), 0L t J t t    is ergodiciff the spectral radius sp(R) of the rate matrix R satisfies ( ) 1sp R   and  the linear system 

of equations 00 01 10 11 12( , , , , ) [ ] 0B R       has a positive solution, where 

00 01

10 1 2

( ) 0 0
0 0 0
0 0 ( ) 0 ( )[ ]
0 0

1
0 0 0

v

b b

A A
B R

A A RA
r r

   
 

   
 



 

  
  

             
 
  

(7)    

Lemma 3. The linear system of equations 00 01 10 11 12( , , , , ) [ ] 0B R       has a positive solution as follows 

01 00 10 00 11 00 12 00
(1 ) (1 ),    ,    ,   

b

r r
r

   
       

  
  

               (8) 

where 00  is a constant that can be determined by using the normalization condition. 

Proof. The matrix equation 00 01 10 11 12( , , , , ) [ ] 0B R       can be rewritten as 

00 12( ) 0b         

00 01 11 0v       

00 10( ) 0                             (9) 

01 11 0
r
    

10 11 12( ) 0
1 br
        


 

Solving the above set of equations in terms of 00 , we can obtain (8) and the proof is completed. 

From Lemmas (1) and (3), a necessary and sufficient condition for the QBD process to be positive recurrent is given as follows. 

Theorem 1.The QBD process ( ( ), ( )), 0L t J t t   is positive recurrent if and only if 1  . 

Proof.According to the section 1.5 of Neuts [14], the QBD process  ( ( ), ( )), 0L t J t t   is positive recurrent iff the spectral radius 

of rate matrix 
( ) ( , , ) 1sp R min r     

and the linear systems of equations  

00 01 10 11 12( , , , , ) [ ] 0B R       

hasa positive solution. By lemma 1 and lemma 3, it is clear that the above conditions are satisfied iff 1  . 

III. STATIONARY DISTRIBUTION OF QUEUE LENGTH 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                                ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 

   Volume 5 Issue XII December 2017- Available at www.ijraset.com 
     

560 ©IJRASET (UGC Approved Journal): All Rights are Reserved 

Let (L,J) be the stationary limit of the QBD process  ( ( ), ( )), 0L t J t t   and define 

   , lim ( ( ) , ( ) ,    ( , ) ,kj t
P L k J j L t k J t j k j S


        

0 00 01( , )    

0 1 2( , , ),     1k k k k k      

Theorem 2.If 1  , the joint probability distribution of (L,J) is 

0 00 ,    0k
k k    , 1 00

(1 ) ,    0,k
k

r r k
r

 



   

1 1
1 1

2 00
0 0

,    1
k k

j k j j k j
k

j jb

r k     


 
   

 

 
   

 
  (10) 

Where 
1

00 (1 )(1 )(1 ) (1 )(1 ) (1 )(1 )(1 ) (1 )
(1 )b

r r r r
r
       
  


 

              
 (11) 

Proof. By applying matrix geometric solution method [14], we obtain 
1

0 1 2 10 11 12( , , ) ( , , ) ,    1k
k k k k R k          (12) 

00 01 10 11 12( , , , , ) [ ] 0B R      (13) 

From (2), we get 
1

1

0

1
1

0

0

0
(1 )

0 0

k
k j k j

j

k
k k j k j

jb
k

rR r
r

   

  





 




 



 
 
 
 

   
 
 
  



 (14) 

Substituting the matrix expression 1kR   into (12) and noting that 00  can be derived by using the normalization condition and 

hence the proof is completed. 
From theorem 2, the probabilities that the server in various state are obtained as follows: 

0 00
0

1{the server is in the vacation period}
1k

k
P  







 
 (15) 

1 00
0

{the server is in working vacation period} k
k

P
r
 






  (16) 

1 00
1

{the server is in working regular service period}
(1 )(1 ) (1 )(1 )k

k b

P
r

  
   





 
       
    (17)                               

Where 00  is given by (11). 

IV. STOCHASTIC DECOMPOSITIONS 
In order to have a better comparison with the already existing models, we often try to decompose the quantities of interest into 
various factors. A stochastic decomposition property plays a vital role in vacation queuing models and points out the effects of 
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system vacation on its performance measures like queue length and sojourn time. We can try to do the same for the system under 
consideration. 

