

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 5 Issue: XII Month of publication: December 2017 DOI:

www.ijraset.com

Call: 🛇 08813907089 🕴 E-mail ID: ijraset@gmail.com

Strong LICT Domination in Graphs

M. H. Muddebihal¹, Nawazoddin U. Patel²

^{1, 2}Department of Mathematics Gulbarga University, Kalaburagi– 585106, Karnataka, INDIA

Abstract: For any graph G = (V, E), the Lict graph n(G) of a graph G is a graph whose set of vertices is the union of the set of edges and cutvertices of G in which two vertices are adjacent if and only if the corresponding edges of G are adjacent and the corresponding cutvertices are incident to the edges. For any two adjacent vertices u and v we say that u strongly dominates vif $deg(u) \ge deg(v)$. A dominating set D of a graph n(G) is a strong Lict dominating set if every vertex in V[n(G)] - D is strongly dominated by at least one vertex in D. Strong Lict domination number $\gamma_{Sn}(G)$ of G is the minimum cardinality of strong Lict dominating set of G. In this paper, we study graph theoretic properties of $\gamma_{Sn}(G)$ and many bounds were obtain in terms of elements of G and its relationship with other domination parameters were found.

Keywords: Dominating set/Line graph/Lict graph/Restrained domination/Edge Lict domination/ connected Lict domination/Strong split domination/Strong non split domination/Strong Lict domination. Subject Classification number.AMS - 05C69, 05C70.

I. INTRODUCTION

In this paper, all the graphs consider here are simple and finite. For any undefined terms or notation can be found in Harary [2]. In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices X and N(v) and N([v]) denote open (closed) neighborhoods of a vertex v. The minimum distance between any two farthest vertices of a connected G is called the diameter of G and is denoted by *diamG*.

A set $S \subseteq V(G)$ is a dominating set of G, if every vertex in V - S is adjacent to some vertex in S. The minimum cardinality of vertices in such a set is called the domination number of G and is denoted by $\gamma(G)$. A dominating set $S \subseteq V(G)$ is a connected dominating set, if the induced subgraph $\langle S \rangle$ has no isolated vertices. The connected domination number $\gamma_c(G)$ of G is the minimum cardinality of a connected dominating set of G. A dominating set S of a lictgraph is a restrained dominating set of n(G), if every vertex not in S is adjacent to a vertex in S and to a vertex in V[n(G)] - S. The restrained domination number of a lict graph n(G) is denoted by $\gamma_{rn}(G)$ is the minimum cardinality of a restrained dominating set in n(G). The concept of restrained domination in graphs was introduced by Domke [1] and further studied in graph valued functions by M.H.M.[10].

The concept of a dominating set D of a graph G is a strong split dominating set if the induced subgraph (V - D) is totally disconnected with at least two vertices. The strong split domination number $\gamma_{ss}(G)$ of graph G is the minimum cardinality of a strong split dominating set of G. Hence the concept of Strong Split Block domination was introduced by M.H. Muddebihal and Nawazoddin U. Patel(see[5]). A concept of a lict dominating set $D \subseteq V[n(G)]$ is said to be dominating set of n(G), if very vertex in V[n(G)] - D is adjacent to some vertex in D. The domination number of n(G) is denoted by $\gamma_n(G)$ and is the minimum cardinality of a dominating set in n(G). Analogously, the connected domination number in lict graph is as follows. A dominating set D of lict graph J = n(G) is connected dominating set, if the induced subgraph $\langle D \rangle$ is also connected .The connected domination number of n(G) is also connected .The connected domination number of n(G) is the minimum cardinality of a minimal connected dominating set in n(G) and is denoted by $\gamma_{nc}(G)$. The Lict domination and connected Lict domination in graphs, introduced by M.H. Muddebihal [8]. A set $D \subseteq V[L(G)]$ is said to be a line dominating set of L(G), if every vertex not in D is adjacent to atleast one vertex in D. The domination number of a dominating set in n(G). Analogously, we define edge domination number of n(G) is denoted by $\gamma_i(G)$ and is the minimum cardinality of a dominating set in L(G). Analogously, we define edge domination number in lictgraph . A set F of edges of lict graph J = n(G) is called edge dominating set of n(G) if every edge in E[n(G)] - F is adjacent to at least one edge in F. The edge domination number $\gamma'_n(G)$ of a graph n(G) is

the minimum cardinality of a edge dominating set in n(G). Hence The edge dominating set F is called connected edge dominating set of n(G), if the induced subgraph $\langle F \rangle$ is also connected. The connected edge lict domination number is denoted by $\gamma'_{nc}(G)$ see [8]. Further, edge domination, strong domination, strong split domination and strong non split domination in some graph valued functions were studied see [4,6,7 and 9].

