

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Issue: onferendelonth of publication: **Volume:** 2017 December 2017 DOI:

www.ijraset.com

Call: 008813907089 | E-mail ID: ijraset@gmail.com

Bipolar Multi-Fuzzy Subalgebra Of Bg-Algebra

R. Muthuraj^{1,} S. Devi²

¹PG and Research Department of Mathematics, H.H.The Rajah's College,Pudhukottai-622001,Tamilnadu, India ²Department of Mathematics, PSNA College of Engineering and Technology,Dindigul-624622 , Tamilnadu, India

Abstract: In this paper, we introduce the notion of bipolar multi-fuzzy subalgebra of BG-algebra by combining the two concepts of bipolar fuzzy sets and multi-fuzzy sets and discuss some of its properties. Also we define the level subsets positive t-cut and negative s-cut of bipolar multi –fuzzy BG-algebra and study some of its related properties.

Keywords : Bipolar fuzzy set , Multi-fuzzy set , BG-algebra, Fuzzy BG-subalgebra , Multi-fuzzy BG-subalgebra , Bipolar multifuzzy BG-subalgebra , positive t-cut, negative s-cut.

AMS Subject Classification (2010) : 06F35, 03G25, 08A72, 03E72.

I. INTRODUCTION

The notion of a fuzzy subset was initially introduced by Zadeh [8] in 1965, for representing uncertainity. In 2000, S.Sabu and T.V.Ramakrishnan [9,10] proposed the theory of multi-fuzzy sets in terms of multi-dimensional membership functions and investigated some properties of multilevel fuzziness. Theory of multi-fuzzy set is an extension of theory of fuzzy sets. Among these theories, a well-known extension of the classic fuzzy set is bipolar fuzzy set theory, which was pioneered by Zhang[11]. Bipolar fuzzy sets are an extension of fuzzy sets whose membership degree range is increased from the interval [0,1] to [-1,1]. In bipolar fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degrees on $(0,1]$ denotes that elements somewhat satisfy the property and the membership degrees on $[-1,0)$ means that elements somewhat satisfy the implicit counter-property. Although bipolar fuzzy sets and intuitionistic fuzzy sets look similar to each other, they are different sets.

Y.Imai and K.Iseki introduced two classes of abstract algebras: BCK algebras and BCI-algebras [1,2,3]. It is shown that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. J.Neggers and H.S.Kim [4] introduced a new notion, called a Balgebra. In 2005, C.B.Kim and H.S.Kim [5] introduced the notion of a BG-algebra which is a generalization of B-algebras. With these ideas, fuzzy subalgebras of BG-algebra were developed by S.S.Ahn and H.D.Lee[6]. In 2015, T.Senapati[7] introduced the concepts of bipolar fuzzy subalgebra in BG-algebra. In this paper, we introduce the notion of bipolar multi-fuzzy BG-subalgebra and discuss some of its properties.

II. PRELIMINARIES

In this section we site the fundamental definitions that will be used in the sequel.

A. Definition 2.1

Let X be a non-empty set. A multi-fuzzy set A in X is defined as as a set of ordered sequences:

A = { (x , $\mu_1(x)$, $\mu_2(x)$,......, $\mu_i(x)$,) : $x \in X$ }, where $\mu_i : X \to [0, 1]$ for all i.

- *1) Remarks*
- *a)* If the sequences of the membership functions have only k-terms (finite number of terms), k is called the dimension of A.
- *b*) The set of all multi-fuzzy sets in X of dimension k is denoted by $M^kFS(X)$
- c) The multi-fuzzy membership function μ_A is a function from X to $[0,1]^k$ such that for all x X, $\mu_A(x) = (\mu_1(x), \mu_2(x), \dots, \mu_k(x))$.
- *d)* For the sake of simplicity, we denote the multi-fuzzy set $A = \{(x, \mu_1(x), \mu_2(x), \ldots, \mu_k(x)) : x \in X\}$ as $A = (\mu_1, \mu_2, \ldots, \mu_k)$.

