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Abstract: Time series analysis has been created by four types of experts namely Engineers and Physical Scientists; Economists; 
Applied Statisticians and Econometricians; and Mathematical Statisticians and Probability. The richness of the subject springs 
from this diversity of its origins. The history of time series analysis was not as smooth as one might think. Time series analysis 
was divided into two approaches namely Frequency Domain and Time Domain approaches. For Engineers and Physical 
Scientists, it is natural to regard a time series as made up of oscillations at different frequencies. This gives frequency domain 
analysis. For Statisticians and Applied research workers in other fields, it is natural to treat the data from the standpoint of 
correlation and regression relations between successive observations. This gives time domain analysis. There is duality between 
the frequency domain and time domain approaches to the time series analysis. 

I. INTRODUCTION 
In univariate time series regression models, the regressor variable is time.  A linear trend relationship can be written as 

Y T       (1.1) 
Where T indicates time. The T variable may be specified in many ways.  when T has zero mean, the normal equations for fitting 
(1.1) will become 

    2
Ya Yand b
T


 


 

One way of modeling such behavior is by means of auto regression. The simplest autoregressive model is 
    t t 1 tY Y          (1.2) 

This is called a first order autoregressive model and is denoted by AR(1). The order indicates the maximum lag in the equation. 
From the equation (1.2), we make the following assumptions about   variable 
   for all i 

    2 2
iE     for all I      (1.3) 

    i jE 0   for all i j       

These assumptions define a white noise series. Here the crucial question is, how does the Y series behave over time. Assuming that 
process stated a very long time ago, we take  

      2 2
t t t 1 t t 2Y 1 ...... .....             (1.4) 

      2
tE Y 1 .......     

This expectation exists only when the infinite geometric series on the right hand side has limit. The necessary and sufficient 

conditions is 1  . 

The expectation  then  tE Y
1


  


     (1.5) 
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Here variance Y will be  
2

2
y 2Var Y

1


  


     (1.6) 

The Y series has a constant unconditional variance, independent of time.  
The covariance of Y with a lagged value itself is known as autocovariance. 
The lag auto covariance is defined as 

  s 2
s y s 0,1, 2,            (1.7) 

So that first lag autocovariance is   z
1 y    

The autocovariances depend only on the lag length and are independent of t Dividing the covariances by the variance gives the 
autocorrelation coefficients, also known as series correlation coefficients. These will be defined as 
 s s o    , s = 0, 1, 2…….     (1.8) 

 Where z
o u    

 Plotting the autocorrelation coefficients against the lag lengths gives the correlogram of series. 
 When | | 1   the mean, variance, and covariances of Y series are constants independent of time. The Y series is then said 
to be weekly or covariance stationary.  
When 1  , the AR(1) process is said to have unit root. The equation becomes. 
       (1.9) 
 

Which is called a random walk with drift. The conditional expectation and conditional variance are   t 0 oE Y Y at Y   

Which increases or decreases without limit as t increases   2
t 0Var Y Y t   

Which increases without limit. In this case the unconditional mean and variance do not exist. The Y series is then said to be 
nonstationary. 
 
A. Autoregressive Model With Order p : AR(p)  
A common approach for modeling univariate time series is the autoregressive (AR) model. The AR(p) model is defined as 

t t 1 2 t 2 p t p tX X X .......... X                (2.1) 

where Xt is the time series, 
p

i
i 1

1 ,


 
     

 
  where   is the process mean 

t  is the white noise 

1 2 p, ........    are the parameters of the model 

p is the order of the AR model 
Some constraints are necessary on the values of the parameters of this model so that model remains wide-sense stationary. For an 

AR(P) model to be wide-sense stationary, the roots of the polynomial 
p

p p i
i

i 1
Z Z 



   must lie within the unit circle, i.e., each root 

Zi must satisfy i| Z | | . 
1) Estimation of AR Parameters: The AR(p) model is given by the equation  

p

t i t i t
i 1

X X 


           (2.2) 

