

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 2017 Issue: onferendetonth of publication: December 2017

DOI:

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

Lower level subsets of an anti-fuzzy HX ideal of a HX ring

R. Muthuraj¹, N. Ramila Gandhi²

¹ PG & Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai – 622 001, Tamilnadu, India. ²Department of Mathematics, PSNA College of Engineering and Technology, Dindigul-624 622, Tamilnadu, India. E-mail: ¹

Abstract: In this paper, we introduce the concept of lower level subsets of an anti-fuzzy HX ideal of a HX ring. We also discuss the relation between a given anti-fuzzy HX ideals of a HX ring and its lower level HX ideals and investigate the conditions under which a given HX ring has a properly inclusive chain of HX ideals. We introduce the concept of homomorphism and anti homomorphism of lower level subsets of an anti-fuzzy HX ideal and discuss some of its properties.

Keywords: HX ring, anti-fuzzy HX ideal, homomorphism, lower level subset. AMS Subject Classification (2000): 20N25, 03E72, 03F055, 06F35, 03G25.

I. INTRODUCTION

In 1965,Lotfi.A.Zadeh [9] introduced the concept of fuzzy set. Fuzzy sets attracted many mathematicians and grew enormously by finding applications in many areas. We introduce a notion of anti fuzzy HX ideal of a HX ring and some of its properties are discussed. We prove that a fuzzy subset of a HX ring is an anti fuzzy HX ideal if and only if the lower level subsets are HX ideals of a HX ring. In 1982 Wang-jin Liu [6] introduced the concept of fuzzy subring and fuzzy ideal. In 1988, Professor Li Hong Xing [5] proposed the concept of HX ring and derived some of its properties, then Professor Zhong [10] gave the structures of HX ring on a class of ring.

II. PRELIMINARIES

In this section, we site the fundamental definitions that will be used in the sequel. Throughout this paper, $R = (R, +, \cdot)$ is a Ring, e is the additive identity element of R and xy, we mean $x \cdot y$.

III. LOWER LEVEL SUBSETS OF AN ANTI-FUZZY HX IDEAL

A. Definition

Let λ_{μ} be an anti-fuzzy HX ideal of a HX ring \Re . For any $t \in [0,1]$, we define the set $L(\lambda_{\mu};t) = \{ A \in \Re / \lambda_{\mu}(A) \le t \}$ is called a lower level subset of λ_{μ} .

B. Theorem

Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \Re and $L(\lambda_{\mu}\,;\,t)$ is non-empty, then for $t\in[0,1],\,L(\lambda_{\mu}\,;\,t)$ is a HX right ideal of \Re .

1) Proof: Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \Re .

```
For any A , B\in L(\lambda_{\mu};\,t ), we have , \lambda_{\mu}\,(A)\leq t and \,\lambda_{\mu}\,(B)\leq t. Now, \lambda_{\mu}\,(\,A-B) \qquad \leq \qquad \max\,\{\,\lambda_{\mu}\,(A)\,,\,\lambda_{\mu}\,(B)\,\} \\ \qquad \qquad \leq \qquad \max\,\{\,t\,,\,t\,\} = t\,,\,\text{for some }t\in[0,1]. For any A\in L(\lambda_{\mu};\,t\,) and B\in\mathfrak{R},\, we have , \lambda_{\mu}\,(A)\leq t. Now, \lambda_{\mu}\,(\,AB\,) \qquad \leq \qquad t. Hence, A-B , \,AB\in L(\lambda_{\mu};\,t\,) . Hence, L(\,\lambda_{\mu};\,t\,) is a HX right ideal of a HX ring \mathfrak{R}.
```

C. Theorem

Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \Re and L (λ_{μ} ; t) is non-empty, then for any $t \in [0,1]$, L(λ_{μ} ; t) is a HX left ideal of \Re .

1) Proof: Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \Re .

For any A , $B\in L(\lambda_{\mu};\,t\,),\,$ we have , $\lambda_{\mu}\left(A\right)\,\leq\,t$ and $\,\lambda_{\mu}\left(B\right)\,\leq\,t.$

$$\begin{array}{lll} \text{Now,} & & \lambda_{\mu} \left(\right. A - B) & \leq & \max \left\{ \right. \lambda_{\mu} \left(A \right), \left. \lambda_{\mu} \left(B \right) \right. \right\} \\ & \leq & \max \left\{ \right. t, \left. t \right. \right\} = t \,, \, \text{for some } t \in [0, 1]. \end{array}$$

$$\lambda_{\mu} (A - B) \leq t.$$

For any $A \in L(\lambda_{\mu}; t)$ and $B \in \Re$, we have $\lambda_{\mu}(A) \leq t$.