A dominating set *D* of a graph B(G) is a strong nonsplit block dominating set if the induced subgraph $\langle V[B(G)] - D \rangle$ is complete. The strong nonsplit block domination number $\gamma_{snsb}(G)$ of *G* is the minimum cardinality of strong nonsplit block dominating set of *G*. Hence A dominating set *D* of a graph n(G) is a strong non split Lict dominating set if the induced subgraph $\langle V[n(G)] - D \rangle$ is complete. The strong nonsplitLict domination number $\gamma_{snn}(G)$ of *G* is the minimum cardinality of strong nonsplitLict dominating set of *G*. The concept of strongnonsplit Block domination was introduced by M.H. Muddebihal and Nawazoddin U. Patel(see[6]). The concept of strong domination was introduced by Sampath kumar and PushpaLatha in [11]. Given two adjacent vertices *u* and *v* we say that *u* strongly dominates *v* if deg $(u) \ge \deg(v)$. A set $D \subseteq V(G)$ is strong dominating set of *G* if very vertex in V - D is strongly dominated by at least one vertex in *D*. The strong domination number $\gamma_{sn}(G)$ of *G* is the minimum cardinality of a strong dominating set of *G*. A dominating set *D* of a graph n(G) is a strong Lict dominating set if every vertex in $\langle V[n(G)] - D \rangle$ is strongly dominated by at least one vertex in *D*. Strong Lict domination number $\gamma_{sn}(G)$ of *G* is the minimum cardinality of strong Lict dominating set of *G*.

In this paper, many bounds on $\gamma_{Sn}(G)$ were obtained in terms of elements of G but not the elements of n(G). Also its relation with other domination parameters were established.

The following figure shows the formation of lict graph n(G) and relation between $\gamma_{sn}(G)$ and diameter of G.

We need the following theorem for our further results.

Theorem A[3]. If G is non-trivial connected graph whose vertices have degree d_i and l_i be the number of edges to which cutvertex

$$C_i$$
 belongs in G, the lict graph $n(G)$ has $q + \sum C_i$ vertices and $-q + \sum \left(\frac{d_i^2}{2} + l_i\right)$ edges

II. MAIN RESULTS

Theorem 1. For any connected (p,q) graph $G, \gamma_{Sn}(G) \ge \left\lceil \frac{diam(G)+2}{5} \right\rceil$.

Proof.Let $S = \{e_1, e_2, e_3, \dots, e_n\} \subseteq E(G)$ be the set of edges which constitute the longest path between two distinct vertices $u, v \in V(G)$ such that d(u, v) = diam(G). Now, let $S_1 \subseteq E(G)$, $\forall e_i \in S_1$ has a maximum edge degree in G. Since $S_1 \subseteq V[n(G)]$ be the minimal set of vertices which covers all the vertices of n(G), then S_1 is a minimal dominating set of n(G). Further if $e_i \in S_1$,

deg $(e_i) \ge \deg(e_j)$ where $e_j \in V[n(G)] - S_1$, then S_1 is a minimal strong lict dominating set. It follows that $|S_1| \ge \left|\frac{S+2}{5}\right|$. Hence $\gamma_{Sn}(G) \ge \left\lceil \frac{diam(G) + 2}{5} \right\rceil$.

The next theorem gives a upper bound for $\gamma_{Sn}(T)$ in terms of the vertices and end vertices of G.

Theorem 2. For any (p,q) tree T, $\gamma_{Sn}(T) \le p - m$, where m is the number of endvertices in T. Equality holds if $T = K_{1,p}$ with $p \ge 2$ vertices.

Proof. If $diam(T) \leq 3$, then the result is obvious. Let diam(T) > 3 and $V_1 = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of all end vertices of T with $|V_1| = m$. Further $E' = \{e_1, e_2, e_3, \dots, e_j\}$; $C' = \{c_1, c_2, c_3, \dots, c_i\}$ be the set of edges and cutvertices in T. In n(G), $V[n(T)] = E'(T) \cup C'(T)$ and in $T \forall e_i$ incident with C_j , $1 \leq j \leq i$ forms a complete induced subgraph as a block in n(T). Hencethe number of blocks in n(T) = |C'|. Let $\{e_1, e_2, e_3, \dots, e_j\} \in E'(T)$ which are nonendedges of G forms a cutvertices $C_1 = \{c_1, c_2, c_3, \dots, c_j\}$ in n(T). Suppose $C_2 \leq C_1$. $deg(C_k) \geq deg(C_n) \forall C_k \in C_2$ and $\forall C_n \in V[n(T)] - C_2; 1 \leq k \leq j$. Then $\langle C_k \rangle$ forms a minimal strong dominating set of n(T). Thus $|C_2| = \gamma_{Sn}(T)$. For any nontrivial tree p > q and $|C_2| \leq p - m$ which gives $\gamma_{Sn}(T) \leq p - m$. Further equality holds if $T = K_{1,p}$ then $n(K_{1,p}) = K_{p+1}$ and $\gamma_{Sn}(K_{1,p}) = p - m$.