B. Definition 2.2

Let k be a positive integer and let A and B in M^kFS(X), where $A = (\mu_1, \mu_2, \dots, \mu_k)$ and $B = (\nu_1, \nu_2, \dots, \nu_k)$, then we have the following relations and operations :

- *1*) A \subseteq B if and only if $\mu_i \le v_i$, for all i=1,2,...........,k;
- *2*) $A = B$ if and only if $\mu_i = v_i$, for all i=1,2,...........k;
- *3*) A ∪ B = (μ_1 ∪ ν ₁, ..., μ_k ∪ ν_k) = {(x, max($\mu_1(x), v_1(x),$... max($\mu_k(x), v_k(x)$): x∈X}
- *4*) A \cap B = (($\mu_1 \cap v_1$, ..., $\mu_k \cap v_k$) = {(x , min($\mu_1(x), v_1(x)$), ..., $\min(\mu_k(x), v_k(x))$: $x \in X$ }
- *C. Definition 2.3*

Let X be a non-empty set. A bipolar fuzzy set φ in X is an object having the form $\varphi = \{ \langle x, \varphi^+(x), \varphi^-(x) \rangle : x \in X \}$ where $\varphi^+(x) : X$ \rightarrow [0,1] and $\varphi(x)$: X \rightarrow [-1,0] are the mappings.

We use the positive membership degree $\varphi^+(x)$ to denote the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set φ and the negative membership degree $\varphi(x)$ to denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar fuzzy set φ . If $\varphi^+(x) \neq 0$ and $\varphi^-(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for φ. If $\varphi^+(x) = 0$ and $\varphi^-(x) \neq 0$, it is the situation that x does not satisfy the property of φ but somewhat satisfies the counter-property of φ . It is possible for an element x to be such that $\varphi^+(x) \neq 0$ and $\varphi^-(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X.

D. Definition 2.4

Let X be a non-empty set. A bipolar multi-fuzzy set A in X is defined as an object of the form $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle : x \in X \}$ where $A_i^+(x) : X \rightarrow [0,1]$ and $A_i^-(x) : X \rightarrow [-1,0]$

The positive membership degree $A_i^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar fuzzy set A and the negative membership degree A_i (x) denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar fuzzy set A. If $A_i^+(x) \neq 0$ and $A_i^-(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for A. If $A_i^+(x) = 0$ and $A_i(x) \neq 0$, it is the situation that x does not satisfy the property of A but somewhat satisfies the counter-property of A. It is possible for an element x to be such that $A_i^+(x) \neq 0$ and $A_i^-(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X, where $i = 1, 2, \ldots$ n

E. Example 2.5

Let $X = \{1, m, n\}$ be a set. Then $A = \{1, 0.5, 0.6, 0.4, -0.3, -0.5, -0.6\}$, $\langle m, 0.8, 0.4, 0.2, -0.5, -0.8, -0.1\}$, $\langle n, 0.3, 0.2, 0.1, -0.7, -0.5, -0.8, -0.1\}$ $-0.6,-0.2>$ } is a bipolar multi-fuzzy set of X.

F. Definition 2.6

Non-empty set X with a constant 0 and a binary operation "∗ " is called a BG-algebra if it satisfies the following axioms:

- *1*) $x * x = 0$
- 2) $x * 0 = x$
- 3) $(x * y) * (0 * y) = x, \forall x, y \in X.$

G. Example 2.7

Let $X = \{ 0, 1, 2 \}$ be a set with the following table

Then $(X; *, 0)$ is a BG-algebra.

H. Definition 2.8

Let S be a non-empty subset of a BG-algebra X, then S is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.

I. Definition 2.9

Let μ be a fuzzy set in BG-algebra. Then μ is called a fuzzy subalgebra of X if

 $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}, \forall x, y \in X$.

II. BIPOLAR MULTI-FUZZY BG-SUBALGEBRA

In this section, the concept of bipolar multi-fuzzy subalgebra of BG-algebra is defined and their related properties are presented.

A. Definition 3.1

Let $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle / x \in X \}$ be a bipolar multi-fuzzy set in X, then the set A is bipolar multi-fuzzy BG-subalgebra over the binary operator ∗ if it satisfies the following conditions :

- *1*) $A_i^+(x * y) \ge \min \{ A_i^+(x), A_i^+(y) \}$
- 2) $A_i^-(x * y) \leq max \{ A_i^-(x), A_i^-(y) \}$

B. Example 3.2

Let $X = \{ 0,1,2,3 \}$ be a BG-algebra with the following cayley table

Let $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle \mid x \in X \}$ be a bipolar multi-fuzzy set defined by

A = { < 0 , 0.6, 0.7, 0.3, - 0.7,- 0.5, - 0.4 > , < 1, 0.5 , 0.4, 0.2 ,-0.5, -0.3, -0.2 >, < 2, 0.4, 0.3, 0.1, -0.4, -0.2, -0.1 >, < 3, 0.4, 0.3, 0.1, -0.4, -0.2, -0.1 > $\}$. Clearly, A is a bipolar multi-fuzzy BG-subalgebra in X.