It is based on the parameters i  where i=1, ……, p. 
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There is a direct correspondence between these parameters and the covariance function of the process. This correspondence can be 
inverted to determine the parameters from the autocorrelation function by using yule-walker equations.  

 
p

2
m t m,0k m k

k 1



             (2.3) 

where   m=0,1, … p. yielding p+1 equations. 
   m  is the autocorrelation function of x 

    is the standard deviation of the input noise process 

   m,0  is the Kronecker delta function 

The last part of the equation is non-zero only if m=0. Hence the equation is solved by representing it as a matrix for m>0. Thus we 
get the equation. 

1
0 1 2 1

2
1 0 1 2

3
2 1 0 3

......

......

......
:
:

 



 
                     
       
    
     
    

 

Solving all  can be otained. For m =0,
p

2
0 k k t

k 1




     
,
Which allows us to solve 2 

1) Derivation: The equation defining the AR process is 

 
p

t i t i t
i 1

X X 


    

 Multiplying both sides by t mX  and taking expectation,  

  
p

t t m i t i t m t t m
i 1

E X X E X X E X   


          


 
 By the definition of autocorrelation function, 

  t t m mE X , X     

The values of noise function are independent of each other and t mX   is independent of t  when ‘m’ is greater than zero. 

                For m>0 ,  t t mE x 0   

 For m=0,  
p

t t m t i t i t
i 1

E X , E X 


  
     

  
   

    
p

2
i t t i t

i 1
E X E



        

   = 2
t0           

                                    = 2
t        (2.4) 

Now, we have for m 0 ,
p

2
m i t i t m t m

i 1

E X X 


 
     

 
  
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Further,  
p p

i t i t m i t t m i
i 1 i 1

E X X E X X   
 

 
   

 
     = 



 
p

i m i
i 1

 

Which  yields the Yule-Walkes equations. 

 
p

2
m i m i t m

i 1
for m 0



             (2.5) 

For m<0, m m   
p

2
i |m| i m

i 1
 



           (2.6) 

 
2) Moving Average Model With Order Q : Ma (Q) 
In time series analysis, the moving average (MA) model is common approach for modeling univariate time series models. The 
moving average model with order qMA(q) is 
  t t 1 t 1 q t qX .......             (3.1) 

 Where,   is the mean of the series, 

  1, 2 q......,    are the parameters of the model, 

  t t 1, ,..........   are white noise error terms. 

  q is the order of the moving average model. 
 
B. Autoregressive Moving Average (Arma) Model 
It is convenient to use the notation ARMA (p, q), where p is the order of the autoregressive part and q is the order of the moving 
average part. 
The general AR (p) model was represented as 
 t 1 t 1 2 t 2 p t p tX X X ........ X               (4.1) 

 Multiplying both sides by  Xt-k yields 

 t k t 1 t k t 1 2 t k t 2 p t k t p t k tX X X X X X .......... X X X                 

 Taking expected value both sides and assuming stationarity gives 
 k 1 k 1 2 k 2 p k p......              

 Where k is the covariance between tX  and t kX   

 The MA (q) model is written as 
  k t 1 t 1 2 t 2 q t qX e e e ................. e         

 Multiplying both sides by t kX   yields 

 t k t t 1 t 1 2 t 2 q t qX X e e e ........... e x        t k 1 t k 1 2 t k 2 q t k qe e e ........... e         (4.2) 

 The expected value of the above equation will depend upon the value of k. 
 If k=0, and all other terms of the equation on (4.2) dropout because      

    2
t t i t t i eE e e 0 for i 0 and E e e for i 0      . 

Thus (4.1) becomes, 2 2 2 2 2 2 2
0 e 1 e 2 e q e........              

To obtain the initial estimates for ARMA models, combine AR and MA models: 

     k 1 t t k p t p t k t t kE x x ........ E X X E e X            1 t 1 t k q t q t kE e X ..... E e X        

       (4.3) 

If  k>q, the terms  t t kE e X 0   which leaves 
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 k 1 k 1 2 k 2 p k p.....              