Now,
$$\lambda_{\mu}\left(\;BA\;\right) \quad \leq \lambda_{\mu}(A) \, \leq \, t.$$

$$\lambda_{\mu}\left(\;BA\;\right) \quad \leq \, t$$

Hence, A - B, $BA \in L(\lambda_{\mu}; t)$.

Hence, $L(\lambda_{\mu}; t)$ is a HX left ideal of a HX ring \Re .

D. Theorem

Let λ_{μ} be an anti-fuzzy HX ideal of a HX ring $\mathfrak R$ and $L(\lambda_{\mu}\,;\,t)$ is non-empty, then for $t\in[0,1],\,L(\lambda_{\mu}\,;\,t)$ is a HX ideal of $\mathfrak R$.

- 1) Proof: It is clear.
- E. Theorem

Let \Re be a HX ring and λ_{μ} be a fuzzy subset of \Re such that L(λ_{μ} ; t) is a HX right ideal of \Re for all $t \in [0,1]$ then λ_{μ} is an antifuzzy HX right ideal of \Re .

- 1) Proof: It is clear.
- F. Theorem

Let \Re be a HX ring and λ_{μ} be a fuzzy subset of \Re such that $L(\lambda_{\mu}; t)$ is a HX left ideal of \Re for all $t \in [0,1]$ then λ_{μ} is an anti-fuzzy HX left ideal of \Re .

- 1) Proof: It is clear.
- G. Theorem

Let \Re be a HX ring and λ_{μ} be a fuzzy subset of \Re such that L(λ_{μ} ; t) is a HX ideal of \Re for all $t \in [0,1]$ then λ_{μ} is an anti-fuzzy HX ideal of \Re .

1) Proof: It is clear.

H. Theorem

A fuzzy subset λ_{μ} of \Re is a fuzzy HX ideal of a HX ring \Re if and only if the level HX subsets $L(\lambda_{\mu}$; t), $t \in Image \lambda_{\mu}$, are HX ideals of \Re .

1) Proof: It is clear.

I. Theorem

Let λ_{μ} be an anti-fuzzy HX ideal of a HX ring \Re . If two lower level HX ideals, $L(\lambda_{\mu};\,t_1),\,L(\lambda_{\mu};\,t_2)$ with $t_1 < t_2$ of λ_{μ} are equal if and only if there is no A in \Re such that

$$t_1\,\leq\,\lambda_{\mu}\,(A)\,<\,t_2.$$

- 1) Proof: It is clear.
- J. Theorem

Any HX ideal H of a HX ring \Re can be realized as a lower level HX ideal of some anti-fuzzy HX ideal of \Re .

1) Proof: It is clear.

K. Remark

As a consequence of the Theorem 3.9 and 3.10, the lower level HX ideals of an anti-fuzzy HX ideal λ^{μ} of a HX ring \Re form a chain. Since $\lambda^{\mu}(Q) \leq \lambda^{\mu}(A)$ for all A in \Re and therefore $L(\lambda^{\mu};t_0)$, where $\lambda^{\mu}(Q) = t_0$ is the smallest and we have the chain:

$$\begin{split} \{Q\} &= L(\lambda_{\mu}\,;\,t_0) \subset L(\lambda_{\mu}\,;\,t_1\,) \subset L(\lambda_{\mu}\,;\,t_2\,) \subset \ldots \subset L(\lambda_{\mu}\,;\,t_n\,) = \mathfrak{R}, \\ \text{where } t_0 < t_1 < t_2 < \ldots < t_n. \end{split}$$

III. HOMOMORPHISM AND ANTI HOMOMORPHISM OF A LOWER LEVEL SUBSETS OF AN ANTI-FUZZY HX IDEAL OF A HX RING

In this section, we introduce the concept of homomorphism and anti-homomorphism of lower level subsets of an anti-fuzzy HX ideal and discuss some of its properties. Throughout this section, $t \in [0,1]$.

A. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_μ be an anti-fuzzy HX right ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism and onto, then the anti-image of a lower level HX right ideal $L(\lambda_\mu; t)$ of an anti-fuzzy HX right ideal λ_μ of a HX ring \mathfrak{R}_1 is a lower level HX right ideal $L(f(\lambda_\mu); t)$ of an anti-fuzzy HX right ideal $f(\lambda_\mu)$ of a HX ring \mathfrak{R}_2 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ be a homomorphism.

Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \Re_1 . Clearly, $f(\lambda_{\mu})$ is an anti-fuzzy HX right ideal of a HX ring \Re_2 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \Re_1 .

Choose $t \in [0,1]$ in such a way that $X, Y \in L(\lambda_{\mu}; t)$ and hence $X-Y \in L(\lambda_{\mu}; t)$.

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(Y) \leq t$ and $\lambda_{\mu}(X-Y) \leq t$.

For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(XY) \leq t$.

We have to prove that $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

Let $X,\,Y\in L(\lambda_{\mu}\,;\,\,t)\,$ and hence $X{-}Y\in L(\lambda_{\mu}\,;\,\,t).$

For f(X), $f(Y) \in L(f(\lambda^{\mu}); t)$,

$$\begin{array}{rcl} (f(\lambda_{\mu}))(f(X)-f(Y)) & = & (f(\lambda_{\mu}))(f(X-Y)), \\ & = & \lambda_{\mu}\left(X-Y\right) \\ & \leq & t \\ (f(\lambda_{\mu}))\left(f(X)-f(Y)\right) & \leq & t \\ (f(X)-f(Y)) & \in & L(f(\lambda_{\mu});\ t). \end{array}$$

 $\text{let } X \in L(\lambda_{\mu}\,;\,\,t) \ \text{ and } Y \in \mathfrak{R}_1 \text{ then } XY \in L(\lambda_{\mu}\,;\,\,t) \ \text{ , as } L(\lambda_{\mu}\,;\,\,t) \text{ is a lower level HX right ideal of an anti-fuzzy HX right ideal } \lambda_{\mu} \text{ of a HX ring } \mathfrak{R}_1.$

For, $f(X) \in L(f(\lambda_{\mu}); t)$ and $f(Y) \in \Re_2$,

$$\begin{array}{cccc} (f(\lambda_{\mu}))(f(X)\;f(Y)) & \leq & & (f(\lambda_{\mu}))f(X) \\ & \leq & t \\ \\ (f(\lambda_{\mu}))(f(X)(f(Y)) \leq & t. \\ \\ (f(X)\;f(Y)) & \in & L(f(\lambda_{\mu});\;t). \end{array}$$

Hence, $L(f(\lambda_{\mu})\;;\;t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

B. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_μ be an anti-fuzzy HX left ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism and onto, then the anti-image of a lower level HX left ideal $L(\lambda_\mu; t)$ of an anti-fuzzy HX left ideal λ_μ of a HX ring \mathfrak{R}_1 is a lower level HX left ideal $L(f(\lambda_\mu); t)$ of an anti-fuzzy HX left ideal $L(\lambda_\mu); t$ of an HX ring \mathfrak{R}_2 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ be a homomorphism.

Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \Re_1 . Clearly, $f(\lambda_{\mu})$ is an anti-fuzzy HX left ideal of a HX ring \Re_2 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \Re_1 .

Choose $t \in [0,1]$ in such a way that $X, Y \in L(\lambda_{\mu}; t)$ and hence $X-Y \in L(\lambda_{\mu}; t)$.

 $\label{eq:continuous_equation} Then, \ \lambda_{\mu}(X) \leq t \quad \text{and} \quad \lambda_{\mu}(Y) \leq t \ \text{and} \quad \lambda_{\mu}(X-Y) \leq t.$

For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(XY) \leq t$.

We have to prove that $L(f(\lambda_u); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f(\lambda_u)$ of a HX ring \Re_2 .