The following theorem gives lower bound in terms of lict domination.

Theorem 3. For non-trivial connected (p,q) graph G, $\gamma_{s_n}(G) \ge \gamma_n(G)$.

Proof. Let $E_1 = \{e_1, e_2, e_3, \dots, e_n\} \subseteq E(G), \deg(e_i) \ge 3; 1 \le i \le n$ and $E_2 = E(G) - E_1$. Since $V[n(G)] = E_1 \cup E_2 \cup C, \forall v_i \in C$ is cutvertex G. Then there exists a minimal set $E_1^{'} \subseteq E_1$ which cover all the vertices of n(G). Clearly E' forms a minimal γ - set of G. If $\deg(e_j) \ge \deg(e_k), e_k \in V[n(G)] - E_1^{'}$, then $E_1^{'}$ itself is a γ_{Sn} - set. Otherwise, there exist $e_j \in E_2^{'} \subseteq E_2$ such that $E_1^{'} \cup E_2^{'}$ forms a minimal strong dominating set of n(G). Hence $|E_1^{'} \cup E_2^{'}| \ge |E_1^{'}|$ which gives $\gamma_{Sn}(G) \ge \gamma_n(G)$.

For equality, we can give at least one graph such as, if $G = K_P$, $\gamma_{Sn}(G) = \gamma_n(G)$.

Now we can extend this result for the connected domination in lict graph.

Theorem 4. For any acyclic (p,q) graph $G, \gamma_{Sn}(G) \ge \gamma_{nc}(G)$.

Proof.From the above Theorem, if $\langle E_1^{'} \rangle$ is connected, then the result is true.Otherwise, consider the set $E_3 \subset V[n(G)] - E_1^{'}$ which gives $\langle E_1^{'} \cup E_3 \rangle$ connected. Hence $|E_1^{'} \cup E_2| \ge |E_1^{'} \cup E_3|$ which gives $\gamma_{Sn}(G) \ge \gamma_{nc}(G)$.

Theorem 5.For any acyclic (p,q) graph G, $\gamma_{Sn}(G) + \gamma(G) + m(G) \le p + \gamma_c(G)$, where m(G) is the maximum number of end vertices of G.

Proof. Let $F' = \{v_1, v_2, v_3, \dots, v_m\} \subseteq V(G)$ be the set of all endvertices in *G* with |F'| = m. Further, Let $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in *G*. Suppose there exists a minimal set of vertices $S' = \{v_1, v_2, v_3, \dots, v_k\} \subseteq V(G)$ such that $N[v_i] = V(G)$, $\forall v_i \in S'$, $1 \le i \le k$. Then *S'* forms a minimal dominating set of *G*. Suppose the sub graph $\langle S' \rangle$ has exactly one component. Then *S'* is itself is a connected dominating set of *G*. Otherwise, if *S'* has more than one component, then attach the minimal set of vertices *S''* of V(G) - S' which are in every u - w path, $\forall u, w \in S$ gives a single component $S_1 = S' \cup S''$. Clearly, S_1 forms a minimal $\gamma_c - set$ of *G*.

Suppose $D = \{v_1, v_2, v_3, \dots, v_m\} \subseteq V[n(G)]$ and $\deg(v_m) \ge \deg(v_k), \forall v_k \in V[n(G)] - D$ and $\forall v_m \in D$ such that $N[v_m] = V(n(G))$. Then D forms a strong dominating set of n(G). Hence it follows that $|D| \cup |S'| \cup |F'| \le |V(G)| \cup |S_1|$. . Clearly $\gamma_{Sn}(G) + \gamma(G) + m(G) \le p + \gamma_c(G)$.

We need the following theorem to establish the relation between strong lict domination and edge lict domination.