When k<q, the past errors and the Xt-k will be correlated and the autocovariances will be affected by the moving average part of the 
process, requiring that it will be included. The variance and autocovariances of an ARMA (1,1) process are therefore obtained as 
follows: 

t 1 t 1 t 1 t 1X X e e      

Multiplying both sides by Xt-k gives 
  t k t 1 t k t 1 t k t 1 t k t 1X X X X X e X e          

Taking expected values both sides results in 

       t k t t k t 1 t k t 1 t k t 1E X X E X X E X e E X e          

If k=0,    0 1 1 1 t 1 t 1 t 1 t 1 1 t 1 t 1 t 1 t 1E X e e e E X e e e                       (4.4) 

Since  t 1 t 1 t 1 t 1x k e e      

  2 2
0 1 1 e 1 1 1 e             

Similarly if k=1, 2
1 1 0 1 e             (4.5) 

Solving the equations (4.2) ad (4.3) for 0  and 1  we get 

 
2
1 1 1

0 2
1

1 2
1

   
 


       (4.6) 

 
  1 1 1 1

1 2
1

1
1

   
 


      (4.7) 

Dividing (4.5) by (4.4) gives 

  1 1 1 1
1 2

1 1 1

1
1 2
   

 
   

      (4.8) 

 
C.   Autoregressive Integrated Moving Average  (Aima) Model 
To identity the appropriate ARIMA model for a time series, one has to begin by identifying the order (r) of differencing needing to 
stationarize the series and remove the gross features of seasonality, in conjunction with a variance–stabilizing transformation such 
as lagging or deflating. 
The equation for the simplest case ARIMA (1, 1, 1) is as follows  

     1
1 t 1 t1 B . 1 B X 1 B e          

The terms can be multiplied out and rearranged as follows.  
2 1

1 1 t t 1 t 11 B (1 ) B x e e           

1
t 1 t 1 2 t 2 t 1 t 1X (1 )X X e e                (5.1) 

In this form, the ARIMA model looks more like a conventional regression equation, except that there is more than one error term on 
the right hand side. ARIMA models are quite flexible and can represent a wide range of characteristics of time series that occur in 
practice.  
1) ARIMA  Model : pth order autoregressive model 
 t 0 1 t 1 2 t 2 p t p tY Y Y ....... Y                (5.2) 

2) ARIMA Model: qth order moving average model 
 
 t t 1 t 1 2 t 2 q t qY W W ...........W t             (5.3) 
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3) ARIMA Model: ARMA (p, q) model 
 t 0 1 t 1 2 t 2 p t p tY Y Y ........... Y             

 1 t 1 2 t 2 q t qW W ..........W            (5.4) 

 
4) ARIMA (0, 1, 1) Model 
 

t 1t t 1 t 1Y Y w
            (5.6) 

 
D. Autoregresive Distributed Lag Models (Ardl) 
In case where the variables in the long-run relation of interest are trend stationary, the general practice has been to de-trend the 
series and to model the detrended series as stationary distributed lag or autoregressive distributed lag (ARDL) models. Estimation 
and inference concerning the long-run properties of the model are then carried out using standard asymptotic normal theory. The 
analysis becomes more complicated when the variables are difference–stationary, or integrated of order 1. The auto-regressive 
distributed lag model with p lags of dependent variable Yt and q lags of additional regressor Xt, ADL (p, q) is defined as: 

 t 0 1 t 1 p t p 1 t 1 q t q tADL(p,q) Y Y ...... Y X .... X                (6.1) 

  t 0 t 1(L)Y L X        with lag-polynomials defined by 

 t 1 p p(L)Y 1 L ............ L      

 1 2 q q 1(L) L ....... L               (6.2) 

k additional predictors = ADL  1 kp,q ,.........,q      (6.3) 

        t 0 1 1,t 1 2 2,t 1 k k,t 1L Y L X L X ..... L X             

Model Assumptions 

t t 1,t 2, 1t 1 1t 2, k kt 2t 1E u Y ......,X ,X ...... X , X ..... 0            (6.4) 

