

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Issue: onferendelonth of publication: **Volume:** 2017 December 2017 DOI:

www.ijraset.com

Call: 008813907089 | E-mail ID: ijraset@gmail.com

Vertex Polynomial of Path related graphs

A. M. $Anto¹$

¹Assistant Professor in Mathematics, MalanKara Catholic College, Kaliyakavilai, Tamil Nadu, India.

Abstract: The vertex polynomial of the graph $G = (V, E)$ is defined as $V(G, x) = \sum_{k=0}^{A(G)} v_k x^k$, where $\Delta(G) = max\{d(v)/v \in V\}$ and v_k is the number of vertices of degree k . In this paper I find the Vertex Polynomial of some Path related graphs. *Keywords: Vertex Polynomial, Splitting graph, Degree splitting graph, Path, corona.*

I. INTRODUCTION

Here I consider simple undirected graphs only. The terms not defined here we can refer Frank Harary [2]. The vertex set is denoted by V and the edge set by E. For v ϵV , $d(v)$ is the number of edges incident with v, the maximum degree of the graph G is defined as $\Delta(G)$ = max{d(v)/v∈V}. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs, the union $G_1 \cup G_2$ is defined to be $G = (V, E)$ where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$, the sum $G_1 + G_2$ is defined as $G_1 \cup G_2$ together with all the lines joining points of V_1 to V_2 . The Cartesian product of two graphs G_1 and G_2 denoted by $G = G_1 \times G_2$ is the graph G such that $V(G) = V(G_1) \times V(G_2)$, that is every vertex of $G_1 \times G_2$ is an ordered pair (u, v) , where $u \in V(G_1)$ and $v \in V(G_2)$ and two distinct vertices (u, v) and (x, y) are adjacent in $G_1 \times G_2$ if either $u = x$ and $vy \in E(G_2)$ or $v = y$ and $ux \in E(G_1)$. If G is of order n, the corona of G with H, G \odot H is the graph obtained by taking one copy of G and n copies of H and joining the ith vertex of G with an every vertex in the ith copy of H. The graph G with $V = S_1 \cup S_2 \cup ... \cup S_i \cup T$, where each S_i is a set of vertices having at least two vertices and having the same degree and $T = V \cup S_i$. The degree splitting graph of G denoted by DS(G) and is obtained from G by adding the vertices $W_1, W_2, ..., W_t$ and joining w_i to each vertex of S_i , $1 \le i \le t$ [5]. For each vertex v of a graph G, take a new vertex v', join v' to all the vertices of G which are adjacent to v. The graph S(G) thus obtained is called splitting graph of G [1]. The Path consisting of length n is denoted by P_n . The graph $G = (V, E)$ is simply denoted by G.

II. MAIN RESULTS

A. Theorem: 2.1

The graph $P_m \cup P_n$ has the vertex polynomial $V(P_m \cup P_{n,k}) = (m+n-4)x^2 + 4x$.

1) Proof: The graphs P_m and P_n have degree m and n respectively. Then $P_m \cup P_n$ has order $m + n$. Among this $m + n$ vertices, $m-2$, $n-2$ vertices have degree 2 and 4 vertices have degree 1. Therefore, $V(P_m \cup P_n, x) = (m+n-4)x^2 + 4x$.

B. Theorem: 2.2

The graph $S(P_m \cup P_n)$ has the vertex polynomial $V(S(P_m \cup P_n), x) = (m + n - 4)x^4 + (m + n - 4)x^2 + 4x^2 + 4x$.

1) Proof: The graphs P_m and P_n have degree m and n respectively. Then, $S(P_m \cup P_n)$ has order $2(m + n)$. Among this $2(m + n)$ vertices, $m + n - 4$ vertices have degree 4, $m + n - 4$ vertices have degree 2, 4 vertices have degree 2 and 4 vertices have degree 1. Hence, $V(S(P_m \cup P_n), x) = (m + n - 4)x^4 + (m + n - 4)x^2 + 4x^2 + 4x$.

C. Theorem: 2.3

The graph $DS(P_m \cup P_n)$ has the vertex polynomial $V(DS(P_m \cup P_n) \cdot x) = x^{m+n-4} + x^4 + (m+n-4)x^3 + 4x^2$.

1) Proof: The graphs P_m and P_n have degree m and n respectively. Then the graph $DS(P_m \cup P_n)$ has order $m + n + 2$. Among this $m + n + 2$ vertices, one vertex has degree $m + n - 4$, one vertex has degree 4, $m + n - 4$ vertices have degree 3 and 4 vertices have degree 2. Hence, $V(DS(P_m \cup P_n) \cdot x) = x^{m+n-4} + x^4 + (m+n-4)x^3 + 4x^2$.

D. Theorem: 2.4

The graph $P_m + P_n$ has the vertex polynomial $V(P_m + P_{n} | x) = (m-2)x^{n+2} + (n-2)x^{m+2} + 2x^{n+1} + 2x^{m+1}$.