C. Preposition 3.3

If $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle \mid x \in X \}$ is a bipolar multi-fuzzy subalgebra in X, then for all $x \in X$, $A_i^+(0) \ge A_i^+(x)$ and $A_i^-(0) \le A_i^+(x)$ $A_i(x)$.

1) Proof: Let $x \in X$.

Then $A_i^+(0) = A_i^+(x * x) \ge \min \{ A_i^+(x), A_i^+(x) \} = A_i^+(x)$ $A_i^-(0) = A_i^-(x * x) \leq max {\{A_i^-(x), A_i^-(x)\}} = A_i^-(x)$

D. Theorem 3.4

If a bipolar multi-fuzzy set $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle / x \in X \}$ is a bipolar multi-fuzzy subalgebra, then for all $x \in X$, $A_i^+(0 \ast)$ $x \ge A_i^+(x)$ and $A_i^-(0 * x) \le A_i^-(x)$.

1) Proof : Let $x \in X$

Then $A_i^+(0 * x) \ge \min \{ A_i^+(0), A_i^+(x) \}$ $=$ min { A_i⁺ (x * x), A_i⁺ (x)} \geq min { $\text{A}_{i}^{+}(x)$, $\text{A}_{i}^{+}(x)$ }, $\text{A}_{i}^{+}(x)$ } $=$ min { A_i⁺ (x), A_i⁺ (x)} $= A_i^+(x)$ $A_i^-(0 * x) \leq max \{ A_i^-(0), A_i^-(x) \}$ $=$ max{ A_i (x * x), A_i (x)} \leq max { $\text{A}_{i}^{(x)}(x)$, $\text{A}_{i}^{(x)}(x)$ }, $\text{A}_{i}^{(x)}(x)$ } $=$ max { A_i (x), A_i (x)} $= A_i(x)$

E. Theorem 3.5

Let $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle \mid x \in X \}$ and $B = \{ \langle x, B_i^+(x), B_i^-(x) \rangle \mid x \in X \}$ be two bipolar multi-fuzzy subalgebras of X. Then $A \cap B$ is a bipolar multi-fuzzy subalgebra in X.

1) Proof **:** Let $x, y \in A \cap B$ Then $x, y \in A$ and B. $A_i^{\dagger} \cap B_i^{\dagger} (x * y) = \min \{ A_i^{\dagger} (x * y), B_i^{\dagger} (x * y) \}$ \geq min { min { A_i⁺(x), A_i⁺(y)}, min { B_i⁺(x), B_i⁺(y)}} $=$ min { min { A_i⁺(x), B_i⁺(x)}, min { A_i⁺(y), B_i⁺(y)}} $=$ min { A_i⁺ $\bigcap B_i$ ⁺(x), A_i⁺ $\bigcap B_i$ ⁺(y)}

 $A_i \cap B_i(x * y) = max \{ A_i(x * y), B_i(x * y) \}$ \leq max { Max { A_i (x), A_i (y) }, max { B_i (x), B_i (y) } } $=$ max { Max { A_i (x), B_i (x)}, max { A_i (y), B_i (y)}} $=$ max { A_i \cap B_i (x), A_i \cap B_i (y) }

F. Preposition 3.6

The union of any set of bipolar multi-fuzzy subalgebras need not be a bipolar multi-fuzzy subalgebra .

G. Theorem 3.7

If $A = \langle A_i^+, A_i^- \rangle$ is a bipolar multi-fuzzy subalgebra of X, then $H = \{ x \in X / A_i^+(x) = 1, A_i^-(x) = -1 \}$ is either empty or a subalgebra of X.

1) Proof: If no element satisfies the conditions of H, then the set H is empty. If x and y \in H then $A_i^+(x) = 1$, $A_i^-(x) = -1$, $A_i^+(y)$ $= 1$, $A_i(y) = -1$.