Theorem A[3]. If G is non-trivial connected graph whose vertices have degree d_i and l_i be the number of edges to which

cutvertex C_i belongs in G, the lict graph n(G) has $q + \sum C_i$ vertices and $-q + \sum \left(\frac{d_i^2}{2} + l_i\right)$ edges.

Now we have the following theorem.

Theorem 6. For any acyclic (p,q) graph G, $\gamma_{Sn}(G) \leq \gamma'_{n}(G)$.

Proof.Let $D = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V[n(G)]$ with min $[\Delta\{n(G)\}]$. Suppose there exists a set $D \subseteq D$ with $diam(u, v) \ge 3, \forall u, v \in D'$ which covers all the vertices inn(G). Then D' forms strong lict dominating set of n(G). By Theorem

A,
$$\left|-q + \sum_{i=1}^{n} \left(\frac{d_i^2}{2} - l_i\right)\right| > \left|D'\right|$$
, and let $E' \subseteq E[n(G)], \forall e_i \in E'$ is adjacent to at least one edge of $E[n(G)] - E'$. Thus E' is a

$$\gamma'_{n}(\mathbf{G}) - set$$
. Hence $|E'| \ge |D'|$ gives $\gamma_{Sn}(\mathbf{G}) \le \gamma'_{n}(\mathbf{G})$.

Next we can extended this result for the connected edge domination in lict graph.

Theorem 7. For any connected (\mathbf{p},\mathbf{q}) graph G, $\gamma_{Sn}(G) + \gamma'_n(G) \ge \gamma'_{nc}(G) - 3$.

Proof. Let $F' = \{q_1, q_2, q_3, \dots, q_n\}$ be a minimal edge dominating set of n(G), if H = E[n(G)] - F' and $F'_1 = \{q_1, q_2, q_3, \dots, q_i\}; \forall q_i \in E[n(G)]$, such that $F'_1 \in N(F')$ and $H \subset F'_1$ in n(G). Then $\langle F' \cup H \rangle$ is connected. Then $\{F' \cup H\}$ is a connected edge dominating set of n(G). Clearly $|F' \cup H| = \gamma'_{nc}(G)$.

Suppose $F_1 = \{e_1, e_2, e_3, \dots, e_n\}$ be an edge dominating set of G_1 , and let $D_1 = \{v_1, v_2, v_3, \dots, v_n\}$ be the minimal dominating set of n(G). Since $F_1 \in V[n(G)]$ which is also a dominating set of n(G). Then $F_1 = D_1$ and $|D_1| = \gamma[n(G)]$. In n(G), let $F_2 = \{v_1, v_2, \dots, v_m\} \subseteq V(n(G))$ and there exists $D \subseteq F_2$ be the set of vertices with N[D] = V(n(G)) and $\forall v_k \in \langle V(n(G)) - D \rangle$, deg $(v_k) \leq \deg(v_j)$ where $\forall v_j \in D$. Then D forms a strong lict dominating set of G. Otherwise, there exists at least one vertex $\{v\} \in V(n(G)) - D$ such that deg $(v) > \deg(v_j), \forall v_j \in D$. Clearly $D \cup \{v\}$ forms a minimal $\gamma_{s_n} - set$ of G. Thus $|F'| \cup |D \cup \{v\}| \geq |F' \cup H| - 3$. Hence $\gamma_{s_n}(G) + \gamma'_n(G) \geq \gamma'_{nc}(G) - 3$. The following theorem relates $\gamma_{s_n}(T)$ and $\gamma_{ssb}(T)$.

Theorem 8. For any connected (p,q) tree T with $p \ge 4$, then $\gamma_{sn}(T) \le \gamma_{ssb}(T)$.

Proof.Suppose $B(T) = K_n$. Then by definition of strong split domination, $\gamma_{ssb}(T) - set$ does not exist. Hence $B(T) \neq K_n$. Let $A = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of T and $M = \{b_1, b_2, b_3, \dots, B_n\}$ be the block vertices in B(T) corresponding to the blocks of A.