Theorem 3.If 1   and b v  , the stationary queue length L in system can be decomposed into sum of two independent 

random variables: 0 dL L L  , where 0L  is the queue length of the classical M/M/1 queue in steady state and follows a 

geometric distribution with parameter 1-   and the additional queue length dL  due to the effect of the two vacation policies has 

the following PGF 

* (1 ) (1 ) (1 )( ) (1 )(1 ) (1 )(1 )(1 ) 1 (1 )
1 1

v
d

v b

r z r zL z K r r r r
r r rz z

     
    

    
                 

  (18)                   

where 
1

* (1 )(1 )(1 ) (1 )(1 )(1 ) 1 (1 )v

v b

rK r r r r
r r

    
   


  

               
(19) 

Proof.  By theorem 2, the PGF of L can be written as  

0 1 2
0 0 1

( ) k k k
k k k

k k k
L z z z z  

  

  

      

= 00
1 1 1 1

1 1 1 1 1 1b

r z z
z r rz z z z rz

  
     

 
         

 

*1 1 1 1(1 )(1 ) (1 )(1 )
1 1 1

{ z r zK r r
z z r rz
    
  
   

     
  

 

   1 )(1 ) (1 )(1 )
1 1

}
b

z zr r
z rz


  

 
    

 
 

1 ( )
1 dL z

z







(20) 

Where 
1

* (1 )(1 ) (1 )(1 )(1 ) (1 ) (1 )
b

K r r r
r
     
 


 

           
 

(21) 

Note that 
1 (1 )(1 ) (1 ) ( ) ,
1 1

r z rz r r
rz rz

  
    

 
 

1 (1 )(1 ) (1 ) ( ) .
1 1

zz
z z
    
 
 

    
 

 

Therefore ( )dL z  takes the form 

 * 1 (1 )( ) (1 )(1 ) (1 )(1 ) (1 )( ) (1 )
1

{d
r zL z K r r r r

r z
     
 

 
          



(1 )(1 )(1 )( ) (1 )
1

}
b

z rr r
r rz
   
 

  
        

  (22) 

From (6), we ave 
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(1 )
v

b b

r r
r




 
 


(23) 

Using the above relation, we obtain 

*( ) (1 )(1 ) (1 )(1 )(1 )[dL z K r r r
r
 


       (1 ) (1 ) (1 )1 (1 )
1 1

]v

v b

r z r zr
r rz z

  
   

   
       

(24) 

From (21), *K  can be expressed as 

 
1
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(25) 

Hence the above relation shows that ( )dL z  is a PGF. 

Based on stochastic decomposition in theorem 4.1, we can easily obtain 
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(27) 

Theorem 4.If 1   and b v  , the stationary sojourn time S of an arrival can be decomposed into the sum of two independent 

variables: 0 dS S S  , where 0S  is the sojourn time of an arrival in a corresponding classical M/M/1 queue  and is exponentially 

distributed with parameter b -  and dS  is the additional delay with the LST given by 
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 (28)                                            
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Proof. The classical relation between the PGF of L and LST \cite{15}, of sojourn time S is  
*( ) ( (1 ))L z S z   

From theorem 4, we get  
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Taking 1 sz


   in (29), we obtain 
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From (25), we have  
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 (31)       

Therefore * ( )dS s  is a LST. 

We can easily obtain 
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(33)  

V. NUMERICAL RESULTS 
In this section, we present some numerical examples to investigate the effects of various parameters on the mean queue length and 
mean sojourn time. The main findings in this study are itemized as 

A. Figs. 5.1 (a) and 5.1 (b) demonstrates the impact of vacation service rate v  on the mean queue length and mean sojourn time 

with b =1,  =0.3 and  =0.4. If v  is fixed, it is obvious that, the higher rho is, the larger the mean queue length and mean 

sojourn time become. We also observe that increased v  leads to the smaller values of ( )E L and ( )E S . 

B. Assuming that b =1, v =0.3,  =0.4, Figs. 5.2 (a) and 5.2 (b) displays the variation of the mean queue length and mean 

sojourn time against   for different values of  . We can find that the mean queue length and mean sojourn time decrease and 
both converge to fixed constants as   increases, as we expect. 

C. In Figs. 5.3 (a) and 5.3 (b), we assume that b =1, v =0.3,  =0.3 and plot the mean queue length and mean sojourn time, 

with   varying for different values of rho. A similar property as the Figs. 5.2 (a) and 5.2 (b) can be found that the mean queue 
length and mean sojourn time both decrease and converges evidently to fixed constants as   increases. 
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D. Fig. 5.4 gives the comparison between M/M/1/SV+MWV, M/M/1 with single vacation and M/M/1 with multiple working 

vacation in terms of their mean queue length, with v  varying, where b =5,  =0.5,  =0.3,  =0.5. 

According to the numerical analysis of the mean queue length and mean sojourn time, we find that our queuing system has some 
reasonable practical implications. So, based on the particular problems, the service companies can choose the reasonable vacation 
rate, working vacation rate and service rate so that the companies can work more flexibly and effectively. 
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Figure 4 
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