Since A is a bipolar multi-fuzzy subalgebra of X, $A_i^+(x * y) \ge \min \{A_i^+(x), A_i^+(y)\} = \min \{1,1\} = 1$ and also $A_i^+(x * y)$ \leq 1

Therefore $A_i^+(x * y) = 1$

A_i $(x * y) \le \max \{ A_i(x), A_i(y) \} = \max \{-1, -1\} = -1$ and also A_i $(x * y) \ge -1$

Therefore $A_i(x * y) = -1$

Hence $x * y \in H$

Therefore H is a subalgebra of X.

H. Theorem 3.8

Let $A = \langle A_i^+, A_i \rangle$ be a bipolar multi-fuzzy subalgebra of X. If A_i^+ (x $*$ y) = 0 then either $A_i^+(x) = 0$ or $A_i^+(y) = 0$ for x and $y \in X$ If $A_i(x * y) = 0$ then either $A_i(x) = 0$ or $A_i(y) = 0$ for x and $y \in X$ *1) Proof*: Let $x, y \in X$. Then $A_i^+(x * y) \ge \min \{ A_i^+(x), A_i^+(y) \}$ i.e., $0 \ge \min \{ A_i^+(x), A_i^+(y) \}$ This implies that either $A_i^+(x) = 0$ or $A_i^+(y) = 0$ $A_i^-(x * y) \leq \max \{ A_i^-(x), A_i^-(y) \}$ i.e., $0 \leq \max \{ A_i^-(x), A_i^-(y) \}$

This implies that either $A_i^-(x) = 0$ or $A_i^-(y) = 0$

I. Theorem 3.9

If $A = \langle A_i^+, A_i^-\rangle$ be a bipolar multi-fuzzy subalgebra of X, then the set $H = \{ x \in X / A_i^+(x) = A_i^+(0) \text{ and } A_i(x) = A_i^-(0) \}$ is a subalgebra of X. *1) Proof* :Let **x**, **y** ∈ H Then $A_i^+(x) = A_i^+(y) = A_i^+(0)$ and $A_i^-(x) = A_i^-(y) = A_i^-(0)$ $A_i^+(x * y) \geq min \{ A_i^+(x), A_i^+(y) \} = min \{ A_i^+(0), A_i^+(0) \} = A_i^+(0)$ Also $A_i^+(x * y) \leq A_i^+(0)$ Therefore $A_i^+(x * y) = A_i^+(0)$ And A_i $(x * y) \le \max \{ A_i^-(x), A_i^-(y) \} = \max \{ A_i^-(0), A_i^-(0) \} = A_i^-(0)$ Also $A_i^-(x * y) \geq A_i^-(0)$ This implies that $A_i(x * y) = A_i(0)$ Therefore $x * y \in H$ H is a subalgebra of X.

III. LEVEL SUBSETS OF A BIPOLAR MULTI-FUZZY SET

In this section, the positive t-cut and negative s-cut of a bipolar multi-fuzzy set is defined and some properties are discussed.

A. Definition 4.1

Let $A = \{ \langle x, A_i^+(x), A_i^-(x) \rangle / x \in X \}$ be a bipolar multi-fuzzy subalgebra of X. For $s \in [-1,0]$ and $t \in [0,1]$, the set U $(A_i^+; t)$ $= \{ x \in X; A_i^+(x) \ge t \}$ is called positive t-cut of A and the set $L(A_i^-, t) = \{ x \in X; A_i^-(x) \le s \}$ is called negative s-cut of A.

B. Theorem 4.2

If $A = \langle A_i^+, A_i^>$ is a bipolar multi-fuzzy subalgebra of X, then the positive t-cut and negative s-cut of A are subalgebras of X.

1) *Proof*: Let $x, y \in U(A_i^+; t)$ Then $A_i^+(x) \geq t$ and $A_i^+(y) \geq t$ $A_i^+(x * y) \ge \min \{ A_i^+(x), A_i^+(y) \} \ge \min \{ t, t \} = t$ Therefore $x * y \in U(A_i^+; t)$ Hence U $(A_i^+; t)$ is a subalgebra in X. Let $x, y \in L(A_i; ; s)$ Then $A_i(x) \leq s$ and $A_i(y) \leq s$ A_i $(x * y) \le \max \{ A_i^-(x), A_i^-(y) \} \le \max \{ s, s \} = s$ Therefore $x * y \in L(A_i; s)$ Hence $L(A_i$; s) is a subalgebra in X.