Let $\{B_i\} \subset A$ such that each B_i is an non end block of T. Then $\{b_i\} \subseteq V[B(T)]$ which are vertices corresponding to the set $\{B_i\}$. Since each block is complete inB(T). Again we consider a subset $\{b_i^1\}$ such that $\{b_i^1\} \subset V[B(T)] - \{b_i\}$. Suppose there consists at least one edge then $V[B(T)] - \{b_i^1 \cup b_i\} = \{b_k\}$ where each element of b_k is an isolates. Then $|\{b_i^1 \cup b_i\}| = \gamma_{ssb}(T)$. If $b_i^1 = \emptyset$, then $V[B(T)] - \{b_i\}$ give at least two isolates such that $|b_i| = \gamma_{ssb}(T)$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue XII December 2017- Available at www.ijraset.com

Now Suppose let $F = \{e_1, e_2, e_3, \dots, e_n\}$ be an edge dominating set of T and $C = \{c_1, c_2, c_3, \dots, c_n\}$ be the set of cut vertice sin T. Let $D' = \{v_1, v_2, v_3, \dots, v_n\}$ be the minimal dominating set of n(T) corresponding to F and $|D'| = \gamma[n(G)]$. If for some $c_i \in C$ such that $c_i \notin D'$ in n(T), then $D' = F \cup \{c_i\}$. Otherwise D' = F. Further, let $H = \{u_1, u_2, u_3, \dots, u_i\}$ for some $u_i \in V[n(T)], H \in N(D')$ and $H \subseteq V[n(T)] - D'$. Now we consider $H' \subset H$ such that $\langle D' \cup H' \rangle$ is the minimal strong lict dominating set of n(T). Clearly it follows that $|D' \cup H'| \leq |b_i|$, which gives $\gamma_{Sn}(T) \leq \gamma_{ssb}(T)$.

Theorem 9. For any connected (p,q) tree $T_{\gamma_{sn}}(T) \le \gamma_{ss}(T)$.

Proof.let S_1 be a maximum independent set of vertices in T and $S_2 \subseteq S_1 \forall v \in \langle S_2 \rangle$ is isolates. Then $(V - S_1) \cup S_2$ is a strong split dominating set of T. Since for each vertex $v \in (V - S_1) \cup S_2$ either v is an isolated vertex in $\langle (V - S_1) \cup S_2 \rangle$ or there exists a vertex $u \in S_1 - S_2$ and v is adjacent to $u, (V - S_1) \cup S_2$ is minimal. Since S_1 is maximum, $(V - S_1) \cup S_2$ is minimum. Thus $|(V - S_1) \cup S_2| = \gamma_{ss}(T)$.Let $F' = \{e_1, e_2, e_3, \dots, e_n\} \subseteq E(T)$.In $n(T), D' = \{v_1, v_2, v_3, \dots, v_n\}$ which corresponds to $\forall e_i \in F'$. Let deg $(e_i), \forall e_i \in F'$ and deg $(e_j) \forall e_j \in E(T) - F'$ such that deg $(e_i) \ge deg(e_j)$. Suppose $D'' = \{v_1, v_2, v_3, \dots, v_i\} \subseteq D'$ and $N[v_k] = V(n(G)), \forall v_k \in D'', 1 \le k \le i$. Then D'' forms a $\gamma_{sn} - set$. It follows that $|D''| \le |(V - S_1) \cup S_2|$. Hence $\gamma_{sn}(T) \le \gamma_{ss}(T)$.

Now next theorem gives a upper bound for $\gamma_{Sn}(T)$ in terms of the edges of T.

q-1

Theorem 10. For any (p, q) tree T with $p \ge 3$, $\gamma_{Sn}(T) \le q - 1$.

Proof.we consider the following cases.

Case 1: Suppose T is a path with $p \ge 3$ vertices. Then

$$\gamma_{sn} = \left\lfloor \frac{p-1}{2} \right\rfloor \text{ if } p \text{ is even.}$$

$$\gamma_{sn} = \left\lfloor \frac{p}{2} \right\rfloor \text{ if } p \text{ is odd}$$

Since $\left\lfloor \frac{p-1}{2} \right\rfloor \le q-1 \text{ and } \left\lfloor \frac{p}{2} \right\rfloor \le$

Then one can easily claim that $\gamma_{Sn}(T) \leq q-1$.

Case 2: Suppose *T* is not a path. Then there exists at least one vertex of degree at least three. Let $A = \{e_1, e_2, e_3, \dots, e_n\}$ be the set of all end edges in *G*, $B = \{e_1, e_2, e_3, \dots, e_m\}$ a set of non end edges. Now we consider $B_1 = \{e_1, e_2, e_3, \dots, e_n\} \subseteq B \quad \forall e_i \in B_1, 1 \leq j \leq k$ have the maximum edge degree and $B_2 = \{e_1, e_2, e_3, \dots, e_p\} \subseteq B$ $\forall e_l \in B_2, 1 \leq l \leq p$ are the edges which are adjacent to the edges of B_1 . Since $E(T) - [\{B_1\} - B_2]$ is a $\gamma_{sn} - set$ in n(T), then it is easy to verify that $|E(T) - [\{B_1\} - \{B_2\}]| \leq |E(G)| - 1$, which gives $\gamma_{sn}(T) \leq q - 1$.