Let $X, Y \in L(\lambda_{\mu}\,;\,\,t)$ and hence $X{-}Y \in L(\lambda_{\mu}\,;\,\,t).$

For f(X), $f(Y) \in L(f(\lambda^{\mu}); t)$,

$$\begin{array}{lll} (f(\lambda_{\mu}))(f(X)-f(Y)) & = & (f(\lambda_{\mu}))(f(X-Y)), \\ & = & \lambda_{\mu} \, (X-Y) \\ & \leq & t \\ & (f(\lambda_{\mu})) \, (f(X)-f(Y)) & \leq & t \, . \\ & (f(X)-f(Y)) & \in & L(f(\lambda_{\mu}); \, t). \end{array}$$

 $\text{let } X \in L(\lambda_{\mu}\,;\,\,t) \text{ and } Y \in \mathfrak{R}_1 \text{ then } YX \in L(\lambda_{\mu}\,;\,\,t) \text{ , as } L(\lambda_{\mu}\,;\,\,t) \text{ is a lower level HX left ideal of an anti-fuzzy HX left ideal } \lambda_{\mu} \text{ of a HX ring } \mathfrak{R}_1.$

For, $f(X) \in L(f(\lambda_{\mu}); t)$ and $f(Y) \in \Re_2$, $(f(\lambda_{\mu}))(f(Y) f(X)) \leq$

$$\begin{array}{lll} f(\lambda_{\mu}))(f(Y)\;f(X)) & \leq & (f(\lambda_{\mu}))(f(X)) \\ & \leq & t \\ \\ (f(\lambda_{\mu}))(f(Y)(f(X)) \leq & t. \\ \\ (f(Y)\;f(X)) & \in & L(f(\lambda_{\mu});\;t). \end{array}$$

Hence, $L(f(\lambda_{\mu}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

C. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_{μ} be an anti-fuzzy HX ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism and onto, then the anti-image of a lower level HX ideal $L(\lambda_{\mu}; t)$ of an anti-fuzzy HX ideal λ_{μ} of a HX ring \mathfrak{R}_1 is a lower level HX ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX ideal $f(\lambda_{\mu})$ of a HX ring \mathfrak{R}_2 .

1) Prof: It is clear.

D. Theorem

Let R_1 and R_2 be any two rings , \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX right ideal on \mathfrak{R}_2 . If $f:\mathfrak{R}_1\to\mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha\,;\,\,t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha);\,\,t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \Re_1 \to \Re_2$ be a homomorphism.

Let η_{α} be an anti-fuzzy HX right ideal of a HX ring \Re_2 . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX right ideal of a HX ring \Re_1 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \Re_2 .Let $X, Y \in \Re_1$ then $f(X), f(Y) \in \Re_2$.

Choose $t \in [0, 1]$ in such a way that f(X), $f(Y) \in L(\eta_{\alpha}; t)$ and hence $f(X) - f(Y) \in L(\eta_{\alpha}; t)$.

Then, $\eta_{\alpha}(f(X)) \leq \ t$, $\eta_{\alpha}(f(Y)) \leq \ t$ and $\eta_{\alpha}(\ f(X) - f(Y)) \leq \ t$.

For this $t \in [0, 1]$, $f(X) \in L(\eta_\alpha; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_\alpha; t)$, as $L(\eta_\alpha; t)$ be a lower level HX right ideal of an antifuzzy HX right ideal η_α of the HX ring \Re_2 .

Then, $\eta_{\alpha}(f(X)) \le t$, $\eta_{\alpha}(f(X)f(Y)) \le t$.

We have to prove that $L(f^{-l}(\eta_{\alpha});\ t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f^{-l}(\eta_{\alpha})$ of a HX ring \Re_1 . Now, Let X, $Y \in L(f^{-l}(\eta_{\alpha});\ t)$.

$$\begin{array}{rcl} & (f^{-1}(\eta\alpha))\;(X-Y) & = & \eta\alpha(f(X-Y)) \\ & = & \eta\alpha(f(X)-f(Y)) \\ & \leq & t \\ \\ (f^{-1}(\eta\alpha))(X-Y) & \leq & t \\ X-Y & \in & L(f^{-1}\;(\eta\alpha);\;t). \end{array}$$

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \Re_2 .

```
\begin{array}{ccccc} (f^{-l}(\eta_\alpha))(XY) & \leq & & (f^{-l}(\eta_\alpha))(X) \\ & = & & \eta_\alpha(f(X)) \\ & \leq & & t \\ \\ (f^{-l}(\eta_\alpha))(XY) & \leq & & t \\ & & XY & \in & L(f^{-l}(\eta_\alpha);\ t). \end{array}
```

Hence, $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal of a HX ring \Re_1 .