C. Theorem 4.3

Let $A = \langle A_i^+, A_i \rangle$ be a multi-fuzzy set in X, such that the level sets $U(A_i^+; t)$ and L $(A_i^+; s)$ are subalgebras of X for every s \in [-1,0] and $t \in [0,1]$. Then A is a bipolar multi-fuzzy subalgebra in X.

1) Proof: Let $A = \langle A_i^+, A_i \rangle$ be a multi-fuzzy set in X, such that the level sets $U(A_i^+; t)$ and $L(A_i^+; s)$ are subalgebras of X for every $s \in [-1,0]$ and $t \in [0,1]$.

In contrary, let $x_0, y_0 \in X$ be such that $A_i^+(x_0 * y_0) < \min \{ A_i^+(x_0), A_i^+(y_0) \}$ and $A_i^-(x_0 * y_0) > \max \{ A_i^-(x_0), A_i^-(y_0) \}$ Let $A_i^+(x_0) = , A_i^+(y_0) = \beta, A_i^-(x_0) = \gamma, A_i^-(y_0) = \delta, A_i^+(x_0 * y_0) = t, A_i^-(x_0 * y_0) = s$ Then $t < min \{ , \beta \}$ and $s > max \{ \gamma, \delta \}$ Put $t_1 = \frac{1}{2}$ $\frac{1}{2}$ [A_i⁺ (x₀ * y₀) + min { A_i⁺ (x₀), A_i⁺ (y₀) }] and $s_1 = \frac{1}{2}$ $\frac{1}{2}[A_i^-(x_0 * y_0) + \max \{A_i^-(x_0), A_i^-(y_0)\}]$ This implies, $t_1 = \frac{1}{2}$ $\frac{1}{2}$ [t + min { α , β }] and $s_1 = \frac{1}{2}$ $\frac{1}{2}$ [s + max { γ , δ }] Hence $\alpha > t_1 = \frac{1}{2}$ $\frac{1}{2}$ [t + min { α , β }] > t, β > t₁ = $\frac{1}{2}$ $\frac{1}{2}$ [t + min { α , β }] > t and $\gamma < s_1 = \frac{1}{2}$ $\frac{1}{2}$ [s + max { γ , δ }] < s , δ < s₁ = $\frac{1}{2}$ $\frac{1}{2}$ [s + max { γ , δ }] < s \Rightarrow min { α , β } > t₁ > t = A_i⁺ (x₀ * y₀) and max { γ , δ } < s₁ < s = A_i⁻ (x₀ * y₀) So that $x_0 * y_0 \notin U(A_i^+; t)$ and $x_0 * y_0 \notin L(A_i^+; s)$ which is a contradiction, since $A_i^+(x_0) = \alpha \ge \min\{\alpha,\beta\} > t_1$, $A_i^+(y_0) = \beta \ge \min\{\alpha,\beta\} > t_1$ and $A_i^-(x_0) = \gamma \le \max\{\gamma,\delta\} < s_1$, $A_i^-(y_0) = \delta \le \max\{\gamma,\delta\} < s_1$ This implies that $x_0, y_0 \in U(A_i^+; t)$ and $x_0, y_0 \in L(A_i^+; s)$ Thus $A_i^+(x * y) \ge \min \{ A_i^+(x), A_i^+(y) \}$ and $A_i^-(x * y) \le \max \{ A_i^-(x), A_i^-(y) \}$, for $x, y \in X$. Hence A is a bipolar multi-fuzzy subalgebra of X.

D. Theorem 4.4

Any BG-subalgebra of X can be realized as both the positive t-cut and negative s-cut of some bipolar multi-fuzzy subalgebra in X. 1) *Proof*: Let S be a subalgebra of a BG-algebra X and $A = \langle A_i^+, A_i^- \rangle$ be a bipolar multi-fuzzy set in X defined by