Theorem 11. For any connected (p,q) graph $G_{\gamma_{Sn}}(G) \le \gamma(G) + \gamma_{l}(G) - 1$.

Proof. Suppose $S' = \{v_1, v_2, v_3, \dots, v_i\} \subseteq V(G)$ be the set of vertices with $\deg(v_i) \ge 2$, suppose exists a set $S_1 \subseteq S'$ of vertices with $dist(u, v) \ge 3, \forall u, v \in S_1$ which covers all the vertices in G. Then S_1 forms a dominating set of G. Otherwise, if diam(u, v) < 3, then there exists at least one vertex $x \notin S_1$ such that $S'' = S_1 \cup \{x\}$ form a minimal $\gamma - set$ of G. Hence $|S''| = \gamma(G)$. Let $C' = \{v_1, v_2, \dots, v_j\} \subseteq V(L(G))$ be the set of vertices with $dist(u, v) \ge 3$. Suppose there exists a set $D' \subseteq C'$ which

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor:6.887 Volume 5 Issue XII December 2017- Available at www.ijraset.com

covers all the vertices in L(G). Then D' itself is a line dominating set of G. If dist(u,v) < 3 and $N[D'] \neq V(L(G))$, then $D'' = D' \cup \{w\}$, where $w \notin N[v]$, $v \in D'$ forms a minimal dominating set of L(G). Hence $|D' \cup \{w\}| = \gamma_i(G)$. Further, let $F' = \{e_1, e_2, e_3, \dots, e_i\}$ be an edge dominating set of G and $C' = \{c_1, c_2, c_3, \dots, c_i\}$ be the set of cut vertice sin G. In n(G), $\{F_1 \cup C_1\} \subseteq V[n(G)]$ such that $N[\{F_1 \cup C_1\}] = V[n(G)]$ where $F_1 \subseteq F', C_1 \subset C'$ form a minimal dominating set of n(G). Suppose $deg(v_i) \ge deg(u_i) \quad \forall v_i \in \{F_1 \cup C_1\}, \forall u_i \in V[n(G)] - \{F_1 \cup C_1\}$. Then $\{F_1 \cup C_1\}$ is a strong dominating set of n(G). Hence $|F_1 \cup C_1| \le |S''| + |D' \cup \{w\}| - 1$ gives $\gamma_{Sn}(G) \le \gamma(G) + \gamma_i(G) - 1$.

The following theorem relates cutvertices of tree T and $\gamma_{s_n}(T)$.

Theorem 12. For any tree *T* with *K* number of cutvertices, then $\gamma_{Sn}(T) \leq K$. Further equality holds if $T = K_{1,p}$, $p \geq 3$.

Proof. Let $H = \{v_1, v_2, ..., v_n\} \subseteq V(T)$ be the set of all cutvertices in T with |H| = K. Further, let $E = \{e_1, e_2, ..., e_k\}$ be the set of edges which are incident with the vertices of H. Now by the definition of lict graph, suppose $D' = \{u_1, u_2, ..., u_n\} \subseteq E(T)$ be the set of vertices which covers all the vertices in n(T), deg $(u_k) \ge \deg(u_n)$ where $\forall u_k \in D'$ and $u_n \in V[n(T) - D']$. Clearly D' forms a minimal strong lict dominating set of n(T), which gives $|D'| \le |H|$. Hence $\gamma_{Sn}(T) \le K$.

Theorem 13. For any non trivial (p,q) tree *T*, every cutvertex of n(T) which is incident to end blocks is in every $\gamma_{Sn}(T) - set$.Proof. Let $C = \{v_1, v_2, ..., v_n\} \subseteq V[n(T)]$ be the set of all cutvertices which are incident to the end blocks. Suppose $D \subseteq C$ be the set of cut vertices with N[D] = V[n(T)] and deg $(u) \ge \deg(v), \forall u \in D, v \in V[n(T) - D$. Then *D* forms a strong minimal dominating set of n(T). Suppose $B = \{B_1, B_2, B_3, ..., B_m\}$ be the set of blocks in n(T). $D' \subset D$ and $\forall v_i \in D'$ is adjacent to $\forall v_j \in B$. Then *D'* is a proper subset of cut vertices of *D*. Hence *D'* is in every $\gamma_{Sn}(T) - set$ of n(T).

In the following theorem, we establish the relation between $\gamma_{Sn}(G)$ and $\gamma_{Snn}(G)$.