E. Theorem

Let R_1 and R_2 be any two rings , \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX left ideal on \mathfrak{R}_2 . If $f:\mathfrak{R}_1\to\mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha$; t) be a lower level HX left ideal of an anti-fuzzy HX left ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \Re_1 \to \Re_2$ be a homomorphism.

Let η_{α} be an anti-fuzzy HX left ideal of a HX ring \Re_2 . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX left ideal of a HX ring \Re_1 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \Re_2 . Let X, $Y \in \Re_1$ then f(X), $f(Y) \in \Re_2$.

Choose $t \in [0, 1]$ in such a way that f(X), $f(Y) \in L(\eta_{\alpha}; t)$ and hence $f(X) - f(Y) \in L(\eta_{\alpha}; t)$.

Then, $\eta_{\alpha}(f(X)) \leq t$, $\eta_{\alpha}(f(Y)) \leq t$ and $\eta_{\alpha}(f(X)-f(Y)) \leq t$.

For this $t \in [0, 1]$, $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \mathfrak{R}_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an antifuzzy HX left ideal η_{α} of the HX ring \mathfrak{R}_2 .

Then, $\eta_{\alpha}(f(X)) \le t$, $\eta_{\alpha}(f(X)f(Y)) \le t$.

We have to prove that $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \Re_1 . Now, Let $X, Y \in L(f^{-1}(\eta_{\alpha}); t)$.

```
\begin{array}{lll} (f^{-1}(\eta_\alpha))\; (X-Y) & = & \eta_\alpha(f(X-Y)) \\ & = & \eta_\alpha(f(X)-f(Y)) \\ & \leq & t \\ \\ (f^{-1}(\eta_\alpha))(X-Y) & \leq & t \\ X-Y & \in & L(f^{-1}\; (\eta_\alpha);\; t). \end{array}
```

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \mathfrak{R}_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \mathfrak{R}_2 .

```
\begin{array}{cccc} (f^{-l}(\eta_\alpha))(XY) & \leq & & (f^{-l}(\eta_\alpha))(Y) \\ & = & & \eta_\alpha(f(Y)) \\ & \leq & t \\ \\ (f^{-l}(\eta_\alpha))(XY) & \leq & t \\ & XY & \in & L(f^{-l}(\eta_\alpha);\ t). \end{array}
```

Hence, $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal of a HX ring \Re_1 .

F. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX ideal of an anti-fuzzy HX ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX ideal of an anti-fuzzy HX ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 .

1) Proof: It is clear.

G. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_μ be an anti-fuzzy HX right ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is an anti-homomorphism and onto, then the anti-image of a lower level HX right ideal $L(\lambda_\mu; t)$ of an anti-fuzzy HX right ideal λ_μ of a HX ring \mathfrak{R}_1 is a lower level HX left ideal $L(f(\lambda_\mu); t)$ of an anti-fuzzy HX left ideal $f(\lambda_\mu)$ of a HX ring \mathfrak{R}_2 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \Re_1 \to \Re_2$ be an anti homomorphism.

Let λ_{μ} be an anti-fuzzy HX right ideal of a HX ring \mathfrak{R}_1 . Clearly, $f(\lambda_{\mu})$ is an anti-fuzzy HX left ideal of a HX ring \mathfrak{R}_2 . Let X and Y in \mathfrak{R}_1 , implies f(X) and f(Y) in \mathfrak{R}_2 .

Let $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \Re_1 .

Choose $t \in [0,1]$ in such a way that $X, Y \in L(\lambda_{\mu}; t)$ and hence $Y-X \in L(\lambda_{\mu}; t)$.

 $\label{eq:continuous_equation} Then, \ \lambda_{\mu}(X) \leq t \quad \text{and} \quad \lambda_{\mu}(Y) \leq t \ \text{and} \quad \lambda_{\mu}(Y-X) \leq t.$

For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(XY) \leq t$.

We have to prove that $L(f(\lambda_{\mu}); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

Let $X, Y \in L(\lambda_{\mu}; t)$ and hence $Y-X \in L(\lambda_{\mu}; t)$.