- *1) Proof:* The graph $P_m + P_n$ has order $m + n$. Among this $m + n$ vertices, $m 2$ vertices have degree $n + 2$, $n 2$ vertices have degree $m + 2$, 2 vertices have degree $n + 1$ and 2 vertices have degree $n + 1$. Therefore, $V(P_m + P_n, x) = (m - 2)x^{n+2} +$ $(n-2)x^{m+2} + 2x^{n+1} + 2x^{m+1}.$
- *E. Theorem: 2.5*

The graph $S(P_m + P_n)$ has the vertex polynomial $V(S(P_m + P_n), x) = (m-2)x^{2(n+2)} + (n-2)x^{2(m+2)} + 2x^{2(n+1)} + 2x^{2(m+1)} +$ $(m-2)x^{n+2} + (n-2)x^{m+2} + 2x^{n+1} + 2x^{m+1}.$

1) Proof: The graph $S(P_m + P_n)$ has order $2(m + n)$. Among this $2(m + n)$ vertices, $m - 2$ vertices have degree $2(n + 2)$, $n - 1$ 2 vertices have degree $2(m + 2)$, 2 vertices have degree $2(n + 1)$, 2 vertices have degree $2(m + 1)$, $m - 2$ vertices have degree $n + 2$, $n - 2$ vertices have degree $m + 2$, 2 vertices have degree $n + 1$ and 2 vertices have degree $m + 1$. Hence, $V(S(P_m + P_n), x) = (m-2)x^{2(n+2)} + (n-2)x^{2(m+2)} + 2x^{2(n+1)} + 2x^{2(m+1)} + (m-2)x^{n+2} + (n-2)x^{m+2} + 2x^{n+1} +$ $2x^{m+1}$.

F. Theorem: 2.6

The graph $DS(P_m + P_n)$ has the vertex polynomial $V(DS(P_m + P_n), x) = x^{n-2} + x^{m-2} + (n-2)x^{m+3} + (m-2)x^{n+3} + (m-2)x^{m+2} + (m-2)x^{m+3} + (m-2)x$ $2x^{m+2} + 2x^{n+2} + 2x^2$.

1) Proof: The graph $DS(P_m + P_n)$ has order $m + n + 4$. Among this $m + n + 4$ vertices, one vertex has degree $n - 2$, one vertex has degree $m-2$, $n-2$ vertices have degree $m+3$, $m-2$ vertices have degree $n+3$, 2 vertices have degree $m+2$, 2 vertices have degree $n + 2$ and 2 vertices have degree 2. Therefore, $V(DS(P_m + P_n), x) = x^{n-2} + x^{m-2} + (n-2)x^{m+3} +$ $(m-2)x^{n+3} + 2x^{m+2} + 2x^{n+2} + 2x^2$.

G. Theorem: 2.7

The graph $P_m \bigcirc P_n$ has the vertex polynomial $V(P_m \bigcirc P_n, x) = (m-2)x^{n+2} + 2x^{n+1} + (mn-2m)x^3 + 2mx^2$.

1) Proof: The graph $P_m \nO_n$ has order $m(n + 1)$. Among this $m(n + 1)$ vertices, $m - 2$ vertices have degree $n + 2$, 2 vertices have degree $n + 1$, $mn - 2m$ vertices have degree 3 and 2m vertices have degree 2. Therefore, $V(P_m \nO P_n, x)$ = $(m-2)x^{n+2} + 2x^{n+1} + (mn-2m)x^3 + 2mx^2$.

H. Theorem: 2.8

The graph $S(P_m \nO P_n)$ has the vertex polynomial $V(S(P_m \nO P_n), x) = (m-2)x^{2(n+2)} + (m-2)x^{n+2} + 2x^{2(n+1)} + 2x^{n+1} +$ $(mn - 2m)x^6 + (mn - 2m)x^3 + 2mx^4 + 2mx^2$.

1) Proof:The graph $S(P_m \nO P_n)$ has order $2m(n + 1)$. Among this $2m(n + 1)$ vertices, $m - 2$ vertices have degree $2(n + 2)$, $m-2$ vertices have degree $n+2$, 2 vertices have degree $2(n+1)$, 2 vertices have degree $n+1$, $mn-2m$ vertices have degree 6, $mn - 2m$ vertices have degree 3, 2m vertices have degree 4 and 2m vertices have degree 2. Hence, $V(P_m \odot$ P_{n} , x) = $(m-2)x^{2(n+2)} + (m-2)x^{n+2} + 2x^{2(n+1)} + 2x^{n+1} + (mn-2m)x^6 + (mn-2m)x^3 + 2mx^4 + 2mx^2$.

I. Theorem: 2.9

The graph $DS(P_m \bigcirc P_n)$ has the vertex polynomial $V(DS(P_m \bigcirc P_n) \cdot x) = (m-2)x^{n+3} + 2x^{n+2} + x^{mn-2m} + x^{2m} + x^{m-2} +$ $(mn-2m)x^4 + 2mx^3 + x^2$.

1) Proof: The graph $S(P_m \nO P_n)$ has order $2m(n + 1)$. Among this $2m(n + 1)$ vertices, $m - 2$ vertices have degree $n + 3$, 2 vertices have degree $n + 2$, one vertex has degree $mn - 2m$, one vertex has degree $2m$, one vertex has degree $m - 2$, $mn -$ 2m vertices have degree 4, 2m vertices have degree 3 and one vertex have degree 2. Therefore, $V(DS(P_m \nO P_n), x)$ = $(m-2)x^{n+3} + 2x^{n+2} + x^{mn-2m} + x^{2m} + x^{m-2} + (mn-2m)x^4 + 2mx^3 + x^2$

REFERENCES

- [1] E.Sampathkumar and H.B.Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci., (25-26) (1980-81), 13-16.
- [2] Frank Harary, 1872,"Graph Theory", Addition Wesley Publishing Company.
- [3] Gary Chartrant and Ping Znank, "Introduction to Graph Theory", Tata McGraw-Hill Edition.
- [4] J.Devaraj, E.Sukumaran "On Vertex Polynomial", International J. of Math.sci & Engg Appls(IJMESA) Vol. 6 No. 1 (January, 2012), pp. 371-380.
- [5] S. S. Sandhya, C. Jeyasekaran, C. D. Raj (2013), "Harmonic Mean Labelling Of Degree Splitting Graphs" Bulletin of Pure and Applied Sciences, 32E, 99-112.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 (24*7 Support on Whatsapp)