Theorem 14. For any (p,q) graph G, $\gamma_{Sn}(G) \leq \gamma_{Snn}(G)$.

Proof. Let $E = \{e_1, e_2, e_3, \dots, e_m\}$ and $C(G) = \{c_1, c_2, c_3, \dots, c_n\}$ be the edge set and cutvertexset of G. In n(G), $V[n(G)] = \{E \cup C\}$. Now $E_1 = \{e_1, e_2, e_3, \dots, e_i\} \subseteq E(G)$ with $deg(e_i) \ge 3 \ \forall e_i \in E_1$ and $E_2 = E(G) - E_1(G)$. Let V, V_1 and V_2 are the corresponding vertex set of E, E_1 and E_2 in n(G). Suppose $D_1 \subseteq V_2$ and $D = \{D_1\} \cup \{V_1\}$ is a dominating set of n(G). Then $deg(v) \ge deg(u), \forall v \in D$ and $u \in V[n(G)] - D$ forms a strong dominating set of n(G). If $\langle V[n(G)] - D \rangle$ is connected, then D itself is a strong non split lict dominating set. Otherwise, if $\langle V[n(G)] - D \rangle$ has at least be $\{f_1, f_2, f_3, ..., f_k\}$. Suppose two components let the components K > 2. Then $\{f_1, f_2, f_3, \dots, f_k\} \cup \langle V[n(G)] - D \rangle$ forms $\gamma_{Snn} - set$. If K = 2, then consider $v \in V[n(G)] - D$ such that $\{\mathbf{V}[n(\mathbf{G})] - D\} \cup \{v\} \text{ forms } \gamma_{Snn} - set \text{ . Hence } |D| \leq |\{\mathbf{V}[n(\mathbf{G})] - D\} \cup \{v\}| \text{ gives } \gamma_{Sn}(G) \leq \gamma_{Snn}(G).$ The following theorems relates restrained lict domination number of G and $\gamma_{s_n}(G)$.

Theorem 15. For any non-trivial connected (p,q) graph G with $G \neq C_5$, then

$\gamma_{Sn}(G) \leq \gamma_m(G) - 1.$

Proof.Since $G = C_5$, then $\gamma_{Sn}(C_5) = \gamma_m(C_5)$. Hence $G \neq C_5$. Suppose $E' = \{e_1, e_2, e_3, \dots, e_i\}$ and $C' = \{c_1, c_2, c_3, \dots, c_j\}$ be the set of edges and cutvertices in G. In n(G), $V[n(G)] = E'(G) \cup C'(G)$ and in $G \forall e_i$ incident with C_i , $1 \le j \le i$ forms an edge disjoint induced subgraph which is complete in n(G), such that the number of blocks in $n(\mathbf{G}) = |\mathbf{C}'|$. Let $\{e_1, e_2, e_3, \dots, e_j\} \in E'(\mathbf{G})$, are non end edges of \mathbf{G} which forms cutvertices $C'(G) = \{c_1, c_2, c_3, \dots, c_i\}$ in n(G). Let $C_1' \leq C'$ be a restrained dominating set in n(G), such that $|C_1'| = \gamma_m(G)$. Otherwise, let $D' = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V[n(G)]$ such that $\deg(u, v) \ge 2$, $\forall u \in V[n(G)] - D'$ and $\forall v \in D'$ and D covers all the vertices of n(G). Then D' forms a minimal restrained dominating set of n(G). Hence $|D'| = \gamma_m(G)$. let $H' = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V[n(G)]$ be the set of vertices such that $\{u_i\} = \{e_i\} \in E'(G), 1 \le i \le n$ where $\{e_i\}$ are incident with the vertices of E'(G). Suppose $D \subseteq H'$ be the set of vertices with deg $(w) \ge 3$ for every $w \in D$ such that N[D] = V[n(G)] and if $\forall v_i \in V[n(G)] - D$ with $\deg(v_i) > 3$. Then $\{D\} \cup \{v_i\}$ forms a strong lict dominating set. It follows that $|\{D\} \cup \{v_i\}| \le |C_1^{"}| - 1$ which gives $\gamma_{s_n}(G) \leq \gamma_m(G) - 1$ or $|\{D\} \cup \{v_i\}| \leq |D'| - 1$ gives $\gamma_{s_n}(G) \leq \gamma_m(G) - 1$. The following theorem relates $\gamma_{sn}(G)$ with $\gamma_{snsh}(G)$. Theorem 16. For any acyclic connected (p,q) graph G, $\gamma_{Sn}(G) \leq \gamma_{Snsb}(G)$. Proof. Suppose $G = K_{1,n}$ $n \ge 2$. Then $\gamma_{Sn}(G) = 1 = \gamma_{Snsb}(G)$. Now assume G is a path P_n $n \ge 2$, hence $\gamma_{Snsb} - set$ consists of $\{E(G)-1\}+\{C(G)-1\}$ elements and γ_{Sn} - set consists of either $\frac{P}{2}-1$ or $\left|\frac{p}{2}\right|$ elements. Clearly $\gamma_{Sn}(G) \le \gamma_{Snsb}(G)$.