(a).  t , 1t , ktY X ....... X are (strictly) stationary 

     (b).  t , 1t , ktY X ......., X are ergodic      (6.5) 

   t , 1t , kt t j, 1t j kt jY X .......,X and Y X ,.....,X    becomes independent for j  

t 1t , ktY and X ......, X  have  nonzero, finite fourth moments 

no perfect multicollinearity  

E.  Non Stationary Time Series Regression Models 
A time series Xt is said to be stationary if its expected value and population variance are independent of time and if the population 
covariance between its values at time t and t+s depends on s but not on time. 
An example of a stationary time series is an AR (1) process  
  t 2 t 1 tX X           (7.1) 

Here 21 1     and  t  is white noise 

If equation (7.1) is valid for time period t, it is also valid for time period t-1 i.e. the series is stationary. 
  t 1 2 t 2 t 1X X      

Substituting for Xt-1 in equation (7.1), we get 

  2
t 2 t 2 2 t 1 tX X        

Continuing this process of lagging and substituting, we get 
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t t 1
t 2 0 2 1 2 t 1 tX X ..................

           (7.2) 

In the previous examples, if 2  is equal to 1, the original series becomes 

t t 1 tX X           (7.3) 

This is an example of a nonstationary process which is known as a random walk 
If it starts at X0 at time 0, its value at time t is given by 

t 0 t tX X .....           (7.4) 

The key difference between this process and the corresponding A.R(1) process is that the contribution of each innovation is 
permanently built into the time series. In the more general version of the autogressive process with the constant 1,  the process 

becomes a random walk with drift, if 2 equals1. 

 t 1 t 1 tX X            (7.5) 

 If the series starts at X0 at time 0, Xt is given by 
 t 0 1 1 ttX X ........      

The expectation of Xt at time ‘0’ ,  0 1tX   is a function of ‘t’. Another common example of a nonstationary time series is one 

possessing a time trend: 
  t 1 2 tX t          (7.6) 

This type of trend is sometimes described as a deterministic trend. The expected value of Xt at time ‘t’  1 2t  is not 

independent of t and so Xt is nonstationary.   

F. Difference-Stationarity And Trend–Stationarity  
If a nonstationary process can be transformed into a stationary one by differencing, it is said to be difference – stationary. A random 
walk, with or without drift, is an example. If tX  is a random walk with drift, 

 t t t 1 1 1X X X t            (7.7) 

This is a stationary process with population mean  , and variance 2
t ,  both independent of time. If a nonstationary of time series 

can be transformed into a stationary process by differencing once, it is described as integrated of order 1, or I(1). If a time series can 
be made stationary by differencing twice, it is known as I(2), and so an. To complete the picture, a stationary process, which by 
definition need no differencing is described as I(0). In practice most series as I(0), I(1) or occasionally, I(2). The stochastic 
component in (7.1) is white noise. More generally, the stationary process reached after differencing may be ARMA (p, q) in which 
case the original series is characterized as an ARIMA (p, d, q) time series, where d is the number of times it has to be differenced to 
render it stationary. 
A nonstationary time series is described as being trend-stationary if it can be transformed into stationary process by extracting a 
time trend. For example, the very simple model given by equation (7.1) can be attended by fitting the equation. 

t 1 2X b b t 


 

An defining a new variable 

t t t t 1 2
ˆX X X X b b t    


 

The new, detrended, variable is of course just the residuals from the regression of x on t. 
 

II. CONCLUSIONS 
Time series analysis has advance from univariate modeling based on a single variable to multivariate models that employ the 
interrelationships between several such variables. Constructing such models requires the performing of tests to determine and to 
discover the interactions that exist between a given time series variables and one or more other variables. The given variable can be 
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influenced not only by certain exogenous events occurring at particular points in time but also by  contemporaneous, lagged and 
leading values of another variable or additional variables.  
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