For f(X), $f(Y) \in L(f(\lambda^{\mu}); t)$,

$$\begin{array}{cccc} (f(\lambda_{\mu}))(f(X)-f(Y)) & = & & (f(\lambda_{\mu}))(f(Y-X)), \\ & = & & \lambda_{\mu}\left(Y-X\right) \\ & \leq & t \\ \\ (f(\lambda_{\mu}))\left(f(X)-f(Y)\right) & \leq & t \\ \\ (f(X)-f(Y)) & \in & L(f(\lambda_{\mu});\ t). \end{array}$$

 $\text{let } X \in L(\lambda_{\mu}\,;\,\,t) \ \text{ and } Y \in \mathfrak{R}_1 \text{ then } XY \in L(\lambda_{\mu}\,;\,\,t) \ \text{ , as } L(\lambda_{\mu}\,;\,\,t) \text{ is a lower level HX right ideal of an anti-fuzzy HX right ideal } \lambda_{\mu} \text{ of a HX ring } \mathfrak{R}_1.$

For, $f(X) \in L(f(\lambda_{\mu}); t)$ and $f(Y) \in \Re_2$,

$$\begin{split} (f(\lambda_{\mu}))(f(Y) \ f(X)) & \leq & (f(\lambda_{\mu}))(f(X)) \\ & \leq & t \\ (f(\lambda_{\mu}))(f(Y)(f(X)) \leq & t. \\ (f(Y) \ f(X)) & \in & L(f(\lambda_{\mu}); \ t). \end{split}$$

Hence, $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

H. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_μ be an anti-fuzzy HX left ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is an anti-homomorphism and onto, then the anti-image of a lower level HX left ideal $L(\lambda_\mu; t)$ of an anti-fuzzy HX left ideal λ_μ of a HX ring \mathfrak{R}_1 is a lower level HX right ideal $L(f(\lambda_\mu); t)$ of an anti-fuzzy HX right ideal $f(\lambda_\mu)$ of a HX ring \mathfrak{R}_2 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \Re_1 \to \Re_2$ be an anti homomorphism.

Let λ_{μ} be an anti-fuzzy HX left ideal of a HX ring \Re_1 . Clearly, $f(\lambda_{\mu})$ is an anti-fuzzy HX right ideal of a HX ring \Re_2 . Let X and Y in \Re_1 , implies f(X) and f(Y) in \Re_2 .

Let $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \Re_1 .

Choose $t \in [0,1]$ in such a way that $X, Y \in L(\lambda_{\mu}; t)$ and hence $Y-X \in L(\lambda_{\mu}; t)$.

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(Y) \leq t$ and $\lambda_{\mu}(Y-X) \leq t$.

For this $t \in [0,1]$, let $X \in L(\lambda_{\mu}; t)$ and $Y \in \mathfrak{R}_1$ then $XY \in L(\lambda_{\mu}; t)$, as $L(\lambda_{\mu}; t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal λ_{μ} of a HX ring \mathfrak{R}_1 .

Then, $\lambda_{\mu}(X) \leq t$ and $\lambda_{\mu}(XY) \leq t$.

We have to prove that $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

Let $X, Y \in L(\lambda_{\mu}; t)$ and hence $Y-X \in L(\lambda_{\mu}; t)$.

For f(X), $f(Y) \in L(f(\lambda^{\mu}); t)$,

$$\begin{array}{lll} (f(\lambda_{\mu}))(f(X)-f(Y)) & = & (f(\lambda_{\mu}))(f(Y-X)), \\ & = & \lambda_{\mu}\left(Y-X\right) \\ & \leq & t \\ (f(\lambda_{\mu}))\left(f(X)-f(Y)\right) & \leq & t \\ (f(X)-f(Y)) & \in & L(f(\lambda_{\mu});\ t). \end{array}$$

 $\text{let } X \in L(\lambda_{\mu}\,;\,\,t) \text{ and } Y \in \mathfrak{R}_1 \text{ then } YX \in L(\lambda_{\mu}\,;\,\,t) \text{ , as } L(\lambda_{\mu}\,;\,\,t) \text{ is a lower level HX left ideal of an anti-fuzzy HX left ideal } \lambda_{\mu} \text{ of a HX ring } \mathfrak{R}_1.$

$$\begin{split} \text{For, } f(X) \in L(f(\lambda_{\mu}\,)\;;\;\;t) \;\;\text{and}\;\; f(Y) \in \mathfrak{R}_2\;, \\ (f(\lambda_{\mu}))(f(X)\;f(Y)) & \leq \qquad (f(\lambda_{\mu}))f(X) \\ & \leq \qquad t \\ (f(\lambda_{\mu}))(f(X)(f(Y)) \leq \qquad t. \\ (f(X)\;f(Y)) & \in \qquad L(f(\lambda_{\mu});\;t). \end{split}$$

Hence, $L(f(\lambda_{\mu}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f(\lambda_{\mu})$ of a HX ring \Re_2 .

I. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let λ_{μ} be an anti-fuzzy HX ideal on \mathfrak{R}_1 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is an anti-homomorphism and onto, then the anti-image of a lower level HX ideal $L(\lambda_{\mu}; t)$ of an anti-fuzzy HX ideal λ_{μ} of a HX ring \mathfrak{R}_1 is a lower level HX ideal $L(f(\lambda_{\mu}); t)$ of an anti-fuzzy HX ideal $f(\lambda_{\mu})$ of a HX ring $f(\lambda_{\mu})$ of

1) Proof: It is clear.

J. Theorem

Let R_1 and R_2 be any two rings , \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX right ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is an anti-homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \Re_1 \to \Re_2$ be an anti homomorphism.

Let η_{α} be an anti-fuzzy HX right ideal of a HX ring \mathfrak{R}_{2} . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX left ideal of a HX ring \mathfrak{R}_{1} . Let X and Y in \mathfrak{R}_{1} , implies f(X) and f(Y) in \mathfrak{R}_{2} .

Let $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \Re_2 .Let $X, Y \in \Re_1$ then $f(X), f(Y) \in \Re_2$.

Choose $t \in [0, 1]$ in such a way that f(X), $f(Y) \in L(\eta_{\alpha}; t)$ and hence $f(Y) - f(X) \in L(\eta_{\alpha}; t)$.

Then, $\eta_{\alpha}(f(X)) \leq t$, $\eta_{\alpha}(f(Y)) \leq t$ and $\eta_{\alpha}(f(Y)-f(X)) \leq t$.

For this $t \in [0, 1]$, $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an antifuzzy HX right ideal η_{α} of the HX ring \Re_2 .

Then, $\eta_{\alpha}(f(X)) \leq t$, $\eta_{\alpha}(f(X)f(Y)) \leq t$.

We have to prove that $L(f^{-l}(\eta_\alpha);\ t)$ is a lower level HX left ideal of an anti-fuzzy HX left ideal $\ f^{-l}(\eta_\alpha)$ of a HX ring $\ \Re_1$. Now, Let X, $Y \in L(f^{-l}(\eta_\alpha);\ t)$.

```
\begin{array}{rcl} (f^{-1}(\eta_{\alpha}))\;(X-Y) & = & \eta_{\alpha}(f(X-Y)) \\ & = & \eta_{\alpha}(f(Y)-f(X)) \\ & \leq & t \\ (f^{-1}(\eta_{\alpha}))(X-Y) & \leq & t \\ X-Y & \in & L(f^{-1}\;(\eta_{\alpha});\;t). \end{array}
```

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX right ideal of an anti-fuzzy HX right ideal η_{α} of the HX ring \Re_2 .

```
\begin{array}{cccc} (f^{-l}(\eta_\alpha))\,(YX) & \leq & f^{-l}(\eta_\alpha)(X) \\ & = & \eta_\alpha(f(X)) \\ & \leq & t \\ \\ (f^{-l}(\eta_\alpha))\,(YX) & \leq & t \\ & YX & \in & L(f^{-l}(\eta_\alpha);\;t). \end{array}
```

Hence, L(f⁻¹(η_{α}); t) is a lower level HX left ideal of an anti-fuzzy HX left ideal of a HX ring \Re_1 .

K. Theorem

Let R_1 and R_2 be any two rings, \mathfrak{R}_1 and \mathfrak{R}_2 be HX rings on R_1 and R_2 respectively. Let η_α be an anti-fuzzy HX left ideal on \mathfrak{R}_2 . If $f: \mathfrak{R}_1 \to \mathfrak{R}_2$ is a homomorphism on HX rings. Let $L(\eta_\alpha; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_α of a HX ring \mathfrak{R}_2 then $L(f^{-1}(\eta_\alpha); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f^{-1}(\eta_\alpha)$ of a HX ring \mathfrak{R}_1 .

1) Proof: Let R_1 and R_2 be any two rings and $f: \Re_1 \to \Re_2$ be an anti homomorphism.