Further, we consider a tree which is neither a star nor a path. Assume $\Delta(\mathbf{T}) \geq 3$, in $n(\mathbf{T})$ each block is complete and every cutvertex of $n(\mathbf{G})$ lies on exactly two blocks which are complete. Let $K = \{v_1, v_2, v_3, ..., v_n\}$ be a set of cutvertices with a maximum degree and $\forall v_i \in K$ are incident with $B_1, B_2, ..., B_m$ blocks which are complete. Suppose $M \subseteq K$ such that $\forall v_j \in \mathbf{V}[n(\mathbf{T})] - M$ is adjacent to at least one vertex of M and $\deg(v_j) \leq \deg(v_k) \ \forall v_k \in M$. Then M is a $\gamma_{Sn} - set$ of T. But in case of $\gamma_{Snsb} - set$, let $N = \{v_1, v_2, v_3, ..., v_p\}$ be the set of cutvertices of $n(\mathbf{T}), S = \{v_1, v_2, v_3, ..., v_j\}$ be the set of vertices lie on the corresponding blocks $B_1, B_2, ..., B_m$. Consider $S_1 \subset S$ such that $\mathbf{V}[n(\mathbf{T})] - \{N \cup S\} = J$ and its induced graph is complete. Hence |M| < |J| which gives $\gamma_{Sn}(\mathbf{T}) \leq \gamma_{Snsb}(\mathbf{T})$.

By considering these cases, we have $|M| \leq |J|$ which gives $\gamma_{Sn}(T) \leq \gamma_{Snsb}(T)$.

Corollary. For any graph G with exactly one cutvertex incident with at least two blocks and each vertex of each block is adjacent to a cutvertex, then that cutvertexis in γ_{sn} – set of G.

In the following result we prove the Nordhaus-Gaddum type results.

Theorem 17. Let G be any (p,q) graph G. If G and its complement \overline{G} are connected, then

$$\gamma_{Sn}(\mathbf{G}) + \gamma_{Sn}(\overline{\mathbf{G}}) \le (\mathbf{P}-1),$$

$$\gamma_{Sn}(\mathbf{G}).\gamma_{Sn}(\overline{\mathbf{G}}) \le (\mathbf{P}-1)^2.$$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887

Volume 5 Issue XII December 2017- Available at www.ijraset.com

REFERENCES

- [1] G.S.Domke, J.H.Hattingh, S.T.Hedetniemi, R.C.Laskar and L.R.Markus, Restrained domination in graphs, Discrete Mathematics, 203(1999), 61-69.
- [2] Harary, graph Theory, AdisonWesley, Reading mass, (1972)
- [3] V.R.Kulli, and M.H.Muddebihal, Lict Graph and Litact Graph, Journal of Analysis computational, vol.2, No.1, (2006), 33-43
- [4] S.L.Mitchell and S.T.Hedetniemi, Edge domination in tree.Congr.Numer.19(1977), 489-509.
- [5] M.H.Muddebihal and Nawazoddin U. Patel, Strong Split Block Domination in graphs, IJESR, 2(2014), 102-112.
- [6] M.H.Muddebihal and Nawazoddin U. Patel, Strong nonsplit Block Domination in graphs, IJRITCC, 3(2015), 4977-4983
- [7] M.H.Muddebihal and Nawazoddin U. Patel, Strong Line Domination in Graphs, IJCR, 8(10), October, 2016, 39782-39787
- [8] M.H.Muddebihal, Connected Lict domination in graphs UltraScientist 24(3),2012, 459-468
- [9] M.H.Muddebihal, Edge Lict Domination in graphs, Elixir Dis.Math.62(2013), 17425-17433
- [10] M.H.Muddebihal,RestrainedLict Domination in graphs,IJRET 03(05),May-2014,784-790
- [11] E.Sampathkumar and L.PushpaLatha. Strong Weak domination and domination balance in a graph. Discrete. Math., 161:1996, 235-242.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)