 $A_i^+(x) = \int \lambda_i$, if $x \in S$ A_i τ _i, $\int f x \in S$ 0 , otherwise 6 0 , otherwise for all $λ_i ∈ [0,1]$, $τ_i ∈ [1,0]$ We consider the following four cases: *a*) *Case(i)*: If x, $y \in S$, then $A_i^+(x) = \lambda_i$, $A_i^+(y) = \lambda_i$, $A_i^-(x) = \tau_i$, $A_i^-(y) = \tau_i$ Since S is a subalgebra of X , $x * y \in S$ $A_i^+(x * y) = \lambda_i = \min \{ \lambda_i, \lambda_i \} = \min \{ A_i^+(x), A_i^+(y) \text{ and } \lambda_i = \min \{ A_i^+(x), A_i^+(y) \}$ $A_i(x * y) = \tau_i = \max \{ \tau_i, \tau_i \} = \max \{ A_i(x), A_i(y) \}$ b) *Case* (*ii*): If $x \in S$ and $y \notin S$, then $A_i^+(x) = \lambda_i$, $A_i^+(y) = 0$, $A_i(x) = \tau_i$, $A_i^-(y) = 0$ This implies that either $x * y \in S$ or $\notin S$. $A_i^+(x * y) \ge 0 = \min \{ \lambda_i, 0 \} = \min \{ A_i^+(x), A_i^+(y) \text{ and } 0 \}$ $A_i(x * y) \leq 0$ = max { τ_i , 0 } = max { $A_i(x)$, $A_i(y)$ } *c*) *Case* (*iii*): If $x \notin S$ and $y \in S$, then $A_i^+(x) = 0$, $A_i^+(y) = \lambda_i$, $A_i^-(x) = 0$, $A_i^-(y) = \tau_i$ This implies that either $x * y \in S$ or $\notin S$. $A_i^+(x * y) \ge 0 = \min \{ 0, \lambda_i \} = \min \{ A_i^+(x), A_i^+(y) \text{ and }$

 $A_i(x * y) \leq 0$ = max { 0, τ_i } = max { $A_i(x)$, $A_i(y)$ }

d) *Case* (*iv*): $x \notin S$ and $y \notin S$, then $A_i^+(x) = 0$, $A_i^+(y) = 0$, $A_i^-(x) = 0$, $A_i^-(y) = 0$

This implies that either $x * y \in S$ or $\notin S$.

 $A_i^+(x * y) \ge 0 = \min \{ 0, 0 \} = \min \{ A_i^+(x), A_i^+(y) \text{ and }$

 $A_i(x * y) \leq 0$ = max { 0, 0 } = max { $A_i(x)$, $A_i(y)$ }

Thus, in all the cases, $A = \langle A_i^+, A_i \rangle$ is bipolar multi-fuzzy subalgebra in X.

REFERENCES

- [1] Y.Imai and K.Iseki , On axiom system of propositional calculi, 15 Proc,Japan Academy,42(1966), pp: 19-22.
- [2] K.Iseki and S.Tanaka, An introduction to theory of BCK- algebras, Math. Japonica, 23 (1978), pp: 1-26.
- [3] K.Iseki, On BCI-algebras, Math. Seminor Notes 8 (1980), pp:125-130.
- [4] J.Neggers and H.S.Kim, On B-algebras, Mat. Vesnik 54 (2002), 21-29.
- [5] C.B.Kim and H.S.Kim, On BG-algebras, Demonstratio Mathematica, 41(2008), pp:497-505.
- [6] S.S.Ahn and D.Lee , Fuzzy subalgebras of BG algebras, Commun. Korean Math.Soc, 19 (2004) , No 2, pp: 243-251.
- [7] T.Senapati , Bipolar Fuzzy Structure of BG-subalgebras , The Journal of Fuzzy Mathematics , Vol.23 , No.1, (2015) , pp: 209-220
- [8] L.A.Zadeh, Fuzzy Sets , Information and Control, 8(1965), pp: 338-353
- [9] S.Sabu and T.V.Ramakrishnan, Multi-fuzzy sets, International Mathematical Forum, 50(2010) ,pp: 2471-2476.
- [10] S.Sabu and T.V.Ramakrishnan, Multi-fuzzy Topology, International Journal of Applied Mathematics, Vol 24, No.1(2011), pp:117-129.
- [11] W.R.Zhang , Bipolar fuzzy sets and relations, A computational framework for cognitive modeling and multiagent analysis, Proceedings of IEEE Conf., (1994) ,pp:305-309.
- [12] K.M.Lee , Bipolar-valued fuzzy sets and their operations , Proc.Int.Conf. On Intelligent Technologies, Bangkok, Thailand, (2000) , pp: 307-312
- [13] W.R.Zhang and L.Zhang, Yin Yang bipolar logic and bipolar fuzzy logic, Inform.Sci., 165(3-4), (2004), pp: 265-287
- [14] K.J.Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull Malays. Math.Sci.Soc.,32(3) (2009), pp:361-373.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 (24*7 Support on Whatsapp)