Let η_{α} be an anti-fuzzy HX left ideal of a HX ring \mathfrak{R}_2 . Clearly, $f^{-1}(\eta_{\alpha})$ is an anti-fuzzy HX right ideal of a HX ring \mathfrak{R}_1 . Let X and Y in \mathfrak{R}_1 , implies f(X) and f(Y) in \mathfrak{R}_2 .

Let $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \Re_2 . Let X, $Y \in \Re_1$ then f(X), $f(Y) \in \Re_2$.

Choose $t \in [0, 1]$ in such a way that f(X), $f(Y) \in L(\eta_{\alpha}; t)$ and hence, $f(Y) - f(X) \in L(\eta_{\alpha}; t)$.

Then, $\eta_{\alpha}(f(X)) \leq t$, $\eta_{\alpha}(f(Y)) \leq t$ and $\eta_{\alpha}(f(Y) - f(X)) \leq t$.

For this $t \in [0, 1]$, $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an antifuzzy HX left ideal η_{α} of the HX ring \Re_2 .

Then, $\eta_{\alpha}(f(X)) \le t$, $\eta_{\alpha}(f(X)f(Y)) \le t$.

We have to prove that $L(f^{-1}(\eta_{\alpha});\ t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \Re_1 . Now, Let X, $Y \in L(f^{-1}(\eta_{\alpha});\ t)$.

```
\begin{array}{cccc} (f^{-1}(\eta_\alpha))(X-Y) & = & \eta_\alpha(f(X-Y)) \\ & = & \eta_\alpha(f(Y)-f(X)) \\ & \leq & t \\ (f^{-1}(\eta_\alpha))(X-Y) & \leq & t \\ X-Y & \in & L(f^{-1}(\eta_\alpha);\ t). \end{array}
```

Let $f(X) \in L(\eta_{\alpha}; t)$ and $f(Y) \in \Re_2$ then $f(X)f(Y) \in L(\eta_{\alpha}; t)$, as $L(\eta_{\alpha}; t)$ be a lower level HX left ideal of an anti-fuzzy HX left ideal η_{α} of the HX ring \Re_2 .

Hence, $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX right ideal of an anti-fuzzy HX right ideal of a HX ring \Re_1 .

L. Theorem

Let R_1 and R_2 be any two rings, \Re_1 and \Re_2 be HX rings on R_1 and R_2 respectively. Let η_{α} be an anti-fuzzy HX ideal on \Re_2 . If $f: \Re_1 \to \Re_2$ is an anti-homomorphism on HX rings. Let $L(\eta_{\alpha}; t)$ be a lower level HX ideal of an anti-fuzzy HX ideal η_{α} of a HX ring \Re_2 then $L(f^{-1}(\eta_{\alpha}); t)$ is a lower level HX ideal of an anti-fuzzy HX ideal $f^{-1}(\eta_{\alpha})$ of a HX ring \Re_1 .

1) Proof: It is clear.

REFERENCES

- [1] Azam.F. A., Mamun.A.A., Nasrin. F., Anti fuzzy ideal of a ring, Annals of fuzzy Mathematics and informatics, volume 5, No.2, 349-360, (2013).
- [2] Bing-xueYao and Yubin-Zhong, The construction of power ring, Fuzzy information and Engineering (ICFIE), ASC 40, 181-187, (2007).
- [3] Chandrasekara Rao.K and Swaminathan.V, Anti-homomorphism in fuzzy ideals, World Academy of Science, Engineering and Technology, Vol:44, 08-29, (2010).
- [4] Chang Bum, Kim, A note on some fuzzy ideals of a ring, Journal of Science Institute, Kookmin University, Volume 9, 29-37, (1991).
- [5] Li Hong Xing, HX ring, BUSEFAL,34(1),3-8,(1988).
- [6] Liu, W.J., Operations on fuzzy ideals, Fuzzy Sets and Systems, 11,31-41, (1983).
- [7] Malik, Davender S. and Mordeson, John N., Fuzzy homomorphism of rings, Fuzzy Sets and Systems, 46, 139-146, (1992).
- [8] Rajesh Kumar, Certain fuzzy ideals of rings redefined, Fuzzy sets and systems, 46, 251-260, (1992).
- [9] Zadeh.L.A., Fuzzy sets, Information and control, 8, 338-353, (1965).
- [10] Zhong YB, The structure of HX-ring on a class of ring. Fuzzy Systems and Mathematics, 9(4) 73-77,(1